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Abstract

We provide electrical circuit descriptions for bulk plasmons, single surface plasmons, and parallel-plate plasmons. Simple

circuits can reproduce the exactly known frequency versus wave-vector dispersion relations for all these cases, with reasonable

accuracy. The circuit paradigm directly provides a characteristic wave-impedance, Zo, that is rarely discussed in the context of

plasmonics. The case of a single-surface-plasmon is particularly interesting since it can be modeled as a transmission line, even

though there is no return current conductor. The capacitance/unit length and the Faraday inductance/unit length, of a flat metal

surface, are C0 = 2eokW, and L0 = mo/2kW, respectively (where k is the wave-vector, and W is the width of the flat metal surface). We

believe that many other metal-optic geometries can be described within the circuit paradigm, with the prerequisite that the

distributed capacitance and inductance must be calculated for each particular geometry.
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1. Introduction

Circuits with distributed inductive and capacitive

elements can capture much of the physics in Maxwell’s

equations. A circuit model provides powerful insights,

and can reveal physics that might otherwise be

concealed within an exact analytical solution, or in a

brute-force numerical solution.

While lumped element circuit approaches are

common in the microwave and RF regime, they have

played a limited role in optics. Lumped optical circuit

models are now available for metallic nano-spheres

[1,2], split-ring resonators [3,4], and nano-rods [5], but

the simplest case of the electrical circuit for a flat

metallic surface plasmon has not been presented.
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In addition to the capacitance, and Faraday

inductance, there is also kinetic inductance arising

from the inertia of the electrons in a metal. Kinetic

inductance dominates over Faraday inductance at blue

frequencies, or when there are characteristic dimen-

sions smaller than the collisionless skin depth [6].

When kinetic inductance dominates over Faraday

inductance, that is properly called the plasmonic

regime [7]. In general, all three circuit components,

must be included, capacitance, Faraday inductance,

and kinetic inductance.

In this article we model guided wave propagation in

metal optics as a one-dimensional distributed element

transmission line. The dispersion relation and character-

istic transmission line impedance are then obtained

through the standard transmission line dispersion

v2 = k2/L0C0, and wave impedance Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL0=C0Þ

p
,

where L0 and C0 are the inductance and capacitance

per unit length, respectively. These simple circuit models

http://www.sciencedirect.com/science/journal/15694410
http://dx.doi.org/10.1016/j.photonics.2011.12.002
mailto:mstaffar@eecs.berkeley.edu
http://dx.doi.org/10.1016/j.photonics.2011.12.002
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Fig. 1. The displacement of electrons in a rectangular metal bar leads

to a Coulombic restoring force, and oscillations at the bulk plasma

frequency, v p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnq2=eomÞ

p
.

do recover key results pertaining to dispersion curves for:

(i) guided surface plasmon waves on a single metal

surface, and (ii) for parallel plate optical waveguides. The

circuit approach also provides new insights into metal

optics that would be lost in more rigorous formal or

numerical treatments. Namely wave impedance emerges,

and is recognized as of equal significance to plasmon

dispersion. Owing to the presence of kinetic inductance, a

plasmonic transmission line can surprisingly have an

impedance greater than the impedance of free space,

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=eoÞ

p
¼ 377 V (where mo and eo are the

permeability and permittivity of free space, respectively).

The ability to adjust the plasmon wave impedance allows

voltage transformer action at optical frequencies, through

tapered metallic structures.

This transformer action is a unique feature of

plasmonics and can be used:

(i) to engineer efficient delivery of optical power to the

nanoscale, or

(ii) as an impedance matching tool toward molecular

light emitters.

The format of this article is as follows: in Section 2

we introduce the concept of kinetic inductance by

illustrating how it naturally arises from a simple LC

circuit model of a bulk plasma resonance. In Section 3

we identify the straightforward link between metal

dielectric constant and resistivity, whose imaginary part

represents kinetic inductance.

We use the expression for kinetic inductance from

Section 3, along with conventional RF concepts of

capacitance and Faraday inductance, to obtain equiva-

lent transmission line circuits for surface plasmon

waves on a single metal surface, and between parallel-

plate metal waveguide, in Sections 4 and 5, respectively.

In the process we make use of the capacitance/length

and the Faraday inductance/length of surface waves on a

flat surface, as derived in Appendices A and B. The

transmission line circuits directly produce dispersion

relations in good agreement with exact solutions of the

Maxwell equations.

In Section 6 we discuss how wave impedance

emerges from the circuit model. Advantageously, the

wave impedance is found to diverge at the nanoscale

due to the dependence of kinetic inductance on the

reciprocal of metal waveguide width.

2. Bulk plasma resonance condition

The bulk plasma resonance condition may be derived

from Newton’s 2nd law, F = ma. Consider a rectangular
metal slab of length z, and cross-sectional area, A, as

shown in Fig. 1.

Displacing the electron cloud about the background

ionic lattice by an infinitesimal distance dz along the

length dimension creates an electric field V/z. The force

on each electron is then F = qV/z = ma = m(dv/dt). It is

wise then, to insert the quantity nqA, in both numerator

and denominator:

F ¼ qV

z
¼ ma ¼ m

dv

dt
¼ m

nqA

nqA

dv

dt
; (1)

where n is the number density of electrons in the metal,

and q is the electric charge. Recognizing that nqAv is the

electric charge that passes a single point in 1 s, it

represents the flowing electric current, nqAv = I.

Eq. (1) can then be re-written as qV/z = (m/nqA)(dI/

dt) which resembles the voltage response of an inductor:

V = (m/nq2)(z/area) � (dI/dt), where the inductance is

Lkinetic = (m/nq2)(z/area). Likewise the charge separa-

tion in the metal slab leads to a capacitance: C = eo(area/

z). When the charge cloud is released, it oscillates about

the ionic lattice like a mass on a spring, like a plasmon

[8], or simply as an LC circuit. The corresponding

plasma oscillation frequency is given by:

v2 ¼ 1

LC
¼ nq2

eom

z

area

area

z
¼ nq2

eom
� v2

p (2)

Thus bulk plasmons can be represented by a kinetic

inductance Lkinetic = (m/nq2)(z/area). Kinetic induc-

tance is a well-known concept in superconductitivity

[9], where the ordinary resistance is zero, and it is only

inductance that impedes current flow.

3. Equivalence between metal dielectric constant

and conductivity

At the root of the circuit description of metal optics,

is a recognition of the equivalent parameterization

between optical dielectric constant of a metal, em(v),



M. Staffaroni et al. / Photonics and Nanostructures – Fundamentals and Applications 10 (2012) 166–176168
and the less frequently discussed complex frequency

dependent optical conductivity s(v) � jveo(em � 1).

This can be seen directly from Ampere’s Law, which

can treat the metal as a dielectric:

r � H � @D

@t
¼ r � H � jvemeoE ¼ 0; (3)

with relative dielectric constant em. Alternately the

metallic response can be regarded as producing only

currents J and charges r with otherwise negligible

dielectric response, in which case Ampere’s Law

becomes:

r � H � jveoE ¼ J ¼ sE (4)

The equivalence of Eqs. (3) and (4) is ensured when the

complex conductivity is defined as s(v) � jveo(em � 1).

The complex resistivity r(v) � 1/s(v) can be rational-

ized into real and imaginary parts as rðvÞ � 1=sðvÞ ¼
ð1=eovÞðð jð1 � e0mÞ þ e00mÞ=ðð1 � e0mÞ

2 þ ðe00mÞ
2ÞÞ: Then
Fig. 2. The dispersion relation of surface plasmons for a Drude metal with £v
The solid blue curve is the exact dispersion, while the red, dashed line is th

inductance L0k , and ordinary Faraday inductance, L0F , where the prime 0 rep
a metallic wire will have an impedance that can be

derived from the complex resistivity:

Z ¼ 1

sðvÞ
length

area
¼ 1

jveoðem � 1Þ �
length

area
(5)

Substituting in the metal optical relative dielectric

constant; em = 1 � nq2/eomv2, that neglects collisions,

the impedance becomes Z = jv � (m/nq2) � (length/

area) � jvLkinetic. Thus the kinetic inductance arises

from the inertia, m, of the Lkinetic = (m/nq2) � (length/

area), as in the previous section on bulk plasmons.

Equivalently expressed in terms of relative dielectric

constant Lkinetic = (1/v2eo(1 � em)) � (length/area).

Including collisions, there is an additional resistance

term Z = R + jvLkinetic, where for collision time t,

R = (m/nq2t) � (length/area), which is the usual

expression for the dissipative resistance of an electron

gas.
p = 4 eV. (a) and (b) are linear and semi-logarithmic plots, respectively.

e transmission line circuit model consisting of capacitance C0, kinetic

resents per unit length of transmission line.
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4. Circuit theory for surface plasmons

A hallmark of metal-optics is that the interface

between a metal and free space can support surface

plasmon modes [10–12] with the exact dispersion

relation:

k ¼ v

c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
em

em þ 1

r
(6)

where k = 2p/lk is the wave vector of the mode, and lk

is the corresponding wavelength along the surface.

Eq. (6) is plotted as the solid blue curve in Fig. 2.

But the physics of surface plasmons can be captured in a

distributed circuit transmission line model that is quite

conventional, except that it includes Lkinetic in series

with the more conventional Faraday inductance, LF. For

example in the circuit model, at large wave-vectors, v

has the constant value v p=
ffiffiffi
2
p

, or equivalently

em(v) = �1, while at small wave-vectors v = kc.

In developing a transmission line circuit model, there

are several challenges to overcome: is it indeed possible

to have a transmission line when there is only a single

conductor? Transmission line theory usually applies

when there are two conductors, one to transmit current,
Fig. 3. (a) The distribution of charges associated with a surface electromag

associated skin depth in which metallic current flows.
and one to return current. We want to treat the single

metal surface of Fig. 3 as a conductor, but there is no

return conductor to complete the circuit! Effectively the

return currents must flow at infinity, to permit a single

metal plate to act as a transmission line.

The charge distribution s(x) in Fig. 3(a) creates an

oscillatory voltage V(x) which can be calculated from

electrostatics. With voltage and charge calculated, a

capacitance per unit length C0 in the x-propagation

direction can be determined. A detailed electrostatic

calculation, in Appendix A, shows that C0 = 2eokW,

where W is the width of the metal surface in the y-

direction, transverse to kx, the wave propagation

direction.

As the surface charge shown in Fig. 3(a) oscillates in

time, sinusoidal surface currents must flow in space.

The surface currents produce a magnetic field B(x,z)

above the surface, spatially sinusoidal in the x-direction.

The effective Faraday inductance LF can be calculated

[13] from
R

B dx dz = LFI, where I is the surface current

over the full metal width W, and the magnetic flux is

obtained by integrating
R

B dx dz above the metal

surface in the +z-direction, and in the x-direction.

Expressed as inductance/per unit length L0F in the x-

direction, the magnetic flux is
R

B dx dz ¼
R

L0FI dx.
netic wave on a metal. (b) The electric and magnetic fields, and the
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Table 1

(a) Collisional skin depth is appropriate to microwaves, and is found in most electromagnetics books [14]. (b) Collisionless skin depth [6] pertains to

normal incidence plane waves, above the collision frequency, �10 THz. (c) If there is a wave propagation k, parallel to the surface, the surface wave

skin depth applies [10]. Generally em is predominantly negative, and e0m and e00m, and r0 & r00, represent the real and imaginary parts, respectively.

Skin depth type (a) Collisional vt < 1 (b) Collisionless vt > 1 (c) Surface wave skin depth

Skin depth; dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0ðvÞ
vmo

s
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e00mðvÞ

p
vj1 � emj

c

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e0m

p ¼ c

v p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � emðv2=c2Þ

q

Equating the integrands yields L0FI ¼
R
ðB dzÞ. Thus a

calculation of (
R

B dz)/I, allows us to determine L0F , the

Faraday inductance per unit length. In Appendix B, it is

shown that L0F ¼ mo=2kW .

There remains to calculate the contribution from the

kinetic inductance, Lk = (1/v2eo(1 � em)) � (length/

area) which is generally in series with LF. Per unit

length L0k ¼ ð1=v2eoð1 � emÞÞ � ð1=areaÞ. It remains to

calculate the area of the conduction path, which is the

skin depth of the metal slab � the width, A = dmW.

There is no one skin depth that is appropriate to all

situations. Table 1 presents three different forms of skin

depth:

For the surface wave propagation that we are

considering,  the appropriate skin depth dm is given as

case (c) of Table 1. With this skin depth,

L0k ¼ ð1=v2eoð1 � emÞÞdmW .

All three component values, C0, L0F , and L0k are now

known. Since they are defined per unit length, they

contribute toward a distributed transmission line. The

two inductors L0F , and L0k act in series L0F þ L0k, as shown

in the inset of Fig. 2. The properties of such a series L—

parallel C transmission lines are well worked out [15].

There are two important properties of transmission lines:

(a) The dispersion, v versus k, given by v2 = k2/L0C0.
(b) The wave impedance given by Z ¼

ffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
.

The general dispersion is given by v2 ¼ k2=ðL0F þ
L0kÞC0 which can be rewritten:

1

v2
¼ 1

k2

mo

2kW
þ 1

v2eoð1 � emÞdmW

� �
2eokW

¼ 1

k2
moeo þ

2k

v2ð1 � emÞdm

� �
(7)

Eq. (7) is plotted as the ‘‘circuit model’’ in Fig. 2.

In the limit k < vp/c, the kinetic inductance term is

negligible compared to the Faraday inductance. Eq. (7)

simplifies to v = kc, the ‘‘light line’’, in good agreement

with the exact solution in Fig. 2.

In the limit k > vp/c, the kinetic inductance term

dominates the Faraday inductance. Moreover, the skin
depth dm ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � emv2=c2Þ

q
, becomes dm � 1/k.

Then Eq. (7) becomes:

1

v2
¼ 1

k2

2k2

v2ð1 � emÞ

� �
¼ 2

v2ð1 � emÞ
(8)

Which further reduces to 1 � em = 2, or in other words

em = �1, which can also be written v p ¼ 1=
ffiffiffi
2
p

, all of

which expressions correspond exactly to the surface

plasmon condition, in good agreement with the exact

dispersion in Fig. 2.

In the intermediate regime k � vp/c, the circuit model

deviates from the exact dispersion in Fig. 2 by about 15%.

The circuit model is distributed, consisting repeating

circuit blocks in one-dimension, as shown in the insets of

Fig. 2. A more realistic model would be distributed in

two-dimensions respecting the two-dimensional char-

acter of our problem. A two-dimensional distributed

circuit would better describe our situation, but such an

avenue would add many more circuit components while

doing little for intuitive understanding. Thus we retain

our one-dimensionally distributed model in spite of the

slight disagreement with the exact solution.

The wave impedance is of equal importance to the

dispersion, and in the circuit model may be written:

Z ¼
ffiffiffiffiffi
L0

C0

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=2kWÞ þ ð1=v2eoð1 � emÞdmWÞ

2eokW

s

¼ 1

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=2kÞ þ ð1=v2eoð1 � emÞdmÞ

2eok

s

(9)

The final expression in Eq. (9) shows explicitly that the

wave impedance Z / (1/W) becomes very large as the

conducting plate becomes narrower. Once again we

treat the limits k < vp/c and k > vp/c.

For small wave vectors near the light line, k < vp/c,

the Faraday inductance dominates:

Z ¼
ffiffiffiffiffi
L0

C0

r
¼ 1

W

ffiffiffiffiffiffiffiffiffiffiffi
mo

4k2eo

r
¼ 1

2kW

ffiffiffiffiffiffi
mo

eo

r
¼ 1

2kW
� 377 V

(10)
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Since W > 1/k to maintain the one-dimensionality of the

problem, the impedance in case k < vp/c cannot exceed

the impedance of free space, 377 V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=eoÞ

p
. In

general, for transmission lines without kinetic induc-

tance, 377 V is an upper limit to the achievable imped-

ance.

In the opposite limit, k > vp/c, the kinetic inductance

dominates in Eq. (9), and wave impedance becomes:

Z ¼
ffiffiffiffiffi
L0

C0

r
¼ 1

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2v2e2
oð1 � emÞkdm

s

¼ 1

W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mo

eo

c2

2v2
pkdm

s
¼ 1

W

l p

2p

ffiffiffiffiffiffiffi
mo

2eo

r
(11)

where c/vp was replaced by lp, the vacuum wavelength

at the plasma frequency, and dm � 1/k in the deep

plasmonic regime where kinetic inductance dominates,

resulting in the simple form on the right side of Eq. (11).

When width W is less than the skin depth lp/2p, this

creates the possibility of a TM wave impedance

Z > 377 V, which should be regarded as a unique

feature of the plasmonic regime.

Earlier efforts [16] at modeling plasmonic wave-

guides in a transmission line framework do not make use

of lumped element circuits and instead rely on detailed

knowledge of the modal properties of the waveguide to

define a voltage and current. Such an approach can only

treat parallel plate plasmonic waveguides and cannot be

directly applied to guided surface plasmon waves at a

single metal surface due to the absence of a conducting

plate for return current, and the subsequent difficulty in

defining a transmission line voltage.

5. Circuit theory for the plasmonic parallel plate
waveguide

We now transfer our attention to parallel plate

waveguides at optical frequencies. There exists an exact

solution [10,11] of Maxwell’s equations for the parallel-

plate waveguide, for general complex dielectric con-

stant em:

expð�KidÞ ¼ Kiem þ Km

Kiem � Km
(12)

With Km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � emðv=cÞ2

q
¼ 1=dm,

Ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðv=cÞ2

q
, and where k = 2p/lk is the actual

wave vector of the mode, and lk is the corresponding

mode wavelength, v is the optical frequency, c is the

speed of light in free space, and d is the plate spacing.

The skin depth Km = 1/dm in the metal is the same as for

the single plate waveguide described in Table 1.
In transmission line theory, parallel plate waveguides

operating in the microwave regime are modeled as a

distributed-element repeating circuit of series inductors

and parallel capacitors [13]. The voltage and current

waveforms supported by this type of reactive transmission

line circuit follow the general dispersion relation given by

v2 = k2/L0C0, and wave impedance by Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL0=C0Þ

p
.

Once again, we need to define L0F , C0, and L0kinetic. For the

parallel plate geometry the kinetic inductance L0k is the

same as for a single plate, but multiplied by 2 to account

for the series inductance of the first plate and the return

current plate, L0k ¼ 2=v2eoð1 � emÞdmW .

The parallel plate inductance/unit length

L0cF ¼ mod=W , and capacitance/unit length C0c ¼
eoW=d are easy to derive, and well [13] documented.

The cross plate capacitance C0c does not tell the whole

story. We learned, when analyzing the single plate case

that intra-plate capacitance, now labeled as C0i ¼ 2eokW
is also present. Likewise the intra-plate inductance

L0iF ¼ mo=2kW must also be present.

Some corrections must now be introduced:

(i) Since the intra-plate inductance L0iF appears in

series on both the upper plate and the lower plate,

the correct value must be multiplied by 2�:

L0iF ¼ mo=kW . Like-wise the intra-plate capaci-

tances on the upper and lower plates appear as

reactive impedances in series. Thus the true intra-

plate capacitance must be cut in half: C0i ¼ eokW .

(ii) Further corrections are needed on the cross-plate

inductance and capacitance/unit length. When the

plate spacing is larger than the modal wavelength,

only a fraction of the electric field lines reach from

plate to plate, while the rest contribute to intra-plate

capacitance. The presence of a spatially oscillating

positive and negative charge on one plate implies that

a distant plate sees net cancellation, a weak field that

falls off exponentially as exp{�kd}. Since the

corresponding charge is smaller, for the same plate

voltage, the cross-plate capacitance is smaller by the

same factor, diminished to C0c ¼ eoðW=dÞexpf�kdg.

This exponentially decaying term is similar to the

screening of electric field through a periodic perforated

screen. The spatially oscillating surface charge provides

the periodicity. Combining the intra-plate capacitance,

C0i, and the cross-plate capacitance, C0c:

C0 ¼ C0i þ C0c ¼
eoW

d
½kd þ expf�kdg�: (13)

In the limit of small plate spacing exp{�kd} ! 1 � kd,

and Eq. (13) reduces to that of a parallel plate capacitor,



M. Staffaroni et al. / Photonics and Nanostructures – Fundamentals and Applications 10 (2012) 166–176172
C0 ! eo(W/d). In the opposite limit of large plate spac-

ing, exp{�kd} ! 0, and C0 ! eokW, half the intra-plate

capacitance, owing to the fact that the two widely

separated plates are effectively in series.

Likewise the cross-plate inductance L0cF is increased

when the plates are widely spaced, since little cross-

plate displacement current flows in spite of a high

voltage on the plate; L0cF ¼ moðd=WÞexpfkdg. This

must be combined with the intra-plate inductance that

we already know, L0iF ¼ mo=kW . Since the current

flowing in the metal plate flows either cross-plate or

intra-plate the two inductance contributions, L0cF and L0iF
must be in parallel:

L0F ¼
1

L0iF
þ 1

L0cF

� ��1

¼ Wkd

mod
þ W

mod expfkdg

� ��1

¼ mod

W ½kd þ expf�kdg�
(14)
Fig. 4. (a) Linear and (b) semi-logarithmic plots of the dispersion relation

constant em is that of a free-electron metal with a plasma frequency corres
In the limit of small plate spacing exp{�kd} ! 1 � kd,

and Eq. (14) reduces to that of a parallel plate inductor,

L0 ! mo(d/W). In the opposite limit of large plate

spacing, exp{�kd} ! 0, and L0 ! mo/kW, twice the

intra-plate inductance, owing to the fact that the two

distant plates are in series.

The agreement between the exact solution, Eq. (12),

and the circuit model, insets of Fig. 4, is perfect in the

limits of high and low wave-vector k, but there is some

discrepancy at the knee of the dispersion. This may

indicate of a more distributed interaction between the

Faraday and kinetic inductance than was captured by

our simple circuit model. As the plate spacing is

increased, the fields at each metal plate gradually

decouple from each other until the limit of a single

surface wave guided by a single metal plate governed by

Eq. (6) and shown in Fig. 2.

The distributed incremental equivalent circuit for a

small section of plasmonic parallel plate waveguide is

illustrated in Fig. 5(a) and in the insets to Fig. 4, which
 for a parallel plate waveguide at optical frequencies. The dielectric

ponding to £vp = 4 eV. The parameter d is the plate spacing.
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Fig. 5. The electric field distribution, surface charges, and distributed equivalent circuits for (a) a half-wavelength lk/2 section of plasmonic parallel

plate waveguide, of plate spacing d, and width W. (b) A half-wavelength lk/2 of a single-surface plasmonic plate of width W. (c) A two-wavelength

section of parallel plate waveguide, at intermediate k along the light line, but having widely spaced plates: (1/d) < k < (vp/c). (d) A conventional RF

parallel plate waveguide with k < (vp/c), and kd < 1, as is usually covered in Electromagnetics texts [13]. Note that in all cases, when losses are

present, the fields will additionally be bowed in the propagation direction [12].
includes both cross-plate and intra-plate circuit compo-

nents. The single plate case is in Fig. 5(b) and the inset of

Fig. 2, which includes only intra-plate circuit compo-

nents. Fig. 5(a) and (b) also sketch the electric field lines

and surface charges for a half-wavelength lk/2 segment

of the line, at the wave-vector k. Fig. 5(c) operates at low

enough frequency so that there are no plasmonic effects,

i.e. negligible kinetic inductance, yet there remains an

interesting competition between cross-plate and intra-

plate fields. This case of intermediate wave-vector (1/

d) < k < (vp/c) of Fig. 5(c) is non-plasmonic, yet it does

not seem to appear in microwave text-books. For

comparison the common case treated in textbooks is

given in Fig. 5(d).

As in any transmission line, the dispersion of

Fig. 5(c) is given by v2 = k2/L0C0. Substituting in the

capacitance C0 of Eq. (13), and the inductance L0 of
Eq. (14), all cross-plate and intra-plate terms cancel,

leading to the simplest possible dispersion v = kc

along the light line. This dispersion in Fig. 5(c) is the

same as an ordinary transmission line Fig. 5(d). The

difference between Fig. 5(c) and (d) lies in the wave

impedance Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL0=C0Þ

p
. For the ordinary transmis-

sion line, Fig. 5(d), the wave impedance is controlled

by the aspect ratio: Z ¼ ðd=WÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=eoÞ

p
. For the

widely spaced transmission  plates of Fig. 5(c), the

role of the spacing d is replaced by the reciprocal

wave vector Z ¼ ð1=kWÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=eoÞ

p
. Thus the widely

spaced parallel plate waveguide has a wave-impe-

dance even lower than a conventional waveguide, in

the non-plasmonic regime, with kinetic inductance

absent. In either Fig. 5(c) or (d), the wave impedance

is always �377 V, the impedance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=eoÞ

p
of free

space.
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6. Wave impedance of the plasmonic parallel

plate waveguide

In Eq. (11) we have already given the surprising TM

wave impedance of a single plasmonic plate,

Z ¼ ðl p=2pWÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo=2eoÞ

p
, where (lp/2p) � 25 nm is

the collisionless skin depth. Uniquely, the wave

impedance of a single narrow plate can become larger

than 377 V, the impedance of free space, owing to the

additional contribution by kinetic inductance, Lk. Similar

effects occur for the plasmonic parallel plate waveguide.

The plasmonic parallel plate wave impedance is

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðL0k þ L0FÞ=C0�

p
, where L0k ¼ 2=v2eoð1 � emÞ

dmW , and C0 & L0F are given by Eqs. (13) and (14),

respectively. We are particularly interested in the

regime where L0k makes a significant contribution.

When k > vp/c, and k > 1/d, the intra-plate impedances

dominate. The expression for Z simplifies to

ðl p=2pWÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mo=eoÞ

p
. This is twice the single plate

impedance, as expected. This provides an opportunity

for increasing the TM wave impedance above 377 V.

When k > vp/c, but k still less than 1/d, the following

formula for wave impedance emerges:

Z ¼
ffiffiffiffiffiffi
mo

eo

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

W2
þ

2l2
pkd

ð2pWÞ2

s

which can be high, but not as high as

ðl p=2pWÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mo=eoÞ

p
. In either instance, kd > 1 or

kd < 1, it is possible to achieve a TM wave impedance

above 377 V.

The ability to taper W to a narrower waveguide,

provides in effect a transformer action at optical

frequencies, for both single plate and parallel plate

waveguides. Thus the optical ac voltage increases, and

the optical ac current decreases, near the sharp tip. A

decreased current, as a result of transformer action, is

accompanied by diminished I2R resistive losses, which

are the major problem in metal optics.

It should be noted that in the derivations leading to

the impedance expressions presented above, we have

approximated the current distribution as uniform across

the width of the waveguide plates. For plates of finite

width this assumption will fail when Wk < 1 due to

edge effects. In the parallel plate configuration the

assumption that the current is uniform is a good one to

make as long as the plate spacing is no larger than the

plate width [13]. The neglect of edge effects depends

upon d 	 W.

The availability of large impedances through tapered

plasmonic waveguides suggests that efficient optical

power delivery to the nanoscale is within [17] reach.
Tapered plasmonic waveguide geometries could also be

used as a replacement for near-field scanning optical

microscope (NSOM) probes [18,19] and as a heating

element for heat assisted magnetic recording [20]

(HAMR). When combined with optical antennas,

tapered plasmonic waveguides could be used as

impedance matching tools [21,22] to couple to

molecules at high impedance. This antenna matching

could result in spontaneous hyper-emission [18,23], and

contribute toward [24–27] surface enhanced Raman

scattering (SERS).

Appendix A. Derivation of capacitance per unit
length for a wave on a flat metal plate

Consider a 2D charge distribution ss in the plane, as

shown in Fig. 3(a):

ss ¼ so cosðkxÞ; fx 2 ð�1; 1Þ; y 2 ð�W=2; W=2Þg

The potential Vo at the origin with respect to infinity is

given by the usual integral over charge density:

Vo ¼
1

4peo

Z 1
�1

dx

Z W=2

�W=2

dy
ssffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ 1

4peo

Z 1
�1

dx

Z W=2

�W=2

dy
so cosðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p (A1)

The integration with respect to y may be evaluated using

an indefinite integral from tables [28]:

Z W=2

�W=2

dy
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ¼ 2

Z W=2

0

dy
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ 2 ln y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2

p��� ���h iy¼W=2

y¼0

¼ 2 ln
W

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

4
þ x2

s������
������� 2 ln xj j

Inserting this integral into Eq. (A1) results in a strongly

oscillating term, multiplied by a logarithmic function

of x:

Vo ¼
1

4peo

Z 1
�1

dx so cosðkxÞ 2

� ln
W

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

4
þ x2

s������
������� ln xj j

0
@

1
A (A2)
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Changing variables to kx � u, this becomes:

Vo ¼
1

4peok

Z 1
�1

du so cos u


 2 ln
kW

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkWÞ2

4
þ u2

s������
������� ln uj j

0
@

1
A (A3)

The condition for treating Fig. 3(a) as a one-dimension-

al wave on a plane is that the wavelength should be

much shorter than the width W of the plane. Then

kW � 1, and the first logarithm in the integrand

becomes simply lnjkWj, a constant number which multi-

plies the oscillating cosine, and averages to zero. Then

Eq. (A3) simplifies to:

Vo ¼
�2so

4peok

Z 1
�1

du cos u ln uj j (A4)

Eq. (A4) can be integrated by parts, with the integral

converted to �
R1
�1ðsin u=uÞ du which is equal [29] to

�p. The peak voltage potential produced by all the

surface charge is Vo = so/2eok. Since Vo represents the

peak value of a cosine, V(x) = (so/2eok) cos(kx). If we

call C0 the capacitance per unit length, then the surface

charge per unit length becomes

C0VðxÞ ¼ C0so

2e0k

� �
cosðkxÞ (A5)

We have an alternate expression for surface charge per

unit length along the propagation direction, which is

obtained by multiplying the surface charge density ss

times width W:

ssW ¼ s0W cosðkxÞ (A6)

Requiring Eqs. (A5) and (A6) to be equivalent, the

capacitance per unit length along the propagation di-

rection is: C0 = 2eokW.

Appendix B. Derivation of inductance per unit

length for a wave on a flat metal plate

As the surface charge shown in Fig. 3(a) oscillates in

time, sinusoidal surface currents must flow in space.

The surface currents produce a magnetic field B(x,z)

above the surface, spatially sinusoidal in the x-direction.

The effective Faraday inductance LF can be calculated

[13] from
R

B dx dz = LFI, where I is the surface current

over the full metal width W, and the magnetic flux is

obtained by integrating
R

B dx dz above the metal

surface in the +z-direction, and in the x-direction.

Expressed as inductance/per unit length L0 in the x-

direction, the magnetic flux is
R

B dx dz ¼
R

L0FI dx.
Taking the integrands as equal simplifies this to

L0F ¼ ð
R

B dzÞ=I. We now show that L0F ¼ mo=2kW .

In calculating B(x,y), it is helpful to use the vector

potential A, just as it was helpful to calculate the scalar

potential V in calculating capacitance. Since all the

currents flow in the x-direction, the only non-zero

component is Ax:

AxðzÞ ¼ 1

4p

Z
dx0 dy

moJs

r

¼ mo

4p

Z 1
�1

dx0
Z W=2

�W=2

dy
Jsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y2 þ z2
p

¼ mo

4p

Z 1
�1

dx0
Z W=2

�W=2

dy
Jo cosðkx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y2 þ z2

p (B1)

which falls off as 1/r from the source of current, just as

scalar potential falls off as 1/r. The distinction between

x and x0, is that x0 is the variable of integration of the

current density, and x is the variable of integration of

magnetic flux. The current density Js = Jo cos(kx0) is

expressed per unit area, and integrated per unit area.

The magnetic field B can be derived from

B = 5 � A, but the only non-zero component is

By = (@Ax/@z). Calculating the magnetic flux in the y-

direction
R

(@Ax/@z) dz dx and integrating only in z, the

magnetic flux simplifies to dx½AxðzÞ�10 . An inspection of

Eq. (B1) shows that Ax(z = 1) = 0, but Ax(z = 0) is

finite. This procedure is equivalent to using Stokes’ Law

for the magnetic flux:Z
By dx dz ¼

Z
ðr � AxÞ dx dz ¼

Z
Ax 
 dl

¼ Axðz ¼ 0Þ dx

where the only part of the contour integral that is non-

zero is along the incremental path dx, at the metal

surface z = 0.

Therefore the magnetic flux is Ax(z = 0)dx, which by

using Eq. (B1) can be written:

dx Axð0Þ ¼ dx
mo

4p

Z 1
�1

dx0
Z W=2

�W=2

dy
Jo cosðkx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y2
p (B2)

Eq. (B2) is identical in structure to Eq. (A1). The

integration over y is an indefinite integral, and

the integration over x0 is a definite integral, as

before. The integral reduces to:

dx Axð0Þ ¼ dx
ð�2ÞmoJo

4pk

Z 1
�1

du cos u ln uj j

¼ dx
2pmoJo

4pk
¼ dx

moJo

2k
(B3)



M. Staffaroni et al. / Photonics and Nanostructures – Fundamentals and Applications 10 (2012) 166–176176
Since Eq. (B3) represents flux, then dx Ax(0) = -

LI = L0 dx I, where I is the total current in the sheet

JoW. Then dx(moJo/2k) = L0 dx JoW. Cancelling equal

terms on both sides of this equation, L0F ¼ mo=2kW .

References

[1] N. Engheta, A. Salandrino, A. Alù, Circuit elements at optical
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