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In deep ultraviolet lithography simulations, conventional application of Kirchhoff’s boundary conditions on the
mask surface provides the so-called “thin-mask” approximation of the object field. Current subwavelength
lithographic operation, however, places a serious limitation on this approximation, which fails to account for
the topographical, or “thick-mask,” effects. In this paper, a new simulation model is proposed that is theoreti-
cally founded on the well-established physical theory of diffraction. This model relies on the key result that
diffraction effects can be interpreted as an intrinsic edge property, and modeled with just two fixed parameters:
width and transmission coefficient of a locally determined boundary layer applied to each chrome edge. The
proposed model accurately accounts for thick-mask effects of the fields on the mask, greatly improving the
accuracy of aerial image simulations in photolithography, while maintaining a reasonable computational cost.

© 2006 Optical Society of America
OCIS codes: 110.3960, 260.1960, 260.2110.

1. INTRODUCTION
In the evaluation of the fields diffracted by the reticle dur-
ing optical lithography simulations, it has been custom-
ary to apply the so-called Kirchhoff’s boundary
conditions! to approximate the boundary value of the
fields on the mask surface. These boundary conditions re-
place the fields on the patterned mask apertures by those
that would exist in the absence of the screen. Direct ap-
plication of Kirchhoff’s boundary conditions provides a
thin-mask approximation of the object field on the exit
surface of the mask, obtained after multiplying the inci-
dent field by an ideal transmission function of the mask
pattern.

The utilization of 193 nm-wavelength lithography with
a 0.85 NA optical system to print 65 nm wafer features
translates into k&, factors® approaching values of =0.3 and
mask features of the order of the wavelength for 4 X mag-
nification. In addition, alternating-phase-shifting masks®
employ etching profiles with abrupt discontinuities and
trench depths also of the order of the wavelength. Rigor-
ous three-dimensional (3D) electromagnetic simulations
of the fields on the mask surface are extremely resource-
and time-consuming, hence impractical even for small
portions of the mask. The thin-mask model, on the other
hand, ignores diffraction and polarization effects that, be-
cause of the wavelength-size mask topography, are be-
coming an increasing source of simulation errors in
lithography.*®

An alternative modeling approach is introduced in this
paper that retains much of the thin-mask efficiency but
accurately accounts for peak transmission and phase de-
viations of the electromagnetic field through the reticle
apertures. Our model derives from the physical theory of
diffraction (PTD), initially developed by Ufimtsev.® In
PTD the total field scattered by a metallic object is evalu-
ated by adding a “fringe” field generated by electric and
magnetic equivalent edge currents along the edges of the
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scatterer to the physical optics (PO) or, equivalently
through Babinet’s principle,! to Kirchhoff’s approxima-
tion on an aperture. We observed how the relative contri-
bution of these fringe fields to the real and imaginary
components of the electric field on the wafer are reciprocal
to the mean size and height, respectively, of the openings
which allowed us to reduce the model to a simple bound-
ary strip of fixed width and transmission coefficient,
added to the conventional Kirchhoff or thin-mask ap-
proximation. To account for the finite thickness and index
of refraction of the chrome layer as well as for the reticle
profile, the parameters of this boundary strip vary with
the chrome specifications and the aperture cross section.

Several other methodologies have been explored in the
literature that account for edge diffraction in lithographic
simulations. Adam and Neureuther’ proposed the domain
decomposition method, in which the fields diffracted by
isolated edges are precalculated and added afterwards ac-
cording to the diffraction patterns. This method produces
accurate results but with a heavy computational burden.
Khoh et al.® proposed an approach based on the geometri-
cal theory of diffraction (GTD) that separates the field dif-
fracted by an aperture into a geometrical component and
a boundary component in the form of rays emanating
from the edge. The GTD formulation used in the approach
of Khoh et al. is an asymptotic approximation, for high
frequencies, of the PTD. It accurately incorporates edge
diffraction but applies only to perfect electric conductors.
The chrome layer that forms the reticle, however, has a
finite index of refraction at the lithographic wavelength,
which has a nonnegligible impact on the topography
effects.”

This paper is organized as follows. Section 2 estab-
lishes the foundations of the model, which is further de-
veloped for its application in lithography in Section 3. Ex-
amples of enhanced modeling performance are presented
in Section 4.

© 2006 Optical Society of America
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2. PHYSICAL THEORY OF DIFFRACTION
APPLIED TO APERTURES ON
CONDUCTING SCREENS

The interpretation of diffraction as the interference of the
incident wave with a boundary wave generated at the ob-
ject edge was suggested by Young prior to publication of
the Huygens—Fresnel theory in 1818. Later, in 1896, Som-
merfeld obtained a rigorous theoretical solution of the dif-
fraction of an electromagnetic plane wave from a perfectly
conducting half-plane. The asymptotic expansion of Som-
merfeld’s rigorous solution can be separated into a geo-
metrical optics contribution in the form of the incident
and reflected waves, and a boundary contribution in the
form of a cylindrical wave emanating from the edge. This
boundary diffraction wave propagates through both lit
and shadow regions, hence rigorously confirming Young’s
ideas.

In a source-free homogeneous medium, a general solu-
tion of an electromagnetic scattering problem is obtained
by adding to the incident fields the so-called scattered
fields ES, HS produced by equivalent induced sources on
the scattering object’s surface. The following common rep-
resentation of the scattered electromagnetic field is
known as the Franz formula'”:

1
ES=-jouA-j—V(V-A) -V XF, (1)
wEe

1
Hsz—jweF—jw—MV(V-F)+V><A, (2)

expressed here in terms of the vector potentials A and F

eikr
A=fJ J—ds, (3)
g A4mr

eikr
F=fJ M—ds, (4)
g A4mr

generated by surface integration of the equivalent surface
currents J=n X H and M=E X f.

The PO approximation is similar to Kirchhoff’s bound-
ary conditions in that the field is assumed to be unper-
turbed by the boundaries of the scattering object. Kirch-
hoff’s approach attempts to determine the field behind an
opaque screen with an aperture and it can be shown to be
equivalent, through Babinet’s principle,l’11 to the PO ap-
proximation on a conducting plate complementary to the
aperture. In PTD, the PO approximation of the equivalent
currents induced on the surface of a perfectly conducting
scattering object J¥O is improved by adding a correction
or fringe term J¥® due to the presence of the edge discon-
tinuity. Based on Sommerfeld’s rigorous solution for the
field diffracted by a perfectly conducting edge, Ufimtsev!?
deduced the expression of this fringe current for metallic
objects in terms of integrals in the complex plane. He ob-
served that it concentrates mainly near the edge, but its
decreasing tail extends to infinite distance over an infi-
nitely narrow and infinitely long strip on the metal sur-
face as indicated in Fig. 1(a). A similar formulation can be
derived for the equivalent currents induced on an aper-
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ture in a conducting screen, that is, M=MX+ MR, where
the first term on the right-hand side represents the Kirch-
hoff approximation and the second term represents the
fringe currents, both extending on the aperture surface as
illustrated in Fig. 1(b). The fields generated by these
fringe currents are obtained as

@ eikr
FFR= f f \" AR — (5)
cJo

r

For perfect conductors and in the limit in which kr— oo,
the surface integral (5) is reduced asymptotically to a line
integral over the edge. Ufimtsev!? provided expressions
for the fringe fields, valid at every point in space.

We applied the asymptotic expression of Eq. (5), that is,
Eq. (A1) (See Appendix A), to calculate the aperture fringe
fields of a rectangular aperture of width w and height 2
on the perfectly conducting plate of Fig. 2. The resultant
diffracted far field was then simulated to pass through an
imaging system of 4X reduction factor such that, even
with high NA, the angle formed by the diffraction orders
collected at the entrance pupil can be assumed small.’
Under these circumstances, it is observed that the correc-
tion term of the field attributed to the fringe fields obeys,
at the center of the image plane (x=y=0), the relation

Eimage = Enage + Eivge = Etoagel 1 - 6
image = image+ image — ~image + ’ ()

with
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Fig. 1. (a) Geometry of a half-plane edge tangential to each
point of the aperture edge. The integration strips on the metal
surfaces along the diffraction cone are responsible for the edge
waves diffracted by the object boundary. (b) Through Babinet’s
principle the integration strips are taken on the edge comple-
mentary aperture.
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Fig. 2. Application of PTD to a rectangular aperture on per-
fectly electrically conducting plate and imaging through a 4X,
NA=0.85 optical system. Relative error on the field amplitude
due to edge diffraction is measured at the peak of the image.
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This result indicates that the relative error on the elec-
tric field amplitude due to the fringe fields, which are ig-
nored in the Kirchhoff approximation, is inversely propor-
tional to the effective opening size measured as the
harmonic mean of the opening width w and height i. The
harmonic mean is defined as twice the product of the
sides divided by its sum. In other words, this inverse de-
pendence of the relative error on the opening size can be
expressed as the ratio of the area covered by a strip of
width Ad placed along the edges of the openings to the to-
tal area of the opening, as outlined in

AE Eil‘;f}age (2h +2w)Ad ‘boundary layer area
E g/ hw =

image

total area
8

This last interpretation of Eq. (8) suggests a transfor-
mation of the infinite integral (5), expressed in terms of
fringe currents, to a finite surface integral along the ap-
erture boundary and on a layer of thickness Ad; that is

Ad eikr
FFR=-jff MK—dmdl, 9)
cJo

wr

where the equivalent current MF¥ is replaced by the sim-
pler MK=E¢x fi. When adding Eq. (9) to the Kirchhoff
approximation, it can be graphically interpreted as a cor-
rection strip of width Ad=1/2k and transmission coeffi-
cient —j added to the edges of the aperture.

3. APERTURES ON THICK MASKS

The PTD, as well as the results of Section 2 that were de-
rived from its application to apertures, considered infi-
nitely thin, perfect conductors. The chrome layer where
the photomask is patterned, however, has a finite index of
refraction at the wavelengths of lithography operation
and cannot be regarded as a perfect conductor. In addi-
tion, it has a finite thickness and is covered by a thick
layer of glass that can be etched to create phase-shifting
features on the mask as illustrated in Fig. 3. The trench
of the 180°-shifter opening of Fig. 3 is etched to a depth
such that light propagating through is exactly 180° out of
phase relative to light propagating through the unetched
or clear opening. As a consequence, the correction strip
thickness Ad=1/2k and transmission coefficient —j in Eq.
(8), deduced analytically for the ideal case of an infinitely
thin perfect conductor, cannot be applied to approximate
the field diffracted by photomasks.

In order to derive the parameters of a similar inverse
relation of the Kirchhoff approximation error on the aper-
ture effective size d, comparison of the aerial electric field
at the focal plane produced by various phase-shifting
thick masks with that produced by their corresponding
ideal thin-mask models was performed for both clear and
180°-shifter openings. The relative error in amplitude re-
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Fig. 3. Reticle cross sectional profile of typical alternating-
phase-shifting masks.

Thin Mask
model

Tempest
exact field

Aerial
Field .
Amplitude

um

Fig. 4. Error measurement on aerial image field amplitude due
to the thin-mask approximation relative to the rigorously evalu-
ated mask field.

sulting from the application of the Kirchhoff approxima-
tion to these structures was then measured at the peak of
the aerial image field in a similar fashion to that in Sec-
tion 2, and is illustrated in Fig. 4. Rigorous evaluation of
the field on the surface of a 95-nm-thick chrome layer
mask with an index of refraction at 193 nm wavelength
equal to 0.84—;1.65, and covered by a thick layer of 1.563
refractive-index glass, as illustrated in Fig. 3, was simu-
lated through the finite-difference-time-domain software
TEMPEST 6.0.1* Next, a vectorial formulation of the imag-
ing process was applied to evaluate the aerial images at
the wafer plane generated by a 4X system with NA
=0.85 and operating at 193 nm.'

The error due to Kirchhoff approximation in the real
and imaginary parts of the field’s main polarization com-
ponent was calculated separately. The deficit of the real
component of the FDTD field relative to the thin-mask
field for both square and rectangular openings illumi-
nated by a coherent, normally incident, plane wave is
shown in Fig. 5(a). It exhibits the same reciprocal depen-
dence on the size of the opening (measured as the har-
monic mean of its width w and height &) as was observed
for apertures on perfectly conducting screens. This in-
verse relation can be formulated such that the error can
be assumed proportional to an opaque correction width
Ad derived, for each etching profile, from the slope of the
best fitting straight line to the data points in Fig. 5(a), in
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a least-squares sense. This relation is expressed in Eq.
(10). Graphically, the real component of the Kirchhoff ap-
proximation should be modified with an opaque correction
strip, uniform with the size of the opening and to be ap-
plied on all four sides of the thin mask model regardless
of polarization, as illustrated in Fig. 6(a).

AE 4Ad 4Ad
Amplitude deficit=Rey — (== —=- ——.
E d (2wh)/(w + h)

(10)

In a similar fashion, we found that an inverse law holds
for the imaginary part of the error on the aerial image
field due to the thin mask approximation versus the open-
ing height A, defined as the side length in the direction
perpendicular to the electric field polarization. This recip-
rocal relation is illustrated in Fig. 5(b). Some of the data
points resulting from rectangular apertures with high as-
pect ratios still show some deviation from the fitting line;
however, use of the harmonic mean or any other dimen-
sion rather than the opening height produced a poorer fit
to the inverse law. It will be shown in Section 4 that sig-
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Fig. 5. (a) Log-log plot of the relative error in the real compo-
nent of the electric field on the wafer produced by the thin-mask
approximation, as compared with the rigorously evaluated EM
field, versus the harmonic mean of the opening height and width.
(b) Log-log plot of the relative error in the imaginary component
as a function of opening height (opening size in the direction per-
pendicular to polarization).

Initial openin,

I is:
transmission
+ -
1

! Complex scale
Imaginary boundary layer

@) (b) (©)

Fig. 6. (a) Real component of the BL model. (b) Imaginary com-
ponent of the BL model. (¢c) Final BL model as the superposition
of both real and imaginary parts.

Table 1. Width and Transmission Coefficients
of the Boundary-Layer Model for Two Types
of Reticle Cross Section in Typical
Alternating-Phase-Shifting-Mask Geometry

Boundary Tangential Normal
Opening  Width Boundary Boundary Interior
Type (nm) Transmission Transmission Transmission

Clear 24.8 0.8i 0 1
Shifter 53.0 -0.301 0 -1
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nificant error improvements are achieved for all cases, in-
cluding those points with some deviation from the inverse
law.

The corresponding parameters of width and transmis-
sion coefficient of the correction strip for the imaginary
component of the field can also be deduced from the slope
of the best fitting straight line to the data points, which is
different for each type of etching profile. As indicated in
Eq. (11), we chose to keep the correction strip width for
the imaginary component equal to Ad in Eq. (10). This re-
sults in a final correction layer for the imaginary compo-
nent of the field with a transmission coefficient equal to
—B, on the aperture edges parallel to polarization. The
correction to the total field is given by the superposition of
the corresponding real and imaginary correction layers as
illustrated in Fig. 6(c).

AE 2Ad
Relative imaginary error = Im E =- BT’

(11)

Thus the final model, which we call the boundary-layer
(BL) model, has a purely imaginary transmission coeffi-
cient that is proportional to the absolute value of the co-
sine angle between the electric field polarization and the
edge direction, reaching its maximum value when the
electric field is tangent to the boundary, and diminishing
to zero when the field is normal to it. This simple geomet-
ric rule (cosine rule) accounts for the orientation depen-
dence of the boundary conditions at the metal edges.

The key result of our simulations is that the thick-
mask effects can be interpreted to a good approximation
as an intrinsic edge property, as initially suggested by
Young, and modeled with just two fixed parameters:
width and transmission coefficient of a locally applied
boundary layer. Usually, the width of the boundary layer
controls the variation in peak amplitude, while the imagi-
nary transmission coefficient corrects phase deviations of
the thick mask. These errors differ for different types of
mask edge cross sections, giving rise to different
boundary-layer parameters to be applied locally in the vi-
cinity of each type of mask edge profile. Hence each mask
edge specification (clear or 180° shifter) has its own set of
boundary layer parameters derived from the slope of the
best fitting straight line to the error data points, and col-
lected in Table 1. These errors also vary with the chrome
thickness and index of refraction. Thus the model re-
quires new sets of parameters to be calculated, through
more rigorous 3D electromagnetic simulations, whenever
the mask profile is modified.

4. BOUNDARY-LAYER APPROXIMATION

The conclusions of Section 3 provided the basis for the de-
velopment of a simple BL model to account for electro-
magnetic effects in lithographic reticles. This model con-
sists of a sophisticated version of the Kirchhoff or thin-
mask approximation, simply adding a layer of fixed width
and transmission at every edge. The BL parameters were
optimized for the field component along the direction of
polarization of the incident light E, for both amplitude
and phase. This is illustrated in Fig. 7(a), where the
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Fig. 7. Comparison between the aerial field components pro-
duced by rigorously evaluated EM TEMPEST field solutions of the
object field (solid curves) and both the corresponding thin-mask
approximation (dashed curves) and our BL model (dashed—dotted
curves), of a 1.6\, 180°-phase-shift square mask opening. (a) In-
tensity and phase of the field component along the polarization
direction (x axis); (b) intensity and phase of the field coupled to
the component along the optical axis (z axis).
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Fig. 8. Rms error in the intensity distribution, integrated over
the focal plane and at two out-of-focus positions, of the approxi-
mated images relative to the rigorous EM fields for unpolarized,
partially coherent illumination at 193 nm, NA=0.85, 0=0.6. (a)
180°-phase-shift openings; (b) clear openings.

o

aerial images of the rigorously evaluated mask fields
(solid curves) are contrasted with their corresponding
thin-mask (dashed curves) and BL (dashed—dotted
curves) approximations of a 180°-phase-shifting, isolated,
square aperture of side length 1.6\ illuminated with nor-
mal, coherent illumination at 193 nm and imaged by a 4
X reduction system of NA=0.85. The same BL param-
eters, however, provided similar error reductions for all
cross-field coupled components arising at the exit pupil of
a high-NA lens.

Figure 7(b) illustrates an example of accurate fit of the
BL approximation to the rigorous field coupled along the
optical axis E,. Moreover, the BL. model provided error re-
ductions relative to the Kirchhoff approximation of 56X to
10X in all field components, as measured by the rms error
on the field intensity integrated over the wafer plane
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area, for both clear and 180°-shifter openings of dimen-
sions ranging from 1\ to 6\ for both 193 nm and 248 nm
lithography.15

Illumination in industrial applications consists of an
unpolarized source of partially coherent light that reduces
some of the effects associated with coherent illumination.
Under the assumption of Kohler illumination
conﬁgura‘cion1 and based on the discretization of the
source into a number of spatially incoherent point
sources, imaging with partially coherent illumination in
lithography is modeled as the superposition of incoherent
plane waves impinging on the reticle at different incident
angles. Typical printing situations encountered in optical
lithography involve reduction factors of 4X or 5X and
partial coherence factors of o between 0.3 and 0.8, and
therefore incident angles no larger than 10° with respect
to the normal direction. Under such circumstances the
harmonics diffracted by the reticle remain approximately
constant and equal to those obtained at normal incidence,
except for the corresponding shift in frequency,'® thus al-
lowing the utilization of the same BL parameters deduced
for normal incidence in Section 3 for the off-axis compo-
nents.

Unpolarized (both TE and TM components were added
incoherently), conventional, partially coherent illumina-
tion was used at 193 nm with a system of NA=0.85 and
0=0.6 to simulate the aerial images due to the range of
isolated spaces with sizes between 1\ and 6\ on the mask
analyzed in Section 3. The rms error in the intensity dis-
tribution integrated over the wafer plane area was calcu-
lated for the aerial images generated by the modeled
mask fields relative to the rigorous electromagnetic fields.
Figures 8(a) and 8(b) are plots of the rms error for the
clear and 180°-shifter openings, respectively. Some of the
points in the plots show slightly larger rms errors. They
correspond to rectangular apertures with high aspect ra-
tios, which also showed the largest deviations from the
fitting inverse line of the imaginary error in Fig. 5(b). Pro-
vided that transmission loss through the aperture on the
thick mask is the main source of error, the use of the BL
model on these points provides similar error improve-
ments relative to the thin-mask approximation for both
square and rectangular openings. In order to evaluate the
effect of phase deviations, rms errors are evaluated at the
focal plane and at two out-of-focus planes in Fig. 8. No
significant variation of the error is observed for defocus
amounts up to 0.4 um, proving the accuracy of the BL
model within typical values of depth-of-focus.

Our BL model was also applied to dense periodic mask
features such as those of Fig. 9. Figure 9(a) represents the
Kirchhoff scalar approximation (thin-mask model) of a
78 nm (1X) half-pitch array of alternating 180°-shifter
and clear lines. Figure 9(b) shows a sketch of the actual
object field obtained by rigorous electromagnetic FDTD
TEMPEST simulation on the mask plane of the same mask
pattern and vertically polarized electric field. Finally, Fig.
9(c) shows the BL model for the same mask features and
illumination conditions.

Figures 10(a)-10(c), on the other hand, correspond to
the aerial image intensity at the focal plane for the rigor-
ously evaluated object field of Fig. 9(b) and its two model-
ing approaches. Unpolarized, o=0.5 partially coherent il-
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(a) (b) (c)

Fig. 9. (a) Kirchhoff scalar approximation (thin-mask model) of
the field on the mask plane of a 78 nm (as measured at the wafer
plane), half-pitch array of alternating 180°-shifter and clear line
openings, with vertically polarized electric field at 193 nm. (b)
Sketch of the actual object field obtained by rigorous electromag-
netic FDTD TEMPEST simulation on the same mask. (¢) BL model
for the same mask features and illumination conditions. A cross-
sectional view of the mask field for each case along cut A is dis-
played at the bottom for clarity.

(@) (b) ©)

Fig. 10. Aerial image intensity results at the focal plane of a
78 nm (as measured at the wafer plane), half-pitch array of al-
ternating 180°-shifter and clear mask lines with an unpolarized,
o=0.5, partially coherent illumination at 193 nm and NA=0.85.
(a) Aerial image produced by the thin-mask approximation with
an rms error of 50.97%. (b) Aerial image produced by the rigor-
ously evaluated object field. (c) Aerial image produced by the BL
model with an rms error of 4.63%.

lumination at 193 nm was used with a NA=0.85 imaging
system. Figures 10(b), produced by the rigorously evalu-
ated object field, and 10(c), corresponding to the BL
model, show close agreement, with an rms error of only
4.63% due to the approximation. However, Fig. 10(a), ob-
tained from the thin-mask approximation, produced a
much higher rms error of 50.97% as compared with the
actual image.

The cross-sectional planes marked in Fig. 10 by the
lines A, B, C, and D are plotted in Figs. 11(a)-11(1). These
views are plotted for the three aerial images at the focal
plane (left) as well as at 0.2 um (center) and 0.4 um
(right) defocus. All of the plots reveal a close overlap be-
tween the rigorous solutions and those obtained through
the BL model, even at points close to the line ends. This
improved modeling accuracy appears to be independent of
the pitch value according to the plot in Fig. 12 of the rms
error measured for different pitches at the wafer plane.

As a final example of our model performance on square
corners, the mask pattern of Fig. 13 is analyzed. As be-
fore, Fig. 13(a) depicts the Kirchhoff scalar approximation
of the field on the mask plane of a 79 nm (as measured at
the wafer plane) half-pitch array of alternating 180°-
shifter and clear lines that form a 90° corner. Figure 13(b)
illustrates the actual object field with vertically polarized
electric field at 193 nm, obtained by rigorous electromag-
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netic FDTD TEMPEST simulation on the same mask. Fig-
ure 13(c) represents the BL model for the same mask fea-
tures and illumination conditions.

Aerial image intensity results at the focal plane for the
mask pattern of Figs. 14(a)-14(c) were calculated for un-
polarized light and an imaging system of 0=0.4, partially
coherent illumination at 193 nm, and NA=0.85. The en-
hanced modeling accuracy due to the boundary layer can
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Fig. 12. Rms error integrated over the wafer plane of periodic
lines with different pitch dimensions, modeled by either the thin-
mask or the BL models.
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(b)

Fig. 13. (a) Kirchhoff scalar approximation (thin-mask model)
of the field on the mask plane of a 79 nm (as measured at the
wafer plane), half-pitch array of alternating 180°-shifter and
clear corner openings, with vertically polarized electric field at
193 nm. (b) Sketch of the actual object field obtained by rigorous
electromagnetic FDTD TEMPEST simulation on the same mask. (c)
BL model for the same mask features and illumination
conditions.

(b)

Fig. 14. Aerial image intensity results at the focal plane of a
79 nm (as measured at the wafer plane), half-pitch array of al-
ternating 180°-shifter and clear square corners with an unpolar-
ized, 0=0.4, partially coherent illumination at 193 nm and NA
=0.85. (a) Aerial image produced by the thin-mask approxima-
tion with an rms error of 56.78%. (b) Aerial image produced by
the rigorously evaluated object field. (¢) Aerial image produced by
the BL model with an rms error of 3.28%.

be appreciated directly from the plots. Quantitatively, the
aerial image produced by the thin-mask approximation
exhibits an rms error of 56.78%, while that produced by
the BL model shows an error of 3.28%.

5. CONCLUSION

The physical theory of diffraction is a technique developed
to correct for edge effects in the application of the
physical-optics approximation on high-frequency scatter-
ing by perfectly conducting surfaces. It considers the ef-
fect of the edges as arising from some “fringe” line cur-
rents flowing along the object border. Lithographic
reticles, however, cannot be regarded as perfect conduc-
tors given the finite index of refraction of the chrome
layer at the operational wavelength, so a similar “fringe”
edge-field concept was explored to account for the electro-
magnetic effects.

For rectangular apertures on both perfectly conducting
plates and more realistic chrome layers of finite thickness
and refractive index, we observed how the relative errors
of the real and imaginary components of the field on the
wafer follow an inverse law on the opening mean width
and height, respectively. This allowed us to reduce the
model to a simple boundary layer of fixed width and
transmission coefficient. The proposed model, therefore,
consists of a sophisticated version of the Kirchhoff ap-
proximation, simply adding a boundary layer to every
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edge, which greatly improves the accuracy of aerial image
computation in photolithography simulations at a reason-
able computational cost.

APPENDIX A: FRINGE FIELD ERROR IN
OPTICAL LITHOGRAPHY

The fringe fields due to an aperture on a conducting plate
can be expressed as’

EFR= _ 1]f‘ X HFR

=—77fo 2[(- H"- 1")F(l',#)

ikr
. R e
+  Y(Bive. 1’)G(l’,f‘)]ﬁdl’, (A1)

where r=|t-1'| and the term between brackets repre-
sents the edge wave emanating from each differential el-
ement of the edge. This edge wave is a function of the in-
cident electric and magnetic fields multiplied by the
direction vector coefficients F and G,'? which are trigono-
metric functions dependent on the incident point on the
object boundary I’ and the observation direction r. The

unit vector 1’ is tangent to the edge at every point. Assum-
ing normal incidence, Eq. (A1) was applied to the aper-
ture of Fig. 2. The result was then assumed to propagate
through a 4X optical projection system of NA;=0.85/4
~0.2 at the entrance pupil, and the corresponding peak
amplitude was measured at the center of the image plane
as illustrated in Fig. 2. The propagation distance r to the
entrance pupil, assumed well into the far field of the ap-
erture, is much larger than the wavelength, while the ap-
erture dimensions considered here are of the order of the
wavelength. This allows us to approximate the observa-
tion direction by the glancing incident direction, which
yields F=-1/2 and G=1/2 after the singularities cancel
out in Ufimtsev’s formulation. Therefore, with the change
of variables of f=r,/NA and g=r,/NA and dropping the
constant phase factors, the image fields at the focal plane
will be given by

Eiljrffage(xvy) =- 7]f' X )A( H02hNA2f f COS(WNAgLU)

Prgi<1

A E,
X sinc(nNAfh)e 80 dfdg — 2w NA2
n

X J f cos(mNAfh)sine(mNAgw)e ) dfdg .
Pg?<1

(A2)

To first-order approximation, one can consider
cos(mNAgw), sinc(mNAfR), cos(mNAfR) and sinc(7NAgw)
~1 within the integration limits of Eq. (A2), which is a
reasonable approximation for small numerical apertures
such as the one on the object side for imaging systems of
high reduction factors. This approximation yielded the
following expression of the fringe field at the image plane:
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NAZ2J,(k \s’x2 +y?)

Efee(®,.y) = - 7(# X )H, (2h + 2w),

image

(A3)

where JJ(a) represents the Bessel function of the first
kind, order 1, such that, at the center of the image,
J1(x)/x=1/2 with x=0. As a final step, one can extract the
main polarization component E, from Eq. (A3) and as-
sume r,~1 for 4X optical reduction, to obtain

R NAZJ,(kyx® +y?)
Einage =~ EOT(2}L +2w). (A4)

A similar analysis was carried out on the Kirchhoff
component of the total field to derive the main polariza-
tion component of the image field expression on the focal
plane, which resulted in

EK

image

NAQJl(k V.’)C2 + yZ)

r

— jk2E, hw (A5)

The final relative error due to the fringe fields at the
image focal plane is calculated as AE/E:Ef;Ilfage/Eﬁlage.
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