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Incorporating mask topography edge diffraction
in photolithography simulations
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In deep ultraviolet lithography simulations, conventional application of Kirchhoff ’s boundary conditions on the
mask surface provides the so-called “thin-mask” approximation of the object field. Current subwavelength
lithographic operation, however, places a serious limitation on this approximation, which fails to account for
the topographical, or “thick-mask,” effects. In this paper, a new simulation model is proposed that is theoreti-
cally founded on the well-established physical theory of diffraction. This model relies on the key result that
diffraction effects can be interpreted as an intrinsic edge property, and modeled with just two fixed parameters:
width and transmission coefficient of a locally determined boundary layer applied to each chrome edge. The
proposed model accurately accounts for thick-mask effects of the fields on the mask, greatly improving the
accuracy of aerial image simulations in photolithography, while maintaining a reasonable computational cost.
© 2006 Optical Society of America

OCIS codes: 110.3960, 260.1960, 260.2110.
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. INTRODUCTION
n the evaluation of the fields diffracted by the reticle dur-
ng optical lithography simulations, it has been custom-
ry to apply the so-called Kirchhoff ’s boundary
onditions1 to approximate the boundary value of the
elds on the mask surface. These boundary conditions re-
lace the fields on the patterned mask apertures by those
hat would exist in the absence of the screen. Direct ap-
lication of Kirchhoff ’s boundary conditions provides a
hin-mask approximation of the object field on the exit
urface of the mask, obtained after multiplying the inci-
ent field by an ideal transmission function of the mask
attern.
The utilization of 193 nm-wavelength lithography with
0.85 NA optical system to print 65 nm wafer features

ranslates into k1 factors2 approaching values of �0.3 and
ask features of the order of the wavelength for 4� mag-

ification. In addition, alternating-phase-shifting masks3

mploy etching profiles with abrupt discontinuities and
rench depths also of the order of the wavelength. Rigor-
us three-dimensional (3D) electromagnetic simulations
f the fields on the mask surface are extremely resource-
nd time-consuming, hence impractical even for small
ortions of the mask. The thin-mask model, on the other
and, ignores diffraction and polarization effects that, be-
ause of the wavelength-size mask topography, are be-
oming an increasing source of simulation errors in
ithography.4,5

An alternative modeling approach is introduced in this
aper that retains much of the thin-mask efficiency but
ccurately accounts for peak transmission and phase de-
iations of the electromagnetic field through the reticle
pertures. Our model derives from the physical theory of
iffraction (PTD), initially developed by Ufimtsev.6 In
TD the total field scattered by a metallic object is evalu-
ted by adding a “fringe” field generated by electric and
agnetic equivalent edge currents along the edges of the
1084-7529/06/040821-8/$15.00 © 2
catterer to the physical optics (PO) or, equivalently
hrough Babinet’s principle,1 to Kirchhoff ’s approxima-
ion on an aperture. We observed how the relative contri-
ution of these fringe fields to the real and imaginary
omponents of the electric field on the wafer are reciprocal
o the mean size and height, respectively, of the openings
hich allowed us to reduce the model to a simple bound-
ry strip of fixed width and transmission coefficient,
dded to the conventional Kirchhoff or thin-mask ap-
roximation. To account for the finite thickness and index
f refraction of the chrome layer as well as for the reticle
rofile, the parameters of this boundary strip vary with
he chrome specifications and the aperture cross section.

Several other methodologies have been explored in the
iterature that account for edge diffraction in lithographic
imulations. Adam and Neureuther7 proposed the domain
ecomposition method, in which the fields diffracted by
solated edges are precalculated and added afterwards ac-
ording to the diffraction patterns. This method produces
ccurate results but with a heavy computational burden.
hoh et al.8 proposed an approach based on the geometri-

al theory of diffraction (GTD) that separates the field dif-
racted by an aperture into a geometrical component and

boundary component in the form of rays emanating
rom the edge. The GTD formulation used in the approach
f Khoh et al. is an asymptotic approximation, for high
requencies, of the PTD. It accurately incorporates edge
iffraction but applies only to perfect electric conductors.
he chrome layer that forms the reticle, however, has a
nite index of refraction at the lithographic wavelength,
hich has a nonnegligible impact on the topography
ffects.9

This paper is organized as follows. Section 2 estab-
ishes the foundations of the model, which is further de-
eloped for its application in lithography in Section 3. Ex-
mples of enhanced modeling performance are presented
n Section 4.
006 Optical Society of America
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. PHYSICAL THEORY OF DIFFRACTION
PPLIED TO APERTURES ON
ONDUCTING SCREENS
he interpretation of diffraction as the interference of the

ncident wave with a boundary wave generated at the ob-
ect edge was suggested by Young prior to publication of
he Huygens–Fresnel theory in 1818. Later, in 1896, Som-
erfeld obtained a rigorous theoretical solution of the dif-

raction of an electromagnetic plane wave from a perfectly
onducting half-plane. The asymptotic expansion of Som-
erfeld’s rigorous solution can be separated into a geo-
etrical optics contribution in the form of the incident

nd reflected waves, and a boundary contribution in the
orm of a cylindrical wave emanating from the edge. This
oundary diffraction wave propagates through both lit
nd shadow regions, hence rigorously confirming Young’s
deas.

In a source-free homogeneous medium, a general solu-
ion of an electromagnetic scattering problem is obtained
y adding to the incident fields the so-called scattered
elds ES, HS produced by equivalent induced sources on
he scattering object’s surface. The following common rep-
esentation of the scattered electromagnetic field is
nown as the Franz formula10:

ES = − j��A − j
1

��
� �� · A� − � � F, �1�

HS = − j��F − j
1

��
� �� · F� + � � A, �2�

xpressed here in terms of the vector potentials A and F

A =� �
S

J
eikr

4�r
ds, �3�

F =� �
S

M
eikr

4�r
ds, �4�

enerated by surface integration of the equivalent surface
urrents J= n̂�H and M=E� n̂.

The PO approximation is similar to Kirchhoff ’s bound-
ry conditions in that the field is assumed to be unper-
urbed by the boundaries of the scattering object. Kirch-
off ’s approach attempts to determine the field behind an
paque screen with an aperture and it can be shown to be
quivalent, through Babinet’s principle,1,11 to the PO ap-
roximation on a conducting plate complementary to the
perture. In PTD, the PO approximation of the equivalent
urrents induced on the surface of a perfectly conducting
cattering object JPO is improved by adding a correction
r fringe term JFR due to the presence of the edge discon-
inuity. Based on Sommerfeld’s rigorous solution for the
eld diffracted by a perfectly conducting edge, Ufimtsev12

educed the expression of this fringe current for metallic
bjects in terms of integrals in the complex plane. He ob-
erved that it concentrates mainly near the edge, but its
ecreasing tail extends to infinite distance over an infi-
itely narrow and infinitely long strip on the metal sur-

ace as indicated in Fig. 1(a). A similar formulation can be
erived for the equivalent currents induced on an aper-
ure in a conducting screen, that is, M=MK+MFR, where
he first term on the right-hand side represents the Kirch-
off approximation and the second term represents the
ringe currents, both extending on the aperture surface as
llustrated in Fig. 1(b). The fields generated by these
ringe currents are obtained as

FFR =�
C
�

0

�

MFR
eikr

4�r
d�dl. �5�

or perfect conductors and in the limit in which kr→�,
he surface integral (5) is reduced asymptotically to a line
ntegral over the edge. Ufimtsev12 provided expressions
or the fringe fields, valid at every point in space.

We applied the asymptotic expression of Eq. (5), that is,
q. (A1) (See Appendix A), to calculate the aperture fringe
elds of a rectangular aperture of width w and height h
n the perfectly conducting plate of Fig. 2. The resultant
iffracted far field was then simulated to pass through an
maging system of 4� reduction factor such that, even
ith high NA, the angle formed by the diffraction orders

ollected at the entrance pupil can be assumed small.13

nder these circumstances, it is observed that the correc-
ion term of the field attributed to the fringe fields obeys,
t the center of the image plane �x=y=0�, the relation

Eimage = Eimage
K + Eimage

FR = Eimage
K �1 +

�E

E � , �6�

ith

ig. 1. (a) Geometry of a half-plane edge tangential to each
oint of the aperture edge. The integration strips on the metal
urfaces along the diffraction cone are responsible for the edge
aves diffracted by the object boundary. (b) Through Babinet’s
rinciple the integration strips are taken on the edge comple-
entary aperture.

ig. 2. Application of PTD to a rectangular aperture on per-
ectly electrically conducting plate and imaging through a 4�,
A=0.85 optical system. Relative error on the field amplitude
ue to edge diffraction is measured at the peak of the image.
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�E

E
=

Eimage
FR

Eimage
K � −

j

2k

�2h + 2w�

hw
= −

j

2k

4

2hw

w + h

= − j
4�d

deffective
.

�7�

This result indicates that the relative error on the elec-
ric field amplitude due to the fringe fields, which are ig-
ored in the Kirchhoff approximation, is inversely propor-
ional to the effective opening size measured as the
armonic mean of the opening width w and height h. The
armonic mean is defined as twice the product of the
ides divided by its sum. In other words, this inverse de-
endence of the relative error on the opening size can be
xpressed as the ratio of the area covered by a strip of
idth �d placed along the edges of the openings to the to-

al area of the opening, as outlined in

�E

E
=

Eimage
FR

Eimage
K � − j

�2h + 2w��d

hw
= − j

boundary layer area

total area
.

�8�

This last interpretation of Eq. (8) suggests a transfor-
ation of the infinite integral (5), expressed in terms of

ringe currents, to a finite surface integral along the ap-
rture boundary and on a layer of thickness �d; that is

FFR = − j�
C
�

0

�d

MK
eikr

4�r
d�dl, �9�

here the equivalent current MFR is replaced by the sim-
ler MK=Einc� n̂. When adding Eq. (9) to the Kirchhoff
pproximation, it can be graphically interpreted as a cor-
ection strip of width �d=1/2k and transmission coeffi-
ient −j added to the edges of the aperture.

. APERTURES ON THICK MASKS
he PTD, as well as the results of Section 2 that were de-
ived from its application to apertures, considered infi-
itely thin, perfect conductors. The chrome layer where
he photomask is patterned, however, has a finite index of
efraction at the wavelengths of lithography operation
nd cannot be regarded as a perfect conductor. In addi-
ion, it has a finite thickness and is covered by a thick
ayer of glass that can be etched to create phase-shifting
eatures on the mask as illustrated in Fig. 3. The trench
f the 180°-shifter opening of Fig. 3 is etched to a depth
uch that light propagating through is exactly 180° out of
hase relative to light propagating through the unetched
r clear opening. As a consequence, the correction strip
hickness �d=1/2k and transmission coefficient −j in Eq.
8), deduced analytically for the ideal case of an infinitely
hin perfect conductor, cannot be applied to approximate
he field diffracted by photomasks.

In order to derive the parameters of a similar inverse
elation of the Kirchhoff approximation error on the aper-
ure effective size d, comparison of the aerial electric field
t the focal plane produced by various phase-shifting
hick masks with that produced by their corresponding
deal thin-mask models was performed for both clear and
80°-shifter openings. The relative error in amplitude re-
ulting from the application of the Kirchhoff approxima-
ion to these structures was then measured at the peak of
he aerial image field in a similar fashion to that in Sec-
ion 2, and is illustrated in Fig. 4. Rigorous evaluation of
he field on the surface of a 95-nm-thick chrome layer
ask with an index of refraction at 193 nm wavelength

qual to 0.84− j1.65, and covered by a thick layer of 1.563
efractive-index glass, as illustrated in Fig. 3, was simu-
ated through the finite-difference-time-domain software
EMPEST 6.0.14 Next, a vectorial formulation of the imag-
ng process was applied to evaluate the aerial images at
he wafer plane generated by a 4� system with NA
0.85 and operating at 193 nm.13

The error due to Kirchhoff approximation in the real
nd imaginary parts of the field’s main polarization com-
onent was calculated separately. The deficit of the real
omponent of the FDTD field relative to the thin-mask
eld for both square and rectangular openings illumi-
ated by a coherent, normally incident, plane wave is
hown in Fig. 5(a). It exhibits the same reciprocal depen-
ence on the size of the opening (measured as the har-
onic mean of its width w and height h) as was observed

or apertures on perfectly conducting screens. This in-
erse relation can be formulated such that the error can
e assumed proportional to an opaque correction width
d derived, for each etching profile, from the slope of the
est fitting straight line to the data points in Fig. 5(a), in

ig. 3. Reticle cross sectional profile of typical alternating-
hase-shifting masks.

ig. 4. Error measurement on aerial image field amplitude due
o the thin-mask approximation relative to the rigorously evalu-
ted mask field.
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least-squares sense. This relation is expressed in Eq.
10). Graphically, the real component of the Kirchhoff ap-
roximation should be modified with an opaque correction
trip, uniform with the size of the opening and to be ap-
lied on all four sides of the thin mask model regardless
f polarization, as illustrated in Fig. 6(a).

Amplitude deficit = Re��E

E � = −
4�d

d
= −

4�d

�2wh�/�w + h�
.

�10�

In a similar fashion, we found that an inverse law holds
or the imaginary part of the error on the aerial image
eld due to the thin mask approximation versus the open-

ng height h, defined as the side length in the direction
erpendicular to the electric field polarization. This recip-
ocal relation is illustrated in Fig. 5(b). Some of the data
oints resulting from rectangular apertures with high as-
ect ratios still show some deviation from the fitting line;
owever, use of the harmonic mean or any other dimen-
ion rather than the opening height produced a poorer fit
o the inverse law. It will be shown in Section 4 that sig-

Table 1. Width and Transmission Coefficients
of the Boundary-Layer Model for Two Types

of Reticle Cross Section in Typical
Alternating-Phase-Shifting-Mask Geometry

pening
ype

Boundary
Width
(nm)

Tangential
Boundary

Transmission

Normal
Boundary

Transmission
Interior

Transmission

lear 24.8 0.8i 0 1
hifter 53.0 −0.30i 0 −1

ig. 5. (a) Log-log plot of the relative error in the real compo-
ent of the electric field on the wafer produced by the thin-mask
pproximation, as compared with the rigorously evaluated EM
eld, versus the harmonic mean of the opening height and width.
b) Log-log plot of the relative error in the imaginary component
s a function of opening height (opening size in the direction per-
endicular to polarization).

ig. 6. (a) Real component of the BL model. (b) Imaginary com-
onent of the BL model. (c) Final BL model as the superposition
f both real and imaginary parts.
ificant error improvements are achieved for all cases, in-
luding those points with some deviation from the inverse
aw.

The corresponding parameters of width and transmis-
ion coefficient of the correction strip for the imaginary
omponent of the field can also be deduced from the slope
f the best fitting straight line to the data points, which is
ifferent for each type of etching profile. As indicated in
q. (11), we chose to keep the correction strip width for

he imaginary component equal to �d in Eq. (10). This re-
ults in a final correction layer for the imaginary compo-
ent of the field with a transmission coefficient equal to
	, on the aperture edges parallel to polarization. The
orrection to the total field is given by the superposition of
he corresponding real and imaginary correction layers as
llustrated in Fig. 6(c).

Relative imaginary error = Im��E

E � = − 	
2�d

h
,

�11�

Thus the final model, which we call the boundary-layer
BL) model, has a purely imaginary transmission coeffi-
ient that is proportional to the absolute value of the co-
ine angle between the electric field polarization and the
dge direction, reaching its maximum value when the
lectric field is tangent to the boundary, and diminishing
o zero when the field is normal to it. This simple geomet-
ic rule (cosine rule) accounts for the orientation depen-
ence of the boundary conditions at the metal edges.
The key result of our simulations is that the thick-
ask effects can be interpreted to a good approximation

s an intrinsic edge property, as initially suggested by
oung, and modeled with just two fixed parameters:
idth and transmission coefficient of a locally applied
oundary layer. Usually, the width of the boundary layer
ontrols the variation in peak amplitude, while the imagi-
ary transmission coefficient corrects phase deviations of
he thick mask. These errors differ for different types of
ask edge cross sections, giving rise to different

oundary-layer parameters to be applied locally in the vi-
inity of each type of mask edge profile. Hence each mask
dge specification (clear or 180° shifter) has its own set of
oundary layer parameters derived from the slope of the
est fitting straight line to the error data points, and col-
ected in Table 1. These errors also vary with the chrome
hickness and index of refraction. Thus the model re-
uires new sets of parameters to be calculated, through
ore rigorous 3D electromagnetic simulations, whenever

he mask profile is modified.

. BOUNDARY-LAYER APPROXIMATION
he conclusions of Section 3 provided the basis for the de-
elopment of a simple BL model to account for electro-
agnetic effects in lithographic reticles. This model con-

ists of a sophisticated version of the Kirchhoff or thin-
ask approximation, simply adding a layer of fixed width

nd transmission at every edge. The BL parameters were
ptimized for the field component along the direction of
olarization of the incident light Ex for both amplitude
nd phase. This is illustrated in Fig. 7(a), where the
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erial images of the rigorously evaluated mask fields
solid curves) are contrasted with their corresponding
hin-mask (dashed curves) and BL (dashed–dotted
urves) approximations of a 180°-phase-shifting, isolated,
quare aperture of side length 1.6
 illuminated with nor-
al, coherent illumination at 193 nm and imaged by a 4
reduction system of NA=0.85. The same BL param-

ters, however, provided similar error reductions for all
ross-field coupled components arising at the exit pupil of
high-NA lens.
Figure 7(b) illustrates an example of accurate fit of the

L approximation to the rigorous field coupled along the
ptical axis Ez. Moreover, the BL model provided error re-
uctions relative to the Kirchhoff approximation of 5� to
0� in all field components, as measured by the rms error
n the field intensity integrated over the wafer plane

ig. 8. Rms error in the intensity distribution, integrated over
he focal plane and at two out-of-focus positions, of the approxi-
ated images relative to the rigorous EM fields for unpolarized,

artially coherent illumination at 193 nm, NA=0.85, �=0.6. (a)
80°-phase-shift openings; (b) clear openings.

ig. 7. Comparison between the aerial field components pro-
uced by rigorously evaluated EM TEMPEST field solutions of the
bject field (solid curves) and both the corresponding thin-mask
pproximation (dashed curves) and our BL model (dashed–dotted
urves), of a 1.6
, 180°-phase-shift square mask opening. (a) In-
ensity and phase of the field component along the polarization
irection (x axis); (b) intensity and phase of the field coupled to
he component along the optical axis (z axis).
rea, for both clear and 180°-shifter openings of dimen-
ions ranging from 1
 to 6
 for both 193 nm and 248 nm
ithography.15

Illumination in industrial applications consists of an
npolarized source of partially coherent light that reduces
ome of the effects associated with coherent illumination.
nder the assumption of Köhler illumination

onfiguration1 and based on the discretization of the
ource into a number of spatially incoherent point
ources, imaging with partially coherent illumination in
ithography is modeled as the superposition of incoherent
lane waves impinging on the reticle at different incident
ngles. Typical printing situations encountered in optical
ithography involve reduction factors of 4� or 5� and
artial coherence factors of � between 0.3 and 0.8, and
herefore incident angles no larger than 10° with respect
o the normal direction. Under such circumstances the
armonics diffracted by the reticle remain approximately
onstant and equal to those obtained at normal incidence,
xcept for the corresponding shift in frequency,16 thus al-
owing the utilization of the same BL parameters deduced
or normal incidence in Section 3 for the off-axis compo-
ents.
Unpolarized (both TE and TM components were added

ncoherently), conventional, partially coherent illumina-
ion was used at 193 nm with a system of NA=0.85 and
=0.6 to simulate the aerial images due to the range of

solated spaces with sizes between 1
 and 6
 on the mask
nalyzed in Section 3. The rms error in the intensity dis-
ribution integrated over the wafer plane area was calcu-
ated for the aerial images generated by the modeled

ask fields relative to the rigorous electromagnetic fields.
igures 8(a) and 8(b) are plots of the rms error for the
lear and 180°-shifter openings, respectively. Some of the
oints in the plots show slightly larger rms errors. They
orrespond to rectangular apertures with high aspect ra-
ios, which also showed the largest deviations from the
tting inverse line of the imaginary error in Fig. 5(b). Pro-
ided that transmission loss through the aperture on the
hick mask is the main source of error, the use of the BL
odel on these points provides similar error improve-
ents relative to the thin-mask approximation for both

quare and rectangular openings. In order to evaluate the
ffect of phase deviations, rms errors are evaluated at the
ocal plane and at two out-of-focus planes in Fig. 8. No
ignificant variation of the error is observed for defocus
mounts up to 0.4 �m, proving the accuracy of the BL
odel within typical values of depth-of-focus.
Our BL model was also applied to dense periodic mask

eatures such as those of Fig. 9. Figure 9(a) represents the
irchhoff scalar approximation (thin-mask model) of a
8 nm �1� � half-pitch array of alternating 180°-shifter
nd clear lines. Figure 9(b) shows a sketch of the actual
bject field obtained by rigorous electromagnetic FDTD
EMPEST simulation on the mask plane of the same mask
attern and vertically polarized electric field. Finally, Fig.
(c) shows the BL model for the same mask features and
llumination conditions.

Figures 10(a)–10(c), on the other hand, correspond to
he aerial image intensity at the focal plane for the rigor-
usly evaluated object field of Fig. 9(b) and its two model-
ng approaches. Unpolarized, �=0.5 partially coherent il-
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umination at 193 nm was used with a NA=0.85 imaging
ystem. Figures 10(b), produced by the rigorously evalu-
ted object field, and 10(c), corresponding to the BL
odel, show close agreement, with an rms error of only

.63% due to the approximation. However, Fig. 10(a), ob-
ained from the thin-mask approximation, produced a
uch higher rms error of 50.97% as compared with the

ctual image.
The cross-sectional planes marked in Fig. 10 by the

ines A, B, C, and D are plotted in Figs. 11(a)–11(l). These
iews are plotted for the three aerial images at the focal
lane (left) as well as at 0.2 �m (center) and 0.4 �m
right) defocus. All of the plots reveal a close overlap be-
ween the rigorous solutions and those obtained through
he BL model, even at points close to the line ends. This
mproved modeling accuracy appears to be independent of
he pitch value according to the plot in Fig. 12 of the rms
rror measured for different pitches at the wafer plane.

As a final example of our model performance on square
orners, the mask pattern of Fig. 13 is analyzed. As be-
ore, Fig. 13(a) depicts the Kirchhoff scalar approximation
f the field on the mask plane of a 79 nm (as measured at
he wafer plane) half-pitch array of alternating 180°-
hifter and clear lines that form a 90° corner. Figure 13(b)
llustrates the actual object field with vertically polarized
lectric field at 193 nm, obtained by rigorous electromag-

ig. 10. Aerial image intensity results at the focal plane of a
8 nm (as measured at the wafer plane), half-pitch array of al-
ernating 180°-shifter and clear mask lines with an unpolarized,
=0.5, partially coherent illumination at 193 nm and NA=0.85.

a) Aerial image produced by the thin-mask approximation with
n rms error of 50.97%. (b) Aerial image produced by the rigor-
usly evaluated object field. (c) Aerial image produced by the BL
odel with an rms error of 4.63%.

ig. 9. (a) Kirchhoff scalar approximation (thin-mask model) of
he field on the mask plane of a 78 nm (as measured at the wafer
lane), half-pitch array of alternating 180°-shifter and clear line
penings, with vertically polarized electric field at 193 nm. (b)
ketch of the actual object field obtained by rigorous electromag-
etic FDTD TEMPEST simulation on the same mask. (c) BL model
or the same mask features and illumination conditions. A cross-
ectional view of the mask field for each case along cut A is dis-
layed at the bottom for clarity.
etic FDTD TEMPEST simulation on the same mask. Fig-
re 13(c) represents the BL model for the same mask fea-
ures and illumination conditions.

Aerial image intensity results at the focal plane for the
ask pattern of Figs. 14(a)–14(c) were calculated for un-

olarized light and an imaging system of �=0.4, partially
oherent illumination at 193 nm, and NA=0.85. The en-
anced modeling accuracy due to the boundary layer can

ig. 11. Cross-sectional view along the cuts of Fig. 10: (a)–(c) cut
; (d)–(f) cut B, (g)–(i) cut C, (j)–(l) cut D. Figures on the left-
and side show the image at the focal plane; figures at the center
nd right-hand side display the effect of defocus at 0.2 �m out-
f-focus and 0.4 �m out-of-focus, respectively.

ig. 12. Rms error integrated over the wafer plane of periodic
ines with different pitch dimensions, modeled by either the thin-

ask or the BL models.
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e appreciated directly from the plots. Quantitatively, the
erial image produced by the thin-mask approximation
xhibits an rms error of 56.78%, while that produced by
he BL model shows an error of 3.28%.

. CONCLUSION
he physical theory of diffraction is a technique developed
o correct for edge effects in the application of the
hysical-optics approximation on high-frequency scatter-
ng by perfectly conducting surfaces. It considers the ef-
ect of the edges as arising from some “fringe” line cur-
ents flowing along the object border. Lithographic
eticles, however, cannot be regarded as perfect conduc-
ors given the finite index of refraction of the chrome
ayer at the operational wavelength, so a similar “fringe”
dge-field concept was explored to account for the electro-
agnetic effects.
For rectangular apertures on both perfectly conducting

lates and more realistic chrome layers of finite thickness
nd refractive index, we observed how the relative errors
f the real and imaginary components of the field on the
afer follow an inverse law on the opening mean width
nd height, respectively. This allowed us to reduce the
odel to a simple boundary layer of fixed width and

ransmission coefficient. The proposed model, therefore,
onsists of a sophisticated version of the Kirchhoff ap-
roximation, simply adding a boundary layer to every

ig. 14. Aerial image intensity results at the focal plane of a
9 nm (as measured at the wafer plane), half-pitch array of al-
ernating 180°-shifter and clear square corners with an unpolar-
zed, �=0.4, partially coherent illumination at 193 nm and NA
0.85. (a) Aerial image produced by the thin-mask approxima-

ion with an rms error of 56.78%. (b) Aerial image produced by
he rigorously evaluated object field. (c) Aerial image produced by
he BL model with an rms error of 3.28%.

ig. 13. (a) Kirchhoff scalar approximation (thin-mask model)
f the field on the mask plane of a 79 nm (as measured at the
afer plane), half-pitch array of alternating 180°-shifter and

lear corner openings, with vertically polarized electric field at
93 nm. (b) Sketch of the actual object field obtained by rigorous
lectromagnetic FDTD TEMPEST simulation on the same mask. (c)
L model for the same mask features and illumination
onditions.
dge, which greatly improves the accuracy of aerial image
omputation in photolithography simulations at a reason-
ble computational cost.

PPENDIX A: FRINGE FIELD ERROR IN
PTICAL LITHOGRAPHY

he fringe fields due to an aperture on a conducting plate
an be expressed as9

EFR = − �r̂ � HFR

= − �r̂ ��
C�

2	�− Hinc · 1̂��F�l�, r̂�

+ �−1�Einc · 1̂��G�l�, r̂�

eikr

4�r
dl�, �A1�

here r= �r̂− r̂�� and the term between brackets repre-
ents the edge wave emanating from each differential el-
ment of the edge. This edge wave is a function of the in-
ident electric and magnetic fields multiplied by the
irection vector coefficients F and G,12 which are trigono-
etric functions dependent on the incident point on the

bject boundary l� and the observation direction r̂. The
nit vector l̂� is tangent to the edge at every point. Assum-

ng normal incidence, Eq. (A1) was applied to the aper-
ure of Fig. 2. The result was then assumed to propagate
hrough a 4� optical projection system of NAo=0.85/4
0.2 at the entrance pupil, and the corresponding peak

mplitude was measured at the center of the image plane
s illustrated in Fig. 2. The propagation distance r to the
ntrance pupil, assumed well into the far field of the ap-
rture, is much larger than the wavelength, while the ap-
rture dimensions considered here are of the order of the
avelength. This allows us to approximate the observa-

ion direction by the glancing incident direction, which
ields F�−1/2 and G�1/2 after the singularities cancel
ut in Ufimtsev’s formulation. Therefore, with the change
f variables of f=rx /NA and g=ry /NA and dropping the
onstant phase factors, the image fields at the focal plane
ill be given by

Eimage
FR �x,y� = − �r̂ � x̂�Ho2hNA2� �

f2+g21

cos��NAgw�

�sinc��NAfh�ejk�fx+gy�dfdg
Eo

�
2wNA2

�� �
f2+g21

cos��NAfh�sinc��NAgw�ejk�fx+gy�dfdg.

�A2�

To first-order approximation, one can consider
os��NAgw�, sinc��NAfh�, cos��NAfh� and sinc��NAgw�
1 within the integration limits of Eq. (A2), which is a

easonable approximation for small numerical apertures
uch as the one on the object side for imaging systems of
igh reduction factors. This approximation yielded the
ollowing expression of the fringe field at the image plane:
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Eimage
FR �x,y�  − ��r̂ � x̂�Ho

NA2J1�k�x2 + y2�

kr
�2h + 2w�,

�A3�

here J1��� represents the Bessel function of the first
ind, order 1, such that, at the center of the image,
1�x� /x=1/2 with x=0. As a final step, one can extract the
ain polarization component Ey from Eq. (A3) and as-

ume rz�1 for 4� optical reduction, to obtain

Eimage
FR  − Eo

NA2J1�k�x2 + y2�

kr
�2h + 2w�. �A4�

A similar analysis was carried out on the Kirchhoff
omponent of the total field to derive the main polariza-
ion component of the image field expression on the focal
lane, which resulted in

Eimage
K � − jk2Eohw

NA2J1�k�x2 + y2�

kr
. �A5�

The final relative error due to the fringe fields at the
mage focal plane is calculated as �E /E=Eimage

FR /Eimage
K .
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