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INVITED PAPER Special Section on Photonic Crystals and Their Device Applications

Inverse Problem Techniques for the Design of Photonic Crystals

Martin BURGER†a), Stanley J. OSHER††, and Eli YABLONOVITCH†††, Nonmembers

SUMMARY This paper provides a review on the optimal design of pho-
tonic bandgap structures by inverse problem techniques. An overview of
inverse problems techniques is given, with a special focus on topology de-
sign methods. A review of first applications of inverse problems techniques
to photonic bandgap structures and waveguides is given, as well as some
model problems, which provide a deeper insight into the structure of the
optimal design problems.
key words: inverse problems, optimal design, photonic crystals, wave
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1. Introduction

A new paradigm has emerged, in which the band structure
concepts of solid state physics are applied (cf. [1], [2]) to
Electromagnetics. This has led to a profusion of scientific
creativity as new forms of electromagnetic crystal structures
are invented for radio and microwaves as well as for optical
wavelengths. These new structures are inspired by the 3-D
geometry of both natural crystals, and those artificial crys-
tals that can arise only in the human imagination.

These artificial electromagnetic crystals (also known
as photonic crystals), are impacting the diverse domains
of electromagnetics, extending from radio waves to optical
wavelengths. They are bringing together, under a common
umbrella, scientists in the fields of Classical Electromagnet-
ics, Solid State Band theory, semiconductor device Physics,
Quantum Optics, Nano-structures, Materials Science, and
now Applied Mathematics.

Essentially this field has concerned itself with artificial
engineering of 3-D structures that achieve a certain goal, like
a photonic bandgap. This is a design problem, but there is
no direct route from the desired goal, to the structure that
achieves that goal. Modern developments in formal inverse
algorithms, combined with continual increases in compu-
tational power, are now replacing intuitive engineering for
problem after problem. Undoubtedly the design problem
of creating useful photonic bandgap structures will soon re-
place intuitive inspiration.

The recent development in the field of photonic crystals
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(cf. e.g. [3]–[5]) also raised several mathematical problems,
such as analysis (cf. [6] for an overview), numerical simula-
tion (cf. [3], [7], [8]), and - ultimately - design and optimiza-
tion, which is the topic of this review.

2. Inverse Problems Techniques

In this section we shall introduce the basic concepts of in-
verse problems, such as the problem formulation and reg-
ularization techniques. Moreover, we shall discuss several
different possibilities to model design variables, in particu-
lar the cases important for applications to photonic crystals.
Finally, we discuss some optimization techniques that can
be used to solve the regularized problems.

2.1 Problem Formulation and Regularization

In general, an inverse problem consists in the reconstruction
or optimal design of a variable or parameter in a system in
order to fit an observed or to achieve a desired state of the
system. Such problems are called inverse problems, since
there is an associated direct problem, which consists in solv-
ing (or rather simulating in engineering applications) given
the value of the design variable or parameter. This direct
problem is of importance for itself, but also for the solution
of the inverse problem. As we shall see below any algo-
rithm for solving the inverse problem will need solves of the
direct problem with given parameters or at least solves of a
linearized direct problem.

For eigenvalue problems, such as applications to pho-
tonic crystals, we usually have to deal with a problem of the
form

J(Λ,U; q)→ min
Λ,U,q

(1)

subject to a state equation of the form

A(uj; q) = λ jB(uj; q), j = 1, . . . , k. (2)

Here, Λ = (λ1, . . . , λk) formally denotes a part of the
spectrum of the direct operator, U = (u1, . . . , uk) the vector
of associated eigenfunctions, and q is the design variable. In
general, one can assume that Eq. (2) is uniquely solvable for
uj and λ j once the value of q is known. In order to illustrate
this abstract framework, we consider a simple model prob-
lem of maximizing an eigenvalue λk of the Helmholtz equa-
tion. Since one cannot directly compute the k-th eigenvalue,
we have to rewrite the problem in terms of the eigenvalues
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Λ, the associated eigenfunctions U, and the density ρ. The
functional J is then simply given by

J(Λ,U; q) = −λk = −Λ.ek,

where ek = (0, . . . , 0, 1). The state equation is defined by the
eigenvalue problem

−∆uj(x) = λ jq(x)uj(x), j = 1, . . . , k,

i.e.,

A(u; q) = −∆u, B(u; q) = qu.

We assume that A and B are linear and symmetric (re-
spectively Hermitian) with respect to the state U, which is
the case for the Helmholtz equation and for the Maxwell
equations.

A common characteristic of most inverse problems is
their ill-posedness, which means that the solution might not
exist, might not be unique or might not depend on the data
in stable way. For design problems, nonuniqueness does
not create difficulties, since it is rather desirable if one can
achieve a goal with different designs. Nonexistence and
instability with respect to data are more serious issues for
optimal design problems. A consequence of unstable de-
pendence on the data is that for arbitrarily small changes of
parameters in the system arbitrarily large differences in the
optimal design can occur, which is of course not desirable in
a practical application, where parameters can be controlled
with limited accuracy only. The nonexistence of a solution
usually causes the “checker-board problem” in topology de-
sign (cf. [9]), i.e., the solution changes with the grid and de-
velops a checker-board type structure for fine grids (cf. [10]
for a general discussion, and [11] for a specific example re-
lated to waveguides).

In order to compensate the ill-posedness of the prob-
lem, regularization methods have to be used to compute a
stable approximation of the solution (or to obtain the exis-
tence of a solution at). The main idea of regularization is
to solve a well-posed problems that is close to the original
one. For a detailed discussion of ill-posedness and regular-
ization we refer to [12]. A frequently used approached is
Tikhonov-regularization (or penalization), which consists in
minimizing

Jα(Λ,U; q) := J(Λ,U; q) + αR(q)→ min
Λ,U,q
, (3)

where R is a suitable (convex) regularization functional. If q
is a distributed variable, the typical choices for R are of the
form

R(q) =
∫

D
|Lq(x)|2 dx,

where L is either the identity or a differential operator such
as L = ∇. If piecewise constant design variables q are de-
sired, one can use the total variation penalty (cf. [13])

R(q) =
∫

D
|∇q(x)| dx,

or directly model the design variable as a piecewise con-
stant function and add the perimeter of its discontinuities
(i.e., the length of the curve in 2D and surface area in 3D) as
a penalty. Note that the bounded variation penalty is equal
to jump height times times length of the discontinuity curve
for piecewise constant design variables, and therefore essen-
tially equivalent to penalization by perimeter. The different
possibilities of modelling the design variable are discussed
in the following section.

2.2 Models of the Design Variable

In many optimal design problems the natural design variable
is the distribution or mixture of materials, which is also the
case for photonic crystals. The natural model for the design
variable in such cases is a piecewise constant function q,
with well-defined values in each phase defined by the spe-
cific materials. The free variable that can be optimized is
then the geometry of the phases, which can be carried out in
several different ways. For simplicity we restrict our atten-
tion to the case of two phases in the following, but similar
reasoning is possible for multiple phases, too. In this case,
we can split the domain D into D = Ω1 ∪ Ω2, with open
sets Ω j representing the different materials. The function q
is defined by

q(x) =

{
q1 x ∈ Ω1

q2. x ∈ Ω2.
(4)

The design problem reduces to the problem of distributing
the phase Ω1 in D (the second phase is clearly the comple-
ment of Ω1), which is usually denoted by the terms shape or
topology optimization (cf. [10], [14]). The approach in clas-
sical shape optimization usually starts from a fixed topology
and tries to find a local minimizer by (local) variations of the
boundary ∂Ω. In general topology optimization, the shape
of the boundary of the phases is optimized as well as their
topological structure such as the number of connected com-
ponents. As a representation of the design variable Ω1, the
following methods can be used:

• Parameterization: A simple method consists in choos-
ing an a-priori parameterization of the boundary ∂Ω1

and optimization of the parameters. This yields a rather
standard optimization problem of lower dimension, but
strongly restricts the topology of the phase. In particu-
lar in applications to photonic crystals, where the num-
ber of crystals is not specified a-priori, this is not a de-
sirable property. Nonetheless, this approach has been
used for the optimization of photonic crystals (cf. [15]–
[17]) with additional mechanisms to change topolo-
gies, which creates computational complications. On
the other hand, parameterization has proved to be use-
ful in the shape optimization of waveguides when the
shape shall be changed only locally (cf. [11]).
• Level Set Methods: The main idea of the level set ap-

proach (cf. [18], [19]) is to represent the phase as the
zero level set of a continuous function φ, i.e.,
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Ω1 = {x ∈ D | φ(x) < 0}. (5)

By allowing additional time-dependence of φ, one can
compute geometric motion of Ω1 in time by evolving
the level set set function φ. A geometric motion with
normal velocity V = V(x, t) can be realized by solving
the Hamilton-Jacobi equation

∂φ

∂t
+ V |∇φ| = 0. (6)

Optimization within the level set framework consists in
choosing a velocity V driving the evolution towards a
minimum (or at least decreasing the objective). There
are various possibilities to choose the velocity in order
to obtain a descent, we refer to [20], [21] for a detailed
discussion.
• Approximation of the Indicator Function: Several

methods have been devised to directly approximate the
indicator function χ of Ω1, respectively the piecewise
continuous function q = q1χ + q2(1 − χ). A fre-
quently used method in structural optimization is the
SIMP approach (Solid Isotropic Material with Penal-
ization), which optimizes a spatially dependent density
ρ̃(x) such that ρ(x) = ˜rho(x)p, with p > 1. This power
law for the density forces densities close to 0−1 distri-
butions. In structural optimization, it has been shown
by Bendsoe and Sigmund [22], that this power law ap-
proach is physically permissible as long as some condi-
tions on the power in dependence of the Poisson ration
of the material are satisfied, a similar analysis for pho-
tonic applications is not available yet.
Another possibility of approximating the indicator
function is the phase-field approach used by Bourdin
and Chambolle [23] for structural optimization. In this
case, an additional term is added to the objective func-
tional, penalizing deviations of ρ(x) from the values ρ1

and ρ2.

If fine mixtures of phases are allowed, one can choose
a different approach and allow for a general spatially depen-
dent density q = q(x) satisfying

min{q1, q2} ≤ q(x) ≤ max{q1, q2}. (7)

This density q can be interpreted as a limit of fine mixtures
in the sense of homogenization. The numerical solution
is rather straightforward in this case, since the function q
can be discretized directly as well as the state, which finally
yields a standard nonlinear programming problem with the
additional bound constraints for the discretization of q. On
the other hand, the homogenization approach suffers from
several drawbacks. In particular, it can be made rigorous
only for a limited class of objective functionals and gives no
control on the fineness of details. We refer to the monograph
of Allaire [24] for a detailed discussion of the homogeniza-
tion method.

2.3 Optimization Techniques

After modelling the design variable and the regularization

term, one ends up with a nonlinear optimization problem,
which is well-posed due to the regularization term, but prob-
ably ill-conditioned for small values of the regularization
parameter. In principle, any suitable optimization method
can be chosen to solve these optimization problems, but
the optimal choice should of course depend on the regu-
larization term and the model of the design variable. E.g.,
if a total variation penalty term is used, the regularization
term involves a nondifferentiability and hence, a method
using higher order derivatives is not appropriate. On the
other hand, models of the design variable such as the phase-
field model may introduce strong non-convex terms into the
model, so that standard Newton-type methods may run into
difficulties.

Another difference between design variables dependent
on a shape and intermediate densities is the appearance of
constraints. If the design variable is modeled as a piece-
wise constant function such as in the level set method, the
only constraint that might remain is a bound on the volume,
which can be incorporated easily. If intermediate densities
are used, the inequality constraints (7) have to be incorpo-
rated. Therefore, sequential linear or convex programming
methods like CONLIN (cf. [25]) or MMA (cf. [26], [27]) are
more popular in these cases than Newton-type or other se-
quential quadratic programming methods.

Nonetheless, there are some common properties of all
approaches, which we shall discuss in the following. The
standard approach consists in (implicitly) eliminating the
state variable U and the eigenvalues Λ, which are uniquely
determined for a given design q. Therefore, with the nota-
tion U(q) and Λ(q) for the unique solution of the eigenvalue
problem with given q, one can reformulate the design prob-
lem purely in terms in q as

J̃α(q) := J(Λ(q),U(q); q) + αR(q)→ min
q
. (8)

In order to compute derivatives of the functional J̃α one
has to compute the derivatives of U and Λ with respect to q,
since

J̃′α(q)h =
∂

∂q
J(Λ(q),U(q); q)h

+
∂

∂U
J(Λ(q),U(q); q)U ′(q)h

+
∂

∂Λ
J(Λ(q),U(q); q)Λ′(q)h + αR′(q)h.

Here U′(q)h and Λ′(q)h denote the derivatives of the
state and eigenvalues with respect to the design variable q
in direction h. These derivatives can be computed from a
linearization of the state Eq. (2), for simplicity we omit the
dependence on q and h in the notation:

A(u′j; q) = − ∂
∂q

A(uj; q)h + λ′jB(uj; q)

+λ jB(u′j; q) + λ j
∂

∂q
B(uj; q)h.

Here we simply denote the directional derivatives by
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u′j and λ′j. Thus, one obtains a similar linear problem to be
solved for the derivatives U′(q)h and Λ′(q)h, for each vari-
ation h. Solving all these linear problems for all possible
variations would cause an unreasonable computational ef-
fort, but fortunately this problem can be avoided by using
the so-called adjoint method. First of all, one can use the
symmetry of the operators A and B to deduce that

〈A(u′j; q) − λ jB(u′j; q), uj〉 =
〈A(uj; q) − λ jB(uj; q), u′j〉 = 0.

where 〈., .〉 denotes the L2-inner product. Hence, we can
eliminate the terms depending on U′ from the linearized
equation to obtain

λ′j〈B(uj; q), uj〉 =
〈
− ∂
∂q

A(uj; q)h, uj

〉

+λ j

〈
∂

∂q
B(uj; q)h, uj

〉
.

This relation can be used to compute the derivatives of
the eigenvalues with respect to the design - note that it only
depends on the known values q, U(q), and Λ(q).

3. Optimal Design of Photonic Crystals

In general, a photonic crystal can be viewed as a low-loss
dielectric medium with several air inclusions, which are the
principle design variables. There are several design goals re-
lated to photonic crystals, leading to inverse wave problems
or inverse spectral problems (cf. [28]). In the following we
shall discuss the two main classes, namely the optimization
of bandgap structures and the optimization of waveguide
structures. We shall review the (few) existing papers us-
ing inverse problems techniques for these problems. Finally,
we discuss some model problems related to the Helmholtz
equation, which allow further insight into basic problem
structure.

The standard model for the electromagnetic waves in
photonic crystals are the Maxwell-Equations, which can un-
der standard constitutive relations and for the assumption of
monochromatic waves be reduced to the following station-
ary system for the electric and magnetic fields E and H:( ω

c
i
ε
∇×

− i
µ
∇× ω

c

) (
E
H

)
= 0, (9)

on the space of divergence-free vector fields E and H. Here,
∇× denotes the curl operator, c is the speed of light, ω the
frequency of the wave, ε and µ are the electric and magnetic
permittivity of the photonic crystals. The latter parameters
can be modeled as scalar function of the location, whose
value is determined by the current phase (i.e., material or
air-inclusions). For most photonic crystal it is assumed that
the material is nonmagnetic, i.e., µ ≡ 1. Thus, the design
variable enters the model mainly via the electric permittiv-
ity, which can be modeled as a piecewise constant function
taking different (fixed) values in the material and the air in-
clusions.

For two-dimensional structures, there are two-possible
reductions. In the case of transverse electric (TE) polarized
fields, the magnetic field is along the x3 axis and the electric
field is normal to this axis. The Maxwell system can then be
reduced to a divergence-type problem for the variable u =
H3 of the form

−∇.1
ε
∇u = λu, (10)

in two dimensions, with λ = ω/c. For transverse mag-
netic (TM) polarized fields, the electric field is parallel and
the magnetic field normal to the x3-axis. In this case, ther
three-dimensional Maxwell equations reduce to the two-
dimensional problem

−∆u = λεu, (11)

for the scalar function u = E3.

3.1 Optimal Design of Bandgap Structures

A photonic bandgap structure (PBG) is a periodic photonic
crystal, in which electromagnetic waves of certain frequen-
cies cannot propagate. In order to deal with the periodic
media, so-called Bloch waves are used (cf. [29], [30] for de-
tails), which allow to solve equations on the unit square in-
stead. The basic idea of this theory is that solutions on the
whole space are superpositions of the solutions (Eα,Hα) on
the unit cell of

i
ε

(∇ + iα) ×Hα = λEα, (∇ + iα).Hα = 0 (12)

− i
ε

(∇ + iα) × Eα = λHα, (∇ + iα).Eα = 0, (13)

for all α ∈ K = [−π, π]3 (K is usually called Brillouin zone),
with the eigenvalue λ = ω/c. Thus, bandgap materials can
be computed on the unit cell at the price of having to com-
pute the solution for all α ∈ K.

A typical design goal is to obtain a maximal bandgap
around a given frequency ω0. In spatial dimension two, Cox
and Dobson [31], [32] used the objective functional

J(Λ(q)) = inf
α∈K0

min{ω0 − λk−1(q, α), λk(q, α) − ω0},

where K0 is a suitable subset of the first Brillouin zone
[−π, π]2. An analysis of the problem shows that the prob-
lem may be non-smooth, i.e., Lipschitz-continuous but not
differentiable with respect to the design variable, for several
reasons. First of all, the infimum and minimum in the above
formula for J are non-smooth functions. Moreover, multiple
eigenvalues introduce a non-differentiability with respect to
the design variable as we have seen above. However, one
can still use generalized gradients and bundle optimization
techniques to overcome this difficulty (cf. [33]). The model
of the design variable in [31], [32] was a continuous density
variable constrained by (7), i.e. the electric permittivity in
the case of TM-polarization (investigated in [31]) and its re-
ciprocal value in the case of TE-polarization (investigated
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in [32]). The numerical results in both cases are promising,
and the obtained densities are close to piecewise continuous
functions, i.e., permittivities that can actually be realized.
The results demonstrate that inverse problems techniques
can be employed to design optimal bandgap structures in
an automatic way. Nonetheless, a variety of open problems
remains to be investigated for the optimal design of photonic
crystals, in particular the three-dimensional case, which is a
truly large-scale problem, is of high importance for applica-
tions. This poses a strong demand on the efficiency of the
eigenvalue solvers as well as of the optimization techniques.

Doosje et al. [15] considered crystals with cubic lattices
of air inclusions of radius R, connected by cylindrical pieces
of radius RC . Their model of the design variable is there-
fore a simple parametrization, with the radii R and RC , as
well as the distance a between the centers of the balls to be
minimized. For the maximization of the gap between the
bands 8 and 9, they obtained a maximum occurs for aratios
Rc/R = 0.398 and R/a = 0.32, significantly improving their
initial design to a relative bandgap of 9.59% around the cen-
tral frequencyω0 = 2π×0.746c/a. Since, the optimization is
restricted to 3 parameters in this case, the bandgaps could be
increased allowing for more general shapes. E.g., it seems
promising to use the results of [15] as a starting point for a
shape optimization by the level set method. To our knowl-
edge, the results in [15] represent the only existing work on
optimal design of photonic crystals in 3D.

A related problem in mechanics has been investigated
by Sigmund and Jensen [34] in phononics, where a sim-
ilar analysis performed for the elasticity system. So far,
phononic structures do not have existing technological ap-
plications, but a promising potential of such. From a mathe-
matical viewpoint, the optimal design problem is analogous
to the one for photonic crystals and therefore, developments
in both areas might influence each other in the future.

Finally, a problem of future interest may be the optimal
design of localized defect modes (cf. [35], [36]), which has
not yet been discussed in full generality but only for a simple
model problem that will be discussed in Sect. 3.3.

3.2 Optimal Design of Waveguides

In typical applications to waveguides, one does not seek pe-
riodic structures, but rather finite structures. The design goal
in this case is the guidance of a mode through the device
with minimum power loss (cf. [11], [16]), in many cases of
the first fundamental mode. Since the structure is usually
not assumed to be periodic in this case, the model does not
involve Bloch waves and consists simply of the Maxwell
equations on a domain Ω modelling the device geometry.

There are two possible design variables for waveguide
devices: the topology of the photonic crystal (i.e., the air in-
clusions) and the overall device geometry Ω. While the first
problem is a typical topology design problem as described
above, the design of the device geometry is rather a classical
shape optimization problem, where no change of the topo-
logical structure is desired. Therefore it seems reasonable

to use parametrizations and to optimize locally around the
initial shape. This approach was used with success by Fe-
lici and Engl [11] together with an appropriate regulariza-
tion of the parameters to avoid the checker-board problem
described above.

The design of photonic crystals in waveguide structures
has been investigated recently by Felici and Gallagher [16].
The authors used the radii and the locations of some of the
air inclusions as design variable, while most of the air inclu-
sions were fixed on a hexagonal lattice. The authors used
fast local optimization techniques together with stochastic
and deterministic global optimization techniques to compute
global minima in reasonable times.

3.3 Model Problems for the Helmholtz Equation

Several inverse problems related to the Helmholtz equation
on a bounded domain have been investigated recently. A
simple model for the design of bandgap structures is the
maximization of eigenvalues considered by Osher and San-
tosa [37]. The authors discussed the case of a Helmholtz
equation in a bounded domain Ω, i.e.,

−∆u = λqu, (14)

subject to homogeneous Dirichlet boundary condition. In
this case the design variable q was modelled explicitely as
a piecewise constant function satisfying (4), and the level
set method was used to represent the shapes Ω j. Thus, the
density q can be written as

q = q1 + (q2 − q1)H(φ),

where H denotes the Heaviside function. The maximization
of a band gap corresponds roughly speaking to the mini-
mization of the functional

J(Λ) = λk − λk−1 (15)

subject to a volume constraint. As an alternative way of im-
proving bandgap materials, the author considered the mini-
mization of the volume fraction of one material subject to a
fixed size of the “bandgap,” i.e., of the difference λk − λk−1.
The latter design goal models the aim of obtaining a given
bandgap as cheap as possible.

The computation of derivatives is particularly simple in
this case, since one only needs the derivatives of the eigen-
values λ j, which satisfies

λ j =

∫
Ω
|∇uj|2 dx∫
Ω

q u2
j dx

.

By similar reasoning as in Sect. 2 one obtains that

λ′j = −
∫
Ω

q′ u2
j dx

∫
Ω
|∇uj|2 dx∫
Ω

q u2
j dx

= −λ j

∫
Ω

q′ u2
j dx,

where q′ is the derivative of q with respect to a variation of
φ. Thus, one can compute the derivative of the objective
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functional J(Λ) without solving any additional differential
equation. This formula for the derivatives of the eigenval-
ues were the basis for the level set algorithm applied to this
shape optimization problem in [37]. According to the stan-
dard level set framework, an evolution of the form

∂φ

∂t
+ V |∇φ| = 0

was used with a speed function V of the form

V = (q1 − q2)(λku2
k − λk−1u2

k−1) + η,

with a Lagrange parameter η guaranteeing volume conserva-
tion in the evolution. This evolution turned out be success-
full in finding optimal shapes, even without a-priori knowl-
edge of the topology. The obtained results by this technique
can be realized immediately, since the solution is a decom-
position of the geometry into the two materials. Many of
the optimal structures obtained by this inverse problems ap-
proach are to some extent non-intuitive and difficult to be
guessed by engineers, which demonstrates again the impor-
tance of automatic inverse problems techniques for design
problems of this type. For two cases, namely the maximiza-
tion of the bandgap between the first two eigenvalues and
the minimization of the volume at fixed bandgap are shown
in Figs. 1 and 2, respectively. One observes that the optimal

Fig. 1 Maximization of λ2 − λ1 for the Helmholtz equation. The figure
show the evolving partition during the iterations of the level set method
(from [37]).

structure (last figure at the bottom) has a completely differ-
ent topology as the starting value (first figure at the top).

Another problem of interest is the optimal design of
localized defect modes. A model problem related to the
Helmholtz equation has been investigated recently by Dob-
son and Santosa [38]. In order to measure the locality of the
defect mode, the functional

J(u, q) =
∫
Ω

w q u2 dx

was introduced, where u is a solution of the eigenvalue prob-
lem (14) and w is an appropriate weight-function such as
w(x) = |x − x0| with x0 being the point around which the
mode is to be localized. The analysis in [38] shows that this
optimal design problem is ill-posed, since there may exist
eigenfunctions corresponding to higher and higher frequen-
cies and associated densities q that drive the functional J to
zero, but do not converge to any optimal design. In order to
regularize the problems, constraints on the eigenvalue have
to be enforced, two possible regularization approaches are
presented in [38] leading to successful optimal designs. For
more realistic situations in photonic crystals one has to ex-
pect the same kind of problem, so that these initial results
on the Helmholtz equation may help in the construction of
optimal designs for practical applications, too.

Fig. 2 Minimization of volume at fixed bandgap λ2 − λ1 for the
Helmholtz equation. The figure show the evolving partition during the iter-
ations of the level set method (from [37]).
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