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Tunneling of individual electrons into and out of a GaAs quantum dot is measured in real time by an
adjacent charge detector. By controllably increasing the tunneling rate at thermal equilibrium, the full-counting
statistics of these tunneling events shows a sub- to super-Poissonian transition, accompanied by a sign reversal
of its third statistical moment. These anomalies are believed to be caused by electron tunneling through the
singlet-triplet states of an elongated double dot, confirmed by a self-consistent Poisson-Schrödinger wave-
function calculation.
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I. INTRODUCTION

Single-photon counting statistics is a frequently used
technique to probe the internal structure and entanglement in
quantum optical systems.1 Very recently, experimental
works2–5 of single-electron counting statistics have emerged
toward the goal of making such quantum measurements in
semiconductor quantum dots �QDs�. These works were both
inspired by the development of a theoretical foundation of
full-counting statistics �FCS� �Refs. 6 and 7� and facilitated
by the experimental implementation of on-chip charge
detectors8–10 with a single-electron sensitivity. The charge
fluctuations, manifested as discrete steps of detector current,
have the characteristic signature of the random telegraph sig-
nal �RTS�, commonly observed in mesoscopic systems. The
FCS �i.e., the statistical moments� of the RTS can provide
additional information of quantum systems beyond the con-
ventional dc transport study.11 For example, Coulomb corre-
lations cannot only suppress the second moment �i.e., the
shot noise or the standard deviation of the distribution func-
tion� and third moment �i.e., the asymmetry or the skewness�
in the nonequilibrium condition when a single QD is voltage
biased5 but also dictate the single-electron current statistics
flow pattern in a double QD.3

In this work we performed an experiment in a QD in the
few-electron regime. In contrast to earlier work, we focus on
the spontaneous tunneling events between the dot and the
reservoir, via a single barrier, at thermal equilibrium. We
have observed anomalous behavior in the FCS when the con-
finement potential of the QD is biased into an elongated
shape. As we controllably increase the electron-tunneling
rate, the second moment shows a sub- to super-Poissonian
transition. This excessively large noise is also accompanied
by a large negative third moment. We used the anomalous
results to explore the internal level structure of the QD based
on the FCS.4

II. QD FABRICATION AND MEASUREMENT
TECHNIQUES

The QDs were fabricated from a molecular-beam epitaxy
�MBE� grown GaAs/AlGaAs heterostructure containing a

two-dimensional electron gas �2DEG� 100 nm below the
surface with a density of 2.8�1011 cm−2 and a mobility of
1.78�105 cm2·V−1 · s−1. The surface gates in Fig. 1�c� share
a similar design with Refs. 9 and 12, consisting of 5/30 nm
Cr/Au film defined by electron-beam lithography and lift-off
process. The electrical contacts to the source and drain res-
ervoir are provided by annealing the Ni/AuGe film evapo-
rated on the contact pads patterned by wet chemical etching.
The charge state of the QD, defined by gates T, M, P, and R
can be probed by the neighboring one-dimensional �1D�
channel formed by gates R and Q. The conductance of the
1D channel switches between two discrete values when an
extra electron tunnels into or out of the QD, as shown in Fig.
1�b�. The plunger gate P is used for fine tuning the QD
potential. All the measurements were performed in a He3

cryostat with a base temperature of 0.34 K. The electron
temperature was 0.5 K deduced from the RTS data as shown

FIG. 1. �a� Grayscale plot of the transconductance dI /dVM �in
arbitrary units� of the 1D read-out channel versus VR and VP. The
modulation signal on gate M is a 3.8 mV/83.27 Hz sine wave. The
lines correspond to abrupt changes in the channel conductance
when single electrons enter and leave the QD, as shown in �b�. �c�
is the scanning electron microscope �SEM� picture of the device
and the measurement configuration. The crossed squares denote the
Ohmic contacts. During measurements the S and D contacts were
grounded. A voltage VC biased 1D channel formed by gates R and
Q was used to sense the electron-tunneling events �denoted by
double arrows� through the one-barrier-open QD confined by T, M,
P, and R gates.
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below. During measurements the QD was tuned to have only
its left barrier weakly coupled to the 2DEG reservoir. The 1D
channel was tuned near 2h /e2�52 K� with a dc bias of 0.8
mV. Further decreasing the channel bias does not alter the
RTS statistics noticeably, which implies that the heating ef-
fect is negligible. The recorded RTS typically has current
switchings 5% of its average current and a signal-to-noise
ratio of about 5:1.

III. RTS AND ELECTRON COUNTING STATISTICS

Figure 1�a� shows the grayscale plot of the transconduc-
tance of the readout channel, dI /dVM, versus gate voltage VR
and VP. This modulation technique can reveal QD states,
which are otherwise invisible in the QD average current
measurement due to the rather opaque tunneling barrier.13

Each gray line in this plot represents the evolution of an
individual QD state with VR and VP. The QD is in the few-
electron region, evidenced by the uneven spacing between
the gray lines in the left-bottom portion of Fig. 1�a�.

Monitoring the 1D channel current in real time reveals
one fast and one slow RTS, which appear successively in
close proximity to the two bottom gray lines of Fig. 1�a�.
Both the fast and slow RTS, shown in Figs. 2�a� and 2�b�,
respectively, exhibit a clear evolution with VP. The observed
shortest RTS duration indicates that the bandwidth of the
measurement system is about 35 KHz, which is comparable
with Refs. 5 and 8.

The reconstructed RTS, following the algorithm in Ref.
10, was used to extract the ratio of the average time that RTS
stays in its two discrete states. The logarithm of the ratio,

log�r�, is found to exhibit a linear relationship with Vp, as
shown in Fig. 2�c�, and the total switchings in the RTS, N,
shows a peak value at r=1. From the detailed balance
condition,14 r=exp��Ed−Ef� /kT�, where Ed and Ef are the
energy level of the QD and Fermi level of the lead, respec-
tively. Thus Ed−Ef =�e�Vp=�e�Vp−VP0�, where � is the
arm factor, VP0 is the balance point where r=1, and Ed is
exactly aligned with Ef. The linear fit in Fig. 2�c� gives an
effective electron temperature of 0.5 K using �=0.011 ex-
tracted from the QD Coulomb diamond diagram.

The rate of electron tunneling into �out of� the QD can be
derived from RTS traces according to �in�out�

−1 =2· tH�L� /N,
where tH and tL are the total duration of the two discrete RTS
states. The obtained �in�out� versus �VP is shown in Fig. 2�d�.
The relation between the effective tunneling rate and the dot-
lead coupling strength � is

�in/out = � · f���E/kT� , �1�

where �E=Ef −Ed and f��E /kT� is the Fermi-Dirac
distribution.4 In Fig. 2�d�, the theoretical curve formulated by
Eq. �1� shows excellent agreement with the experimental
data. An increasing VP will lower the electrochemical poten-
tial of the QD, and �in ��out� will increase �decrease� accord-
ingly. At the balance point, �in=�out, corresponding to r=1
and the maximum N in Fig. 2�c�.

Two consecutive up and down steps in a RTS trace con-
stitute one cycle of an electron entering and leaving the QD.
For a RTS trace with a total time length T, by counting the
electrons within its individual time division t0, the statistics
of the number of electrons tunneling through the QD can be
constructed.5 The resultant probability distribution functions
at different VP’s are plotted in Figs. 3�a� and 3�b� for the fast
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FIG. 2. �Color online� One �a� fast and �b� slow RTS trace, and
their evolution with VP, represent the real-time electron tunneling
through the last two QD states. The number in brackets is the offset
along the y axis. �c� The ratio �circles associated with the left y axis�
of average time of RTS in the high and low current states,
and the total number of transitions �squares associated with the
right y axis� are plotted against the unbalanced plunger gate voltage
�Vp. The dashed line is the exponential fit according to
r=exp��e�Vp−VP0� /kT�. �d� The experimental tunneling rates, �in

�squares� and �out �circles�, are plotted as a function of �Vp. Curves
are the fit according to Eq. �1�.
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FIG. 3. �Color online� The probability distribution function of
the number of electrons tunneling through the QD within a finite
length of time, t0, at the �a� balanced condition of �Vp=0 and �b�
unbalanced conditions. �c�

m2

m1
and �d�
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are plotted as a function of

�Vp. Red �dark gray� lines indicate the theoretical values according

to Eq. �4�; blue �dark gray� dashed lines indicate
m2
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=0.5 and
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=0.25 at the balance point.
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RTS at �=100 Hz. Each RTS trace contains about 10 000
transitions so that the obtained statistics are insensitive to the
RTS length.

The distribution function at the balance point in Fig. 3�a�
shows a larger center �average� value �n� and is more sym-
metric and broader than those at unbalanced conditions in
Fig. 3�b�. The distribution function can be understood in the
framework of the FCS. We treat the problem as a QD at
thermal equilibrium with only its left tunneling barrier
weakly coupled to the thermal reservoir. The master equation
that describes the time evolution of the system is

�

�t
�p,t� = − L̂�p,t�, �p,t� = 	p1

p2

 , �2�

where p1 and p2 are the occupation probabilities of one- and
two-electron states, respectively.7 As originally proposed in
Ref. 7, electrons tunneling out of the QD can be counted by
adding a counting factor ei� to one of the off-diagonal ele-
ments of the matrix L, which represents the possible transi-
tion probability between the states,

	 �in − �out · ei�

− �in �out

 . �3�

The central moments, mn, can be obtained from the lowest
eigenvalue 	0��� of the matrix: mn=−�−i���nS��� ��=0 and the
generating function S���=−	0���t0. The analytical expres-
sion for

m2

m1
and

m3

m1
of the system can be derived as

�
m2

m1
= �1 + 
2�/2,

m3

m1
= �1 + 3
4�/4,� �4�

where 
=2f��E /kT�−1.
The above expressions describe the experimental data

quite well, as displayed in Figs. 3�c� and 3�d�. The ratios
m2

m1

and
m3

m1
have their minimum values at 0.5 and 0.25 at the

balance point, respectively, which clearly deviate from
m2

m1

=
m3

m1
=1 expected for classical Poissonian noise. The suppres-

sion is a consequence of the Coulomb blockade effect as one
electron can only enter the QD after the previous one exits.
This generates a correlation in the electron transport and
hence reduces the current fluctuations. The reduction �corre-
lation� is most pronounced at the balance point where there
are the most electrons passing through the QD, set by the
lower value in �in and �out, as shown in Figs. 2�c� and 2�d�.

The FCS, however, displays an unusual behavior at higher
tunneling rate �. During the experiment the QD level re-
mains resonant with the Fermi level of the lead, while its left
barrier is tuned to become more transparent, as depicted in
Fig. 4�c�. As we increase �,

m2

m1
in Fig. 4�e�, which is essen-

tially the quantum noise, deviates from 0.5 and increases to a
value, which is even larger than unity, as expected for Pois-
sonian noise. Meanwhile

m3

m1
in Fig. 4�f�, a measure of the

asymmetry of the distribution function, deviates from 0.25

and reaches a large negative value of about −2.5. This sug-
gests that the noise behavior at the balance point can be
tuned from sub-�

m2

m1
�1� to super-Poissonian �

m2

m1
�1� solely

by the tunneling rate. We believe this peculiar noise behavior
is due to the fact that there is more than one orbital state
within kT �Fig. 4�b��, i.e., the spin singlet and triplet states of
an elongated double QD �Fig. 4�d�� formed at nearly zero
plunger gate voltages.11

IV. WAVE FUNCTION OF A TWO-ELECTRON QD

To confirm that the QD can be tuned to behave like two
weakly coupled dots under low plunger gate voltages, the
two-electron wave function has been numerically simulated.
The wave function of the electrons confined in a QD can be
decomposed as

�x,y,z� = ��x,y���z� , �5�

where ��x ,y� and ��z� are the wave-function components in
the x-y plane and the z �growth� direction, respectively.

A. 1D self-consistent solution in z-direction

��z� can be obtained by a 1D self-consistent solution of
Poisson-Schrödinger solution.15 Initially assuming no charge
at the heterostructure interface, the Schrödinger equation was
solved for a step potential formed by the band offset between
GaAs and AlGaAs. The ground-state wave function and its
eigenenergy can thus be acquired. The charge-density distri-
bution along z-direction can be computed as

��z� = e
E0

Ef

D�E�f�E����z��2dE , �6�

where D�E� is the two-dimensional density of states and E0
is the energy of the ground subband edge. The attained
charge distribution can be substituted into the Poisson equa-
tion to solve the potential distribution. This procedure can be
repeated until convergence is obtained.

The above calculation was intended to extract information
required in the following simulation procedures: �1� the dop-
ant density introduced during the heterostructure growth can-
not be used in the definition of the device model since the
dopants are only partially ionized at low temperatures. In-
stead the effective dopant density has been adjusted so that
the simulated 2DEG density would match the experimental
value. �2� The mismatch between Fermi levels of the gate
metal and AlGaAs was extracted by the channel threshold
voltage at about −0.4 V instead of using the theoretical
work-function values, which are usually not reliable. �3� In
the following three-dimensional �3D� Poisson simulation by
the finite element method �FEM�, due to the limitation of the
number of mesh points available in the z direction, the exact
distribution of the electron charge in this direction cannot not
be reproduced. Instead the charge distribution in the z direc-
tion was assumed uniformly distributed in a z0=20-nm-thick
slab below the heterostructure interface. z0 is determined by
the following relation:
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0

z0

��z�dz/
0

+�

��z�dz = 0.95. �7�

This simplification was proved to be satisfactory and also
consistent with the fact that z0 is much smaller than the size
of the QD. �4� Finally the quantum confinement effect was
taken into account by shifting the QD energy levels the
amount of E0 from the ��z� solution.

B. 3D Poisson problem

The Poisson problem was simulated in a full 3D domain
employing the numerical technique of FEM. A 3D domain is
required by the structure of the device: even though electrons
are laterally confined in a 2D plane, the gate electrodes are
located 100 nm above the heterostructure interface. As speci-
fied above the electron charge is considered uniformly dis-
tributed in the z direction in a 20-nm-thick slab. Inside the
quantum dot the charge used in the Poisson problem is ex-
tracted from the solution of the 2D Schrödinger equation
including the electron-electron interaction, as will be de-
scribed in the next section.

C. 2D simulation within the QD plane

The charge distribution inside a two-electron QD can be
calculated by solving the Schrödinger and Poisson equation
self-consistently. The Hamiltonian of the problem can be
written as

H = �
i=1

2 � �2

2m�
�i

2 + eV�ri�� + Hee + Hex, �8�

where the first term is the kinetic energy and V is the con-
finement potential defined by the gate voltages and can be
numerically extracted from the 3D Poisson simulation. Hee is
the Coulomb interactions between electrons. Hex is the ex-
change interaction due to Pauli exclusion principle and Cou-
lomb interactions. For a weakly coupled two-electron double
QD, the confinement potential has a two-minima shape and
thus forms two well-separated traps for each electron; it is
possible to treat both the Coulomb and exchange interaction
as a perturbation to the one-electron Schrödinger equation.
However, this is not applicable to our case here since V has
only one minimum. Due to the elongated shape of the poten-
tial well, the Coulomb repulsion pushes the electrons away
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�b� The model: the QD has only its left barrier weakly open. Electrons can hop on and off states S+ and S−, which are within the thermal
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m2

m1
�squares� and �f�

m3
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�squares� at the balance point as a function of tunneling rate. The

theoretical values for
m2

m1
and

m2

m1
are shown by the curves.
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from each other at a considerable distance. This, on one
hand, sets the necessity to treat exactly the Coulomb interac-
tion within a self-consistent scheme; on the other hand, the
one-electron wave function calculated in this way is centered
at a distance large enough to treat the exchange Hamiltonian
as a perturbation. Similar situation has also been reported in
a wide single-quantum well in which two isolated 2DEG
layers are formed due to strong Coulomb repulsion among
electrons.16

The simulation process is based on one set of coupled
nonlinear Schrödinger equations,

E1�1 = � �2

2m�
�1

2 + eV�r1� + e2

4��

1

r12
���2�r2��2d2r2���1,

�9a�

E2�2 = � �2

2m�
�2

2 + eV�r2� + e2

4��

1

r12
���1�r1��2d2r1���2,

�9b�

where �1�r1� and �2�r2� are eigenstates of Eqs. �9a� and
�9b�. The calculation begins with solving the Poisson equa-
tion assuming no charge in the QD followed by a sequence
of steps: solving the coupled Schrödinger equations for each
electron; calculating the Coulomb interactions between the
two electrons according to the third term of Eqs. �9a� and
�9b�; and recalculating the coupled Schrödinger equations if
the eigenvalue is not converged. Using the obtained wave
functions to calculate the new charge-density distributions,
the 3D Poisson problem was solved again to obtain the con-
finement potential. Hence a new loop starts and the process
will continue until the eigenvalue is converged. In practice,
to ensure convergence, instead of the full new charge distri-
bution �n from the Schrödinger equation, a “damped” value,
�n+1=�n�+�n−1�1−��, was used. Here �n−1 is the charge
value acquired in the previous iteration. A small � reduces
the risk of instability at the expense of more iterations to
reach convergence.

The exchange energy, Eex, was calculated according to

Eex =
e2

4��/
�1�r1��2�r2�

1

r12
�1�r2��2�r1�d2r1d2r2.

�10�

To validate our model, Eex as a function of interdot distance
was calculated at the same conditions as in Ref. 17 for two
electrons in a double dot defined by an analytical potential.
Results of both an exact numerical calculation and several
approximation methods were included in Ref. 17. Fairly
good agreement has been achieved between our model and
Ref. 17 �not shown here�. The deviation only becomes obvi-
ous when the interdot distance approaches zero �in this case
it is practically a single dot�.

Following the antisymmetry requirement of total electron
wave functions �combined by orbital and spin part�, the elec-
tron wave functions of the ground state can be constructed as
�r1 ,r2�=�1�r1��2�r2�+�1�r2��2�r1�. The charge-density

distribution of the two-electron QD can be calculated accord-
ing to

��r1� = ��r1,r2��r1,r2�d2r2

= ��1�r1��2�r2� + �1�r2��2�r1��2d2r2

= ��1�r1��2 + ��2�r1��2

+ 2�1�r1��2�r1� �2�r2��1�r2�d2r2. �11�

The calculated charge-density profile is superimposed onto
the layout of the device in Fig. 4�d�. The wave function of
the formed dot is partially extended under the plunger gate
which is kept at a close-to-zero bias. The Coulomb interac-
tions push the two electrons far apart to form an elongated
double quantum dot. A resulting exchange energy as low as a
few �eV can be obtained.

V. MASTER EQUATION AND ITS INTERPRETATION
TO EXPERIMENT

The model for describing the single-electron tunneling
through the singlet-triplet �S-T� states, which are within the
thermal fluctuation window kT, is plotted in Fig. 4�b�. The
tunneling through S-T states has notably different tunneling
rates that can be experimentally determined as in Fig. 2�d�. It
is reasonable to assume that the tunneling through the triplet
state S+ has a much higher rate since the lower-energy sin-
glet state S− needs more thermal activation for tunneling to
the partially occupied left lead. Now �p , t�= �p1 , p+ , p−��; here
p− and p+ are the occupation probability of the two-electron
singlet state S− and triplet state S+, respectively; and p1 is the
occupation probability for the singly occupied state S1 shown
in Fig. 4�a�.

The L matrix, along with the counting factor, is now given
by

��in
+ + �in

− − �out
+ · ei� − �out

− · ei�

− �in
+ �out

+ + �� ��

− �in
− �� �out

− + ��

� . �12�

Here �in
� and �out

� are tunneling rate expressed by Eq. �1�. ��

and �� are the S-T transition rates governed by the detailed
balance condition, �� /��=exp���+−�−� /kBT�, where �+
and �− are the chemical potentials of the two states, respec-
tively. The relaxation rate between S-T states is 1 /T1=��

+��.
The calculation based on the above model shows reason-

able agreement with the experimental data as plotted in Figs.
4�e� and 4�f�. The theory describes both the significant en-
hancement of the shot noise and the large asymmetry of the
distribution function and hence a negative

m3

m1
at high tunnel-

ing rates. When the lower tunneling rate, within the kT win-
dow, is increased to be comparable with 1 /T1, the slow state
starts to contribute to transport noticeably. Consequently the
distribution function will get more counts toward low elec-
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tron numbers, resulting in a negative
m3

m1
. In the calculation

we used a typical energy spacing of 15 �eV for the elon-
gated QD, obtained from the self-consistent calculation; a
long T1=10 ms which is typical for a small S-T spacing;18

and assuming �+ /�−=10. Our observation and explanation is
consistent with the notion that transport via a multilevel QD
can enhance quantum noise.11 The excess shot noise often
observed in a large QD is due to the superposition of inde-
pendent Poissonian processes of different levels with differ-
ent sizes as explained in Ref. 11. The effect of bunching
which was observed in a QD at nonequilibrium conditions
was also attributed to possible multiple orbital states.4 Our
experiment clearly shows an a controllable evolution of the
FCS from sub- to super-Poissonian of single-electron tunnel-
ings in a two-level elongated double QD.

VI. CONCLUSIONS

By altering the tunneling rate, the FCS of real-time elec-
tron tunneling through a QD with its energy level aligned
with one of its lead reservoirs reveals the noise tunability
from sub- to super-Poissonian accompanied by a sign rever-
sal of its third moment. A master-equation modeled transport
through the spin singlet and triplet state of an elongated
double dot allows us to explain the experimental findings
consistently.
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