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1. Introduction

To maintain the historical trend of doubling chip density roughly every eighteen
months while maintaining a nearly constant chip price, the semiconductor industry
now performs lithography within the subwavelength regime in deep ultraviolet
(DUV) lithography. Several resolution enhancement techniques (RET) have been
developed and increasingly emiployed, together with imaging systems of higher
numerical aperture (NA4), to enable this steady reduction of wafer critical
dimensions (CD) below the illumination wavelength,

These conditions place a serious limitation on conventional scalar simulations
of the lithographic image based on Kirchhoff boundary conditions to approximate
the field immediately behind the patterned mask. This approximation fails to
account for the increasingly important topographical effects of the mask'” (thick
mask effects). Our chapter presents a boundary layer (BL) model to overcome this
problem. In addition, our approach accounts for the oblique directions of
propagation of light through optical systems with high numerical apertore.**

Aerial images at the wafer plane produced by rigorous electromagnetic (EM)
solutions of the field on the mask were evaluated by means of a vectorial
formulation of the imaging process. This was then compared to ideal images
produced by the thin mask approximation, where the field on the mask openings
was replaced by the incident field. Our new model consists of a sophisticated
version of the Kirchhoff approximation, capable of modeling thick mask effects by
simply adding a fixed-width, locally-determined boundary layer to every edge.
Polarization and edge diffraction effects, as well as phase and transmission errors,
are included in our model by permitting a cornplex transmission coefficient in the
boundary layer.

2. Boundary layer mode!

Boundary layers are already employed in industry 1o account for the losses in peak
infensity of the field traveling through small apertures in the chrome mask, but
always in the form of a bias, that is, an opaque boundary layer. However, some of
these topographic effects (polarization dependence of the boundary conditions,
phase and amplitude transmission errors) arising from the vector nature of light
become particularly critical for alternating phase-shifting (PSM) masks,” which
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demand rigorous resource-consuming 3D EM field simulations in the
subwavelength regime,

Several modeling methods have therefore been studied in literature. Lam
and Neureuther's recent "domain decomposition method*" employs pre-calculated
diffracted fields from isolated edges that are added afterwards according to the
diffracting patterns. Based on the linearity of Maxwell's equations, this method
provides exact results for infinitely long edges and reasonably good accuracy for
complex patterns. There is a heavy computational burden of superposing many
edges to make an ;mage and the resulting superposition is non-rigorous.

Yan's approach’ shares with our boundary layer model the possibility of
locally modeling topographical mask effects with a boundary band of different
transmission coefficient at the thin mask edges. Yan's model approximates the
diffraction effects on the edges of extreme ultraviolet (EUV) lithography of infinite
lines of width 2.232, by adding a strip to the thin mask model. However, in his
approach, the width and transmission coefficients of the boundary layer were
obtained by matching the diffraction ripples of the near field evaluated on the
mask surface. For the complex DUV transmission masks analyzed in this paper,
we performed a systematic study of rectangles of different aspect ratios and sizes,
and selected the boundary layer parameters to optimize the central field amplitude
on the wafer, not the mask,

Alternating PSM masks have etching profiles with abrupt dzscommmtaes as
sketched in Fig. 1 for clear and 180° phase-shift openings with and without 35 nm
undercut. Rigorously evaluated fields on thick chrome mask apertures exhibit
effects such as those observed in Fig. 2(a) of the electric field immediately below
a square 180° phase-shift opening of 3 side length (A = 248 nm) and horizontally
polarized incident electric field, evaiuated by a finite difference time domain
{(FDTD) algonthm Tempest 5.0.° Direct application of Kirchhoffs boundary
conditions'’ provides a thin mask approximation of the object field on the exit
surface of the mask, obtained by multiplying the incident field times an ideal
transmission function with the mask pattern as plotted in Fig. 2(b). This model
ignores the standing wave patterns and other polarization effects observed in Fig.
2(a) and turns out to be very inaccurate for feature sizes of the order of A. Our
model, which retains much of the thin mask simplicity, is displayed in Fig. 2(c),
where an imaginary boundary layer is applied to the same 3A 180° phase-shift
square opening and horizontally polarized incident light.

Notice the directional dependence of the boundary layer transmission
coefficient that reaches its maximum value when the electric field is tangent to the
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Figure 1. Three types of openings on a transmission lithography mask.
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Figure 2, (a) Sketch of the actual field caiculated by FDTD on the aperiure of a 3A
180°-shitter square opening with horizontally polarized etectric field. (b} Kirchhoff
scalar approximation (thin mask model} of the field on the same aperturs. (c)
Boundary layer model for the same square opening and ilflumination.

boundary and diminishes to zero when the field is normal to it. This simple
geometric rule (cosine rule) accounts for the orientation dependence of the
boundary conditions at the metal edges. Tangential components of the electric
field must vanish on metal surfaces, sefting up conditions for standing-wave
effects on the aperture field that contribute to the phase errors, Normal electric
field components, on the other hand, exhibit a discontinuity due to the
accumulation of charges on the chrome surface, but their contribution to the final
srojected image is mostly filtered out by the optical lens.”

Aerial images were generated for 180° phase-shift square openings of sizes
equal to 1.4A, 1.8A and 3A, and compared to their corresponding thin mask and
BL models., Simulations were performed at 248 nm wavelength with a 4X
reduction optical system with N4 = (.68, and are displayed in Fig. 3{a){c),
respectively. They reveal a close agreement between the images generated by both
the exact field (solid ling) and the BL model (dashed line) in both amplitude and
phase plots, markedly reducing the errors caused by the conventional Kirchhoff
approximation (dash-dotted line). Usually, the width of the BL controls the
variation in peak amplitude, while the imaginary transmission coefficient corrects
the phase deviations of the thick mask. These errors differ for different types of
mask edge cross-sections, giving different boundary layer parameters to be applied
locally in the vicinity of each type of edge profile. Thus each mask edge
specification (clear, shifter and shifter with undercut) has its own BL parameters.

3. Simulations

Systematic simulations of rectangular openings with side sizes ranging from 1A to
6}, aspect ratios ranging from 3:1 to 1:3, and three different etching profiles for
each opening size: 0°, 180° shifter and 180° shifter with 35 nm undercut, provide a
means to analyze thick mask effects.” The 3D FDTD simulations with coherent,
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Figure 3. Comparison of both amplitude and phase of aerial images produced by
rigorously evaluated EM figld solutions on the mask aperture (solid) and both the
corresponding Kirchhoff approximation (dash-dotted) and our BL model (dashed),
for three sizes of 180°-phase-shift square opening: {(a} 1.4, (b} 1.84 and (c) 3.

Opening Boundary Tangential Normal | Interior | Minimum

type width boundary boundary | irans. opening

(nm) trans. trans. {nm)

i 11 1 1§ i 11

Clear 248 | 145 0.4 0.8 0 1 248 | 200

Shifter 558 | 53 | .05yl -03 D -1 00 | 250
Shifter with

35 nm 372 | 193 08 | 0635 0 -1 350 200
undercut

Table 1. Width and transmission coefficients of the boundary layer model for
different types of openings in typicai PSM geometry {cases | and Il refer to 248 and
193 nm wavelength imaging systems, respectively).
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on-axis illumination provide rigorous results for the EM fields on the masks.
Two sets of parameters were evaluated: a 4X projection system with N4 = 0.68,
operating at A = 248 nm illumination (case I of Table 1); and a similar 4X system
with N4 = (.85, operating at 193 nm (case Il in Table 1). The indices of
refraction of glass and chrome at 248 nm are 1.5 and (2.5-2)), respectively;
whereas at 193 nm they are 1.563 and (0.84-1.657). Finally, a thicker chrome
layer of 95 nm was employed at 193 nm to provide the same absorption of
incident light as the 80 nm chrome layer used at 248 nm wavelength,

The relative error in aerial field amplitude produced by the thin mask
approximation is measured by the deviations of its real component from the
rigorously evaluated field. For the main polarization component, this amplitude
deficit at the plane of the wafer follows a reciprocal dependence on the size of the
opening for both square and rectangular openings, as observed in Fig. 4{a) for the
248 nm wavelength case, as long as the opening size is measured as the harmonic
mean of its width w and i3 height #. The harmonic mean is defined as twice the
product of the sides divided by their sum. As outlined in Eq. (1), this inverse
dependence of the relative error amplitude on the opening size indicates that the
error can be assumed proportional to a correction width Ad, uniform with the size

of the opening and to be applied on all four sides of the thin mask model
regardless of polarization:

Amplitude deficit = (AE/E) = (4Ad/d) = 2Ad(w + hY/wh . (1)

The amplitude deficit is, in fact, given by the boundary layer area divided by the
total area wh of the opening. Thus the real part of the BL model consists of an
opagque layer of zero transmission and fixed width, placed on all four sides of the
opening as displayed in Fig. 5(a).

Relative errors of phase produce non-zero values of the imaginary part of the
aerial field relative to the thin mask field. Figure 4(b) shows a plot of the
imaginary field component versus the opening height defined as side length in the
direction perpendicular to the electric field polarization, where the same inverse
law holds for all square and rectangular openings of all aspect ratios. Any other
functional dependence of the phase error, such as the reciprocal of the dimension
parallel to polarization, produced a much poorer inverse law fit. Hence, the
conclusion that the BL has a purely imaginary fransmission coefficient —/p, that is
proportional to the absolute value of the cosine angle between the electric field
polarization and the edge direction, arises directly from the dependence in Fig.
4(b) and can be written as follows:

Relative imaginary error = Im{AEYE = B(2Ad)/h . 2)

The slope of the data in Fig. 4 provides the actual value of this fransmission
coefficient, needed to compensate for phase deviations of the field and to
determine the imaginary part of the BL model as plotted in Fig. 5(b). Final
superposition of both real and imaginary parts of the model give the final BL as
sketched in Fig. 5(c), with the width and transmission coefficients outlined in
Table 1 for the two imaging systems (cases 1 and II) considered in this chapter.
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Figure 4. (a) Log-log plot of the relative error in the real component of the aerial
electric field vs. the harmonic mean of the opening height and width at 2 = 248 nm,
produced by the thin mask approximation as compared to the rigorously evaluated
EM field. (b) Log-log plot of the relative error in the imaginary component as &
function of opening height (opening size in the direction perpendicular to
polarization).
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Figure 5. (a) Real component of the BL model. (b) Imaginary component of the
BL model. (c) Final BL model as the superposition of both real and imaginary pars.

4. Resulis

The boundary layer parameters were obtained, for each etching profile, from the
slope of the best least-squares straight line fit to the points on Fig. 4, further
optimized to minimize the emors but constrained to either zero or a purely
imaginary boundary layer transmission. This condition feads to the simplest type
of model that still provides satisfactory results. Moreover, even though the
boundary layer model was optimized for the field component along the direction
of polarization of the incident light, it provided similar error reductions for all
cross-field components arising at the exit pupil of a high N4 lens. This can be
observed for the A = 193 nm wavelength case in Figs. 6(a}-(c), where the RMS
error at the plane of the wafer for both the conventional thin mask model and the
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BL model, as compared to the actual image, are displayed for the total electric
field as well as individual vector components. Remarkable error reduction occurs
even for mask features close to the wavelength, Figure 6(d), on the other hand,
plots the phase deviations for 180° phase-shift openings with and without 35 nm
undercut, where error reduction by a factor of 7 is achieved for the smallest sizes at
248 nm, where higher phase deviations were observed.

1t was further observed that applying the thin mask model to etching profiles
of the 180° phase-shifter type without undercut produced the highest RMS errors
on the aerial image, as compared to the case with the 35 nm undercut. Even larger
errors occwrred for mask openings with sides equal to 1, which hardly transmit
any EM fields and hence were omitted in Fig. 6. Current computational
approximations are unable to model such small mask openings, and it is
recommended that they should be forbidden in the design rules. The minimum
recommended opening is 1.2A.
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{llumination in industrial applications consists of an unpolarized source of
partiatly coherent light that reduces some of the effects associated with coherent
illumination. We have simulated partially coherent illumination by assuming
Kéhler's configuration, where an incoherent light source is located on the focal
plane of the condenser lens. The extended source is spatially divided into a
number of mutually incoherent point sources. Each of these sources emits a plane
wave emerging from the condenser at an angle determined by the source point
location with respect to the optical axis. We treat the illumination due to each
source point as coherent, polarized plane waves with different angies of incidence.
In practice, this requires separate results for both orthogonal (TE and TM)
polarizations to be incoherently superposed. The aerial image is then obtained by
an incoherent superposition of all the contributions. This procedure, known as
Abbe's method, yields the image ficld amplitude and phase distribution for each
illumination angle prior to the source integration, providing the necessary input to
our boundary layer model. The equivalent Hopkins method, much used in
lithography, provides only intensity and is not as useful for determining boundary
layer phase shiffs.

Figure 7(a) is a plot of the root mean squared error in the projected image for
a partially coherent illumination at 193 nm, N4 = 0.85, o = 0.6 and TE
polarization, where ¢ is the ratio of the condenser lens NA to the N4 of the
projection optics. The same boundary layer parameters of Table 1 were applied to
approximate the near field effects of 180 -phase-shift openings, even though Table
1 applied only to the on-axis illumination case. Figure 7(b) displays the effect of
the de-focusing (depth-of-field) errors on intensity. The effect of defocusing is
small, Phase errors are expected to be more critically affected by defocusing.
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Figure 6. (a)-{c} Root mean squared error on the projected image on the wafer
plane of the total electric field and the E, and £, components at 193 nm. {d) Field
phase in degrees for 180°-phase-shift openings with and without undercut.

coherent illumination at 183 nm, NA = 0.85, o = 0.6 and TE polarization, generated
by the approximated models of 180°-phase-shift openings, as compared with the
rigorously evaluated field due to the same illumination. (b} The effect of depth of
field error on the intensity.
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5. Conclusions

Although thick mask effects decay slowly with the size of the opening, the key
result of our simulations is that this decay can be interpreted, to a good
approximation, as a focally determined, fixed-size edge effect, with just two
patameters: width and transmission coefficient of the boundary layer, We
observed how the refative errors of the real and imaginary field components on the
wafer follow an inverse law on the opening mean size and height, respectively.
This allowed us to model them as a simple boundary layer of fixed width and
transmission coefficient. This new boundary layer model incorporates thick mask
effects and polarization dependencies, that greatly improves the accuracy of aerial
image computation in photolithography simulations at a reasonable computationat
cost.

Appendix A: Vector formulation of the imaging process

Scalar diffraction theory'' vields accurate results of the field in the image space
when numerical apertures up to 0.7 are employed,” but it fails to account for the
polarization and oblique direction of propagation of the vector components of the
EM field with higher N4, Rigorous vector diffraction theory was first applied to
optical imaging and exposure process for optical lithography by Yeung® and
subsequently analyzed by several other authors in more recent articles.

In the determination of the vector representation of EM fields in the image
space, Wolf's” generalization of Debye's integral formulation can be applied.
Based on the notation of Fig. Al, the expression takes the form:

Enmor s 2y = G 1 atsnsy) O podsy (A

Sestsl S8z

This formulation is based on geometrical optics and provides the optical image in
the neighborhood of the lens focal plane in terms of a superposition of plane
waves propagating with all direction cosines (sx,sy) that fill the exit pupil
aperture.”’  The phase term ®{s,sv) denotes the aberration function with respect to
an ideal spherical wavefront converging towards the focal point (a constant phase
term has been dropped for simplicity). In deriving of Eq. (A.1), Kirchhoff
boundary conditions were applied on the exit pupil aperture. Therefore, it is
accurate at distances from the pupil plane that satisfy the condition'® NA >> (?Jf)m
{equivalent to the condition that the Fresnel number is much larger than unity),
where f represents the geometrical focal distance. With focusing distances of the
order of a few mm,'"* and numerical apertures as high as 0.85 for 193 nm
wavelength lithography, this condition guaranties that the Debye integral
representation vields essentially the same results for the fields in the focal region
as techniques based on Huygens-Fresnel principle’® or plane-wave
decompositions.4
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image
plane entrance exit plane
pupil pupil

Figure A.1, Schematic optical projection system setup. Object space
coordinates are denoted (x, y, z), while image space coordinates are denoted (x',
y', ). Each propagation direction f of waves diffracted by the object forms the
meridional plane together with the optical axis &,. The corresponding wave
direction § of the wave converging towards the image plane from the exit pupil lies
on the same meridional plane. Field components along the normal and paraliel
directions to this plane, E and E,, maintain the same amplitude, denoted E's and
E', in the image space, as the wave vector kf rotates onto KS.

Rigorous electromagnetic theory was also utilized to derive the f{ields at the
entrance pupil by means of the well-known Franz formula'” for the diffraction of
fields, which reduces to equation (A.2) as the observation point on the entrance
pupil recedes to the far-field zone:'*"”

Erntrance(rx,ry) =
= (e j20r) F{[n(E2xHo) ~ nl(&xHo)RIF — @xEPF]; e/, refh} (A2)

where F denotes the Fourier transform evaluated at spatial frequencies rx/A and
ry/%, whereas Ey and H; are the electric and magnetic fields on the exit surface of
the photomask. In our calculations, these fields on the mask are either rigorous 3D
electromagnetic solutions, or stepwise discontinuous fields resulting from the
direct application of Kirchhoff boundary conditions on the mask surface.

Only image points of small linear dimensions around the optical axis &z, as
compared to the distance 7, are of interest in this analysis, meaning that, according
to the method of stationary phase,’ only points about the optical axis will
contribute significantly to the diffraction integral. Therefore the unit vector ¥
pointing toward the observation point r on the entrance pupil reduces to Eq.
(A.3a). It follows from Eq. (A.2) that for any ¥ the fields on the entrance pupil
behave locally as plane waves and are transverse to the direction of propagation:

=

= pfr = rxy + ryby + rz8z = sind cosg &x + sind sing &y + cos0 & (A3a)

w3

= §/5 = gxBx + sy@y + 5787 = —sin®' cosp &x — sind' sing &y + cosd' & (A3b)
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Turning our attention to Eq. {(A.1) of the aerial image, the amplitude function
a{sx,5v) can be related to the field at each point of the entrance pupil, given by Eq.
{(A.2), by tracing the geometrical ray propagation and pelarization state through the
optical system. A detailed knowledge of the optical design is therefore needed.
High resolution image formation, on the other hand, relies on nearly diffraction-
limited imaging characteristics of refractive lenses at the illumination
wavelength,'* which imposes tight design specifications on lens manufactures and
allows us to assume lossless, isoplanatic (phase-invariant) imaging lenses. Under
these circumstances, each ray traces a path that lies on its meridional plane (plane
formed by the ray direction ¥ and the optical axis &) and, although the ray
direction T will be rotated onto § as it propagates through the lens (according to
Egs. {(A.3a) and (A.3b)), the polarization vector will, according to Fresnel
refraction formula, maintain an approximately constant angle with this plane if the
angles of incidence at the various surfaces in the system are small.>¥ Thus, the
field amplitudes along the normal and paralle] directions to the plane will remain
unchanged by refraction during propagation through the optical system, except a
for geometrical factor arising from the conservation of energy:

Esxir(sx,sv)[” da' = |Eextrance(rxov) da . (A.4)

Moreover, the angle & between the incident ray and the entrance pupil, and the
angle 8' between the outgoing ray and the exit pupil, must satisfy the sine
condition sin® = Msin®' where M denotes the demagnification of the lens (usually
174 or 1/5). The spatial frequencies in the image space are therefore related to
those in the object space according to sx = —/M and sy = ~rv/M and the final
relationship between the field amplitude at the exit and entrance pupils is as
follows:

a(sx, sy} =

(Mod22) T F { [n(@zxH o y-n{(82xH) F]F~(@xEop& 5 rxfh, ry/h} {A.5)
where o = (cos8'/cos0)'”, for each of the rays at the exit pupil with direction
cosines (3x, sv, 5z). Polarization rotation is represented by the tensor 7, obtained
by means of the meridional plane approximation and provided in Appendix B,

Simulations have been performed for polarized illumination along the x-axis
and a 4X reduction ratio, such that even with high N4 = 0.7-0.9 of the imaging
lens, the angle described by the collected waves on the entrance pupil is small.
Under these circumstances, cross-polarized components of the field on the mask
are several orders of magnitude smaller and can be neglected, while the main
polarization components satisfy, with an accuracy of 92% based on rigorous
electromagnetic simulations,” the following condition within the lens NA:

F (Ho(r)}-&v = (eoe)  [F x FEo(r)) 8y (A6)
This condition significantly simplifies Eq. (A.5) and was first applied to all field

components by Yeung in his extension of Hopkins theory,” which may not be
accurate for cross-polarized components. Nevertheless, when applied to the main

Modeling of Near-Field Effects 91

polarization component, Eq. (A.6) yields a simple expression for the electric field
on the entrance pupil:

Egntrance = & (jeV/hr) F{Eov; v/, reid} cose (A7)

which can now be treated as a scalar quantity consistent with the scalar Huygens-
Fresnel formulation, "'

Finally, while irradiance of the aerial image is evaluated as the magnitude of
the time-averaged Poynting vector, the absorbed energy within the photoresist and,
therefore, the final image distribution is proportional to the squared electric field
of the light propagating through it since it is a non-magnetic material." Therefore
only the electric field of the aerial image needs to be evaluated.

Appendix B: polarization tensor

For each ray direction (sx, §v, sz}, polarization rotation can be expressed via a
tensor T obtained by decomposing the fields into their projections along the
directions normal and parallel to the meridional plane, and by applying the
condition that the polarization angle with respect to this plane should remain
approximately constant through the projection system. The resultant tensor
components are:

Ky Ky g
T=\hy Ky -R (8.1)
TXZ ]‘:’2 TZZ
where
Txx = sy + szsz?‘z - M(Sx2 + SYI), Tyy = sx° + SYZ(Szf‘z. - .M(Sx2 + S‘Iz),

(sx’ + 5v7) (s +5v°)

Ty = =sxsy(l = 822 + M(sx + sv°)),  Tzz = 527z ~ M(sx" + sv°),

(sx’ +5v)

Tyz = —-Sx(?’z + MSz), and Tyz = WSY()“z, + MS})

These results are consistent with the so-called "polarization state matrix” based on
the trigonometrically determined polarization transformation by Mansuripur,” as
long as the scalar approximation is applied in the object space, that is, sx, Sy « F2z
~ 1.
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