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Manipulating the L-valley electron g factor in Si-Ge heterostructures
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The Zeeman effect for the valley conduction band electrons in SiGe heterostructures is considered. A
detailed calculation of the electrajtensor is performed in the framework of a relevinp model, developed
specifically for thel. point of the Brillouin zone. Electrons at thepoint are considered under the influence of
the different crystallographic orientations, alloy composition, quantum confinement, strain, and electric field,
whose interplay causes a considerable deviation o§ttemsor components from their bulk values. Our result
strongly suggests that the SiGe-based quantum wells are a promising choice daetisor engineering for
spin manipulation.
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I. INTRODUCTION The evaluation of the intervalley mixing potential is beyond
the scope of the present paper, but we will provide in-depth
An ability to in situ control the electron Landgtensor in  recipes for the calculation af, (calculation ofgy turns out
the solid state is considered by many an important prerequio be trivial, see below
site for the practical manipulation of individual electron  The Zeeman effect at th¢andL points in bulk Si and Ge
spinst—® A suggestion that such a manipulation can be mostvas originally considered by RothExtensions followed
easily realized in the SiGe-based heterostructures and pasromptly by allowing refinement of the model, discriminat-
ticularly SiGe quantum dotsis also gaining support. Thus, a ing contributions of individual bands and their symmetry
theoretical guidance is needed for the early experiments iglasses, etdsee, for example, Ref)6Apart from the always
this field (and ultimately for the actual device fabricatjon  existing free electron contributiorgg~2), the electron ef-
To begin, let us speculate about the situation, suggested fiective Lande factor in a particular valley depends strongly
Ref. 4. Assume that we have a layered SiGe heterostructun the direct energy gaps to the nearby spin-split bands
where lowest electron states in two adjacent layers ar¢evaluated at the valley minimum in tHespace and the
formed fromX (Si-rich layey andL (Ge-rich valley states, strength of these spin-orbiSO) splittings.
respectively. We can apply electric field and use it to partially  For theX electron(or, actually,A in the vicinity of theX
shift the electron wave function through the interface. Thugoint) the situation is quite simple. It happens that the gaps
the question of how to calculate electrgnfactor for the  with all the relevant bands are large. It was also pointed out
whole heterostructure arises. Simple averagiggxWs;  that the spin splitting for the most important valence band
+ g, Wge Of the X andL bulk g factors with probabilitiesvs;  vanishes exactly at th¥ point and is consequently small in
andwge to find electron in the Si- and Ge-rich layers is notits vicinity; the same can be found for the relevgntmo-
adequate. mentum matrix elemertAs a result, the spin-orbit correc-
Instead, one should first calculate ground electron stategon to the free electron valug, is universally small for the
in the biased structure separately for battand X valleys, X (A) electrons, not only in the diamondlike semiconductors
and compare their eigenstate energies. IfXtstate is lower, but also in the zinc blende—type 11I-V compounds and their
the answer for the whole heterostructgréactor isgy, cal-  respective heterostructuréhus, to a rather good accuracy
culated for the gquantum-confined state. Otherwise, one one can conclude that for ang/(A) electron, bulk or quan-
should focus on they tensor for the quantum-confindd  tum confined, itgy factor is approximately isotropign con-
state. In the very narrow interval of parameters where enetrast to the effective mass tensand equal ta,. For Si, this
giesE_ and Ex of the quantized levels are very close, onestatement is additionally strengthened by the extreme intrin-
needs to consider microscopic properties of the heterointesic smallness of the SO interaction.
face between two layers and evaluate small intervalley mix- |t was also established, both theoretic%ﬁy and
ing potentialVy . After that, one must solve a two-level experimentally*® that theg factor of the bulkL electron is

problem with the Hamiltonian highly anisotropic(just like the effective magsand can be
characterized by the two componegisandg, responsible
- Ex Vxi for the directions parallel and perpendicular to thexis,

= Vi, EL respectively. However, experiments would often deliver an

average of they factor tensor over all foufor some of the
in order to find out the probabilitwy(w, ) for the electronin  equivalent valleys. For example, for the ground donor state
the whole system to haw€ (L) character. The “final” answer the symmetric superposition of the electron wave functions
is in all four L valleys makes thg factor isotropic. Luckily, the
valley equivalence can be easily disturbed by strain, electric
g=0gxWx+ g W, . field, etc.

0163-1829/2003/689)/19530610)/$20.00 68 195306-1 ©2003 The American Physical Society



F. A. BARON et al. PHYSICAL REVIEW B 68, 195306 (2003

yvacuum

(b)

PL

cv

\ % L'sv__:f:.. Aso

FIG. 1. Band structure of a diamond-type semiconductor at_tipeint. (a) Dispersion of the lowest conductiod’'§-L,.) and upper
valence bandsl{3s-L3,) along the (111) direction. The SO splitting of the valence states is also sketbh&ispersion of the ;. andL,
electron states in the vicinity of thie point—shown for the111) plane.(c) Energy diagram introducing important gaps and the vacuum
level, suitablg(in the first approximationfor the definition of the band offsets in the layered structuf@sCoordinate systems(y,z) and
(x',y,z") associated with thé valley and heterostructure, respectively.

Qualitatively, it is natural to expect that quantum confine-whereu ando, v, are spinor envelope functions in the con-
ment, strain, electric field in the low-dimensional SiGe duction and valence bands, respectively. Two states of the
heterostructures will result in further renormalization of ypper valence band}, would be degenerate in the absence
the L electrong tensor. To our knowledge, no theoretical 4 the SO interaction.
treatment of this problem was provided so far, unlike the Now the general multiband-p Hamiltonian H(k) re-

I' electron in zinc blende— and wurzitelike IlI-V and
I1-VI heterostructures®-*We fill this gap with the present
analysis.

The rest of the paper is organized as follows. First, wi
introduce a two-bandk- p Kane-like model suitable for the - on “ . -
description of the confined valley electrons in SiGe hetero- Eu= (1724 Femaid k“U— 1Pk —iPkyvy,
structures(Sec. ), accompanied by the analysis of the
electron quantum-confined states in the QW with both infi-

duces to a & 6 matrix. In terms o1 andv,,v,, the Schre
dinger equation for the state with ener§ycan be conve-
eniently written as

R -~ Oa .
(E+Egvy=iPku—izouvy,

nite and finite interface offsets. In Sec. Il we provide a gen- 2

eral recipe for the calculation of the Lande tensor and, for the

particular case of thé electron in the QW heterostructures, 5

derive closed expressions for three most important directions (E+ Eg){}y:ipkyﬂ-}-i 0,0y (1)
of the external magnetic field. We have made an attempt to 2

collect available band structure data for SiGe heterostruc-

tures, which we discuss in Sec. IV. In Sec. V we analyze an&_'ere the direction,y,z are associated with the principal

numerically evaluate effects of the spacial confinement, crys"—’lxes of a particulat. valley, z=(111) or equivalentE, is

tallographic orientation, structure composition, electric fieid,N€ direct energy gap at thepointL ic-L 3, (defined neglt?ct—
etc., on thel electrong factor. We conclude with a short ing the SO interaction & is the SO splitting of theLs,
summary. valence bandP is the momentum matrix element; amad,
are the Pauli matrices.
Thus, the proposed two-band modeke Fig. 1b) for a

Il. k-p MODEL FOR L VALLEY ELECTRONS visual guidd accounts explicitly and fully for thie- p mixing

Figure ¥a) shows a dispersion of the lowest conductionbetween the lowest conduction stateg and upper valence
(I')-L,.) and upper valence bandE L, ) along the(11)  StatesLs, . In an attempt to mimic the, dispersion better,
direction of the Brillouin zonéwe use the classical notation We have additionally included into the electron Hamiltonian
by Hermar®). It happens that all other bands are separate@ kinetic term with the free electron masshich is 1 in
by substantial energy gaps at thepoint. This fact offers an atomic units that we use hereafters well as the approxi-
opportunity to introduce a rather simple two-band model deimate contribution from all other bands. These band_s are
scription of theL, electron states in heterostructurgse  {réated as remotelue to much larger bandgaps as mentioned
same approximation was extensively discussed in relation t8P0V8, so their contribution is included) only for the con-
the Ge and Si bulk properties previousfy. To begin the duction stategaddition of similar terms into the valence

analysis, we represent the electron wave functiorin the ~ Pand would produce minimal influence on the. param-
form eterg and (ii) in a quadratic-irk approximation. Altogether,

this results in a correctionPemete t0 the L. inverse mass

A N A tensorm™! (as well as a correction to the Lande tensor
\I’:u||-lc>+vx||-3u >+vy||‘3vy>’ Agremotg-
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With the help of Eq(1), the valence-band spinof;s(,z}y erolgyers, similar spin c_jep_endence takes place not only on
can be expressed via the conduction-band spinas fol- the interfaces, but also inside layers.

lows:
A. QW with infinite barriers
Puy=iAku—o,Dkyu, As an important intermediate step, we consider first a
. L ~ single-band spinless electron with the effective mass tensor
Pvy=iAkyu+o,Dku, (20 minthe QW of widtha with a hard-wall confinement. Ori-
where entation of the heterostructure is defined by the armghe-

tween the valley axig and the QW growth directioM. For

p2 1 1 the particular case of the (111) valley andN=(001) we
A:? E+E _5/2+ E+E.+0o/2)" get cos¥=1/\/3 and sing=1/2/3. We introduce a new or-
g g thogonal coordinate systenx’(y,z') associated with the
p2 1 1 structure as followsz’ is along the structure growth direc-
D=- > E+Ey— 52 E+Ey+ o2/ (3)  tion N, x’ lies in the plane oz andz’, andy is the same in

both systems and orthogonal to the-¢') plane[see Fig.
We would like to specifically note that the coefficiedtand  1(d)].

D are energy-dependent. The eigenstates form subbands with energies
The dispersion equation for the spinorin the hetero- 2 5 )
structure now takes a form En(kxr 1Ky) = tgrowtrKyr o+ Min-plandsy T 1Ky, (6)

e B Cenn where K, n=mn/a, pgrowtn= i SIPO+mCOSO,  fiin piane
{k- k=i (KDky =KDk +(V=E)}u=0,  (4) =ty )/ tgromn, @NA N IS an integer. Their corresponding
wherepu is a diagonal tensor with componenis, (, i, , 1)), eigenfunctiond can be expressed as

g =124 Fhpoet A, =124 Flopoe cogk, ,z') forodd n,

f:Cei(erx’+kyy+T<z’) .
The heterostructure profile/electrostatic potentigl) and sin(kz nz")  foreven n.
the variation of the composition are incorporated into Eqs
(1)—(4) by changingE to E—V (everythere, not just in the
Schralinger equationand also explicitly via the material-
dependent band-structure parameté&g, (6, P, andF gmord -
Hence, theA andD in the heterostructure become altle-
pendent. The placement of the tengorand coefficientD

(7)

Herek=k, (u, — ) €osOSin bl pgrowin aNC is the normal-
ization constant. This more complex form of the quantized
states arises because the quantization axis does not coincide
with any of the principal axes of the effective mass tensor.
Nevertheless, the most important outcome from this example
is that the subband minima are reachel,at-k,=0 and the

betweentwo wave vector differential operators in E¢) electron wave function for this state accepts a conventional
accounts properly for these coordinate dependencies and algﬂd simple form

allows generation of the appropriate boundary conditions. In In the framework of the &6 k- p model, the conduction

particular, theo,D term is especially interesting: with an and valence band envelopes for the two spin-degenerate elec-

incorrect order of the operators, it would be always exactlftron states at the bottom of the ground subband are
zero. Even with a correct order of the operators, it diminishes

when D is constant in real spadghis happens in the bulk Us=C cogk, ,z')as,
materia). Thus, theo,D term can play a role only in the
biased structures and at the heterointerfaghsough the axs:MJ_kz’ Lsin @ sin(k, nz')gyS'

boundary conditions
The first boundary condition is traditionatfychosen to

, Dou n | en o vy.s=10,DKy psSindsin(ky oz as, (8)
require continuity of the function; the second one inarbi- R R R
trarily follows from Eq.(4) and requires continuity of where ¢ denotes columngy;=(10) anda|=(01), which
o . are two-component spinors corresponding to spin up and

N-{u-ku—io,D[1,Xk]u} (5)  down pure states along the original azieand written in the

at an interface with a normal. Here we write the expres- “z basis.

sion compactly in a vector form with a help of a unit vector o .

in the z direction1, . It is worth mentioning that this bound- B. QW with finite barriers

ary condition is obviouslyspin dependentlue to thes,D Now we turn to the case of a QW with finite interface

term which can be nonzero on tloblique (with respect to  offsets. Starting from E(5), we readily find an equation for
thelL axig) interfaces and for the nonzero in-plane wave vecthe second boundary condition in the structure frame
tors. For example, for an electron in the (11f)valley  (x',y,z’), which is continuity of

where axisz is also parallel to the (111), a common hetero-

structure grown along (001) direction would also form ob-  {ugrouiK, + () — . ) cOSO sin 6k, —io,D sin eky}ﬁ

lique interfaces. When an electric field is present in the het- (9
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at the interface. The}ZD term is present for anwgﬁo’ Here the coefficienD, defined in Eq.(3), is evaluated at the

which essentially means that this boundary condition is spiPottom of the L valley (E=0) to give Dlg—g

dependent and can potentially result in the splitting of spin= — 2P?8/(E5— 6%/4). In agreement with the original find-

states| and| at a finite in-plane wave vectdr, manifesting  ings of Ref. 5, we obtain that thg tensor is highly aniso-

the intrinsic SO effect. We will return to this point later. tropic, upper valence statés, contribute only to the longi-
Eigenstates of th& electrons characterized by the arbi- tudinal component, and, consequengy, is close tog.

trary k, , ky components of the in-plane wave vector should

be found numerically as a solution of the transcendental B. Magnetic field along thex’ direction

equation in the case of the QW with finite barriers. Similar to

the situation of the QW with infinite barrier, subband ex-

trema take place at the zero in-plane momentum which agaifPinoru can be presented as

allows substantial simplifications. Luckily, we are interested R .

in the analysis of the factor values only at the bottom of the us=fas, (12)

ground subband. - . .wheref(z') is a real scalar function. It satisfies the second-
Strain is very important in SiGe heterostructures, since 'Q%rder differential equation

is the strain-induced shift of the conduction band states thal

For the confined electron state witk,,=k,=0, the

allows formation of the QW confinement potential in the d

Ge-rich layer. Without that, Ge-rich layer would form a bar- ——| — | +(V-E)f=0 (13
.. . . , growth )

rier instead. Shifts of the conduction and valence band edges dz dz

due to strain are easily included into the E@) and the

calculation procedure with the adjacent boundary conditions requirirfigand

Mgrowtrd f/dZ’ to be continuous at the heterointerfaces. The
spinor components, and{;y can be easily expressed \ia
Ill. TENSOR OF THE ELECTRON g FACTOR with the help of Eq.(2). The straightforward derivation by
The general procedure how to calculate gifactor tensor ~ Using Ed.(10) for the magnetic fieldB|x’ with the vector
in heterostructures is thoroughly descrid®d*In short, fora  Potential taken in the gauge=(0,—-2z'B,0) yields
pair of stategs) (s=1 or |), the Zeeman contribution to the

effective 2<2 Hamiltonian can be expressed as SH= i((}ZG”Sinﬁ-i- 0,9, C0sf)B (14)
4c ’
1 1 , where
OHsy = R‘Tss’g' B= Rga,ss’gaﬁBﬁ: <S| 57_{8|S >

A JH G|\290+Ag|rlemote+Aga

JH
c ok ok

+ K

’ <A> ’
e T )] o
z

Ag=—4f dz'(z'—(z2'))D—, (Z')=(s|Z'|s),

where 1/4 stands for one half of the Bohr magneteg/2 in dz'

atomic units,(A)=(s|A|s). The first and second terms are (15
due to the explicitB field di.rec.tlw and implicit(through the 514 the linear-irB splitting of the two spin states can be
vector potentialA) magnetic field dependence. The secondyescribed by the effective in-plamgfactor

term inside the curly brackets subtracts the diamagnetic con-

tribution orig_inati_ng from the real—space motion pf _the Gin-plane, x = \/Gﬁsin20+ 92cog6. (16)
charged particle in the crossed electric and magnetic fields. ’

This term becomes zero in a system with a reflection symThus, one should essentially evaluate an averade @fer a
metry. All matrix elements should be calculated on the zeroproper electron quantum-confined state in the heterostruc-
field wave functiongs). Equation(10) can be considered as ture, as given in Eq(15) (all other terms are constaniNote

a definition of theg factor tensog,, ;. Note that its practical thatf-relatedAg contributes only to th€&; componentwith
usefulness depends on the possibility to evaluate all ancillarg sind angle dependence in the final expressi@ssentially,
matrix elements. this reiterates a fact that for the bujktensor, only one com-
ponent of they factor tensofi.e., along the valley axisz)

is affected by the interaction with tHe}, valence band.

Another finding worth mentioning is the presence of the

In the framework of the two-band model, one can producepin-gependent diamagnetic contribution in the for B|x’
the following expressions for the components of the electron, asymmetric structures—th@') term. It appears due to

A. Bulk g tensor

g factor in the bulk semiconductor: the nonzero in-plane group velocity of the states vith
=k,=0
y
g\\:go+Aguemote+4D|E:Ov
0 =0,si f d 'Ddf2 1
0. = 0o+ AGmore (11) Vinplane, y= 728N | 42D 40
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so one can conclude that the effective 2D electron Hamil- Evaluating Eq(10), we arrive in the limit ofk,—0 at the
tonian in asymmetric structures does contain the linedin- final expression foggeu in the SiGe QW at thé. point

spin-dependent terth 67 = ok, (which is similar in ori-

gin to the structure-asymmetry-induced term in IlI-V hetero- Y i ~ A .
structures at th& point*>29. OH= 75 (025C0s6~ 0,9, Sin6)B, (21)
2
C. Magnetic field along they direction wheré
Let us now evaluate the in-plamggactor for the magnetic Gj=go+ Aglrlemote+ Ag,
field along they axis. The result is not surprising:
1. B | o - d
SH= Egygigy in-plane, y= 0.1 - (18) Ag=4 | dZ'| Df°+Asi aa(fh) . (22

which is exactly the bulk transverggfactor, as no contribu-  Tpys,
tion due to thek- p coupling with theL 3, band is possible for
this orientation of the magnetic fieldnd we neglect what- Igrowth= \/GﬁCOS?gjL g2 sirfe. (23)
ever effects of quantum confinement on the remote bands
When comparing Eq$23) and(16), one would immediately

D. Magnetic field along thez’ direction notice an exchange of césand sind terms due torr/2 dif-
ference in the orientation of the magnetic field. But that is
not alll We would like to draw an attention to the fact that

magnetic field is applied along the structure growth axis E ; .
. ) ; gs.(15) and(22) for Ag do differ which is a consequence
The perturbation theory and E@LO) in particular can be of overall reduced system symmetfin comparison to the

readily applied to a system of finite size. On the contrary, 'nbulk) which we induce with heterostructure potentiall

zlr:aymi)r(mttegfdtii igg%ﬁféc& asisaan égtrlljaldle?/r:t:de T;Ertli)t( interfaces and/or biased regions. It is exactly the same effect
y poorly d Y- that makes thd’ electrong factor anisotropic in the Ill-V

One of possible solutions to this obstacle was provided 'qqeterostructureg), despite the fact that the constituent bulk

Ref. 14. This m.ethod makes.use of the spatially mOdu.Iategemiconductors are characterized by the isotrgpiactor
magnetic field(similar to how it was done when calculating '

the magnetic susceptibil}). Let us consider an external _ o o
magnetic field in the fornB= (B, e'*v¥,0,0)|z with the cor- E. Arbitrary direction of the magnetic field

responding vector potentialA=(iBZ,e'kyﬂky,O,O), find With the effective <2 Zeeman Hamiltonia found
oHsg for |s) with k,#0 and go to the limitk,—0. For  for the three orthogonal directions of the external magnetic
ke =0k, #0, the presentation of E412) for u transforms  field, generalization to the case of arbitrarily oriented mag-
into netic field is straightforward.

Now we derive an equation for the electrgfiactor when

us=e*(1f —kyo,sin6h)as, (19) . PARAMETERS
whereh(z') is also a real function. Here is the 2x 2 unity

matrix. Let us derive equations for the functidnandh. As The most serious problem shadowing the reliability of the

) ) ; > eigenstate calculations in SiGe heterostructures is the lack of
it was mentioned before, in the presence of the electric field proven complete set of the band structure parameters. We
within the layers(or compiosition grading, which is equiva- have worked through the available data delivered by the ex-
lent for that mattey; the o,D term causes spin-dependent periment along with the first-principle calculations as pre-
mixing on the interfaces as well as inside the heterolayersented in our data set compilation of Tablgdr pure Si and

For the expansion of E¢(19), this results in the coupling Ge). Unless otherwise is mentioned explicitly, the data is
betweenf andh. Up to the terms linear in the small quantity taken from Ref. 23. We provide the definition of the quanti-
ky, the functionf(z’) still satisfies Eq(13) with the corre-  tjes [referred to Fig. ()] as well as the comment on the
sponding boundary conditions. Thusis approximately in-  parameter evaluation scheme for the SiGe solid solution.

dependent oh. To the same accuracy, the functibrcan be For most of the parametefsalled “basic” herg, we use
found as a solution of the following nonhomogeneous differ-the simple linear interpolation for the SiGe solid solutions.
ential equation: This group contains all band gaps, interband matrix ele-
ments, etc. Rigorously, one also needs the bowing constants
_ i )+ (V=E)h= d_Df (20 of the interpolation curves but unfortunately those are mostly
dz' MQ’O"Vther dz’ unavailable(for very rare exceptions, we specifically men-

tion such cases in the tg¢xOn the other hand, some param-
HereE is the electron energy &,=0. In the same first order eters are evidently model derivativésuch as, for example,
in ky, the boundary conditions far can be satisfied, requir- effective masses ang factorg and defined by a subset of
ing continuity ofh and the combination of functiorfsandh: basic quantities. As they are not expected to follow a linear
Mgrow(dh/dZ") +DF. interpolation law, we denote them “composite” and apply a

195306-5



F. A. BARON et al. PHYSICAL REVIEW B 68, 195306 (2003

TABLE I. Band structure parameters for Si and Ge as well asmass tensor in the conduction band at thgoint are model
the type of the interpolation procedure for the SiGe compoundsgderivatives(composite defined by thek- p interactions with
Unless the source for the particular parameter is cited explicitly inthe nearby bands. Knowing independently the relevant en-
the text, the data is taken from Ref. 23. ergy gaps, we use these values to derive the strength of the
k-p coupling with the closestj, band (P) as well as to

S Ge SiGe estimate the contribution of the remote bands to the effective
E., (eV) —7.03 —6.35 linear mass atL,. (F.). For bothP and_FC, we assume linear
AL (ev) 0.044 0.29 linear dependence on the alloy Ge fraction.
E.. (eV) 204 0.744 linear Measurements of the Zeeman effect on the Hulklec-
ELR eV) 1.2 153 linear trons (typically, donor boungin strained Ge allowed an ac-
3v ) ) H H _
3= (eV) @I85, 023 e 5 s these quanttics are defined by the
my [Fe] 1.418 1.349 composite Sgjandg, ).~ q : y
m, [P.F.] 0130 0.0791 composite k- p interactions with the nearby SO-split bands, we treat
e ' ' . them as “composite.” Along with the knowledge of the band
9 [AGremote 0.82 composite ) )
b . gap and interband momentum matrix element for kg
9, [AGremotd 1.93 composite . I
az (A) 5495 5 645 Eq(24) states, we can estlrr‘l‘ate contrlbuilon of the rem_ote bands to
C° (10°2 dyn/cm) 1675 1315 linear the bl_JIkg factor (AQjemote @Nd AQremord - FOr obvpus rea-
C“ (10°? dyn/cm) 0'65 0'494 linear sons(i.e., the lowest electron states are at ¥@oint), no
12 ) y : ' , such knowledge is available for thepoint in Si. We decided
Caq (10* dyn/cm) 0.801 0.684 linear I n .
: to use the Ge values afg andAg for any SiGe
a,, (&V) ~L7 —09 linear composition. Another natlrjertheassum [[(ie(r)nr(;tetmag‘ and
a, (ev) 1.4 1.4 constant P ' P remote

Agrmore@re zero in Si does not noticeably modify the result.
For the lattice constant, we make use of the experimental

different approach. We use the model formulation to utilizetabulation including the bowirfg
their experimentally determined values and extract the data
for the yet-to-be-known more basic quantitigsey are listed
in the first column of Table | in the square brackefBhen
the procedure of linear interpolation is applied to those basic
quantities for SiGe alloys. Whenever needed, we reconstrudthe elastic modulc;; define strain in the pseudomorphically
the necessary composite quantity for the particular alloygrown heterostructures and are assumed here to be linear
from the interpolated basic parameters. interpolations for solid solutions. Due to the importance of
Whenever the reference data for one of the parameters ige strain for the conduction band lineup in the SiGe hetero-
controversial or nonexistent, we test the sensitivity of thestructures, the conduction band deformation potenti@ll§
electron state and factor equations to this part!cular param- e often discussed and known in Si and Ge to some
eter. In this way, we can identify the most critical quantltlesaccuracf,s—sl (assumed linear It is worth mentioning that

and minimize the possible error by a more careful selectiony,ese strain-induced shifts are valley dependent and there are
A further discussion on these issues is provided below as WEctually two independent energy constafts, =, defining
y U

go through the list of the material parameters. the shift of the electronic energy of th¢h valley due to

For the band line up, we use the model-solid theory Whin‘gtrainls,27,32

is well described in Ref. 24. The average potential for each : .
: . ; ) . X th trary, th f t t I for theL
SiGe layer is calculated as a linear interpolation between its .On e contrary, the deformation po entaaLSU orthe
values for Si and GeAgo is the SO splitting of the upper point valence states are probably the least known part of the
valence band'}, that, together wittE,,, defines absolute Parameter sefassumed constantAs a guess for thd.g,
energy positions of heavy/light hold'§,) and SO-splitted states, we use the averaged hydrostatic deform?tlon potential
. v L for the valence states at thé point in Ge and SiRef. 30
| E E.. > <
bands(assumed mez){ Lic and L;, &re energy positions supplemented by derivations from Refs. 23, 33, and %
of the lowest conduction band and upper valence b@ed 5155 neglect any additional strain-induced splittings of the
glecting SO splitting at theL point with respect to thé's, | ; giates, for the lack of information on the corresponding
band(both assume_d Imear., which is on]y apprommately COr-yeformation potentials.
rect; at the same time, a linear approximation for the princi-
pal band gap at the pointE4= S ELé is believed to be

reasonabf®). With the SO interaction at thé point in- V. RESULTS AND DISCUSSION
cluded, L, states are split into two doublets separated by

ap(x) =xa$® (1—x)aS'—0.0018&(1-x) A. (24

L _ _ o As an example of a typical SiGe structure, we consider a
0=0gg (assumed linear This splitting is known for Ge, three-layer Ge-rich QW $i,Ge,/Si;_,Ge,/Si;_,Ge,
while for Si we traditionally choose it to be about (which can generally be asymmetrig#b). It is assumed
(2/3)Ago. Setting this value to be exactly zefagain, the grown pseudomorphically on a suitable substrate, which de-
SO interaction is altogether small in)$ias negligible effect fines the in-plane lattice constant for the whole structure and,
on the result of our calculation. Components of the effectiveconsequently, the strain tensor in individual layers.
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FIG. 2. g factor ofL electron as a function of the QW widtta)
In-plane componengsolid lineg of the Lande tensor and the com-
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(b) L3, SO contributionAg calculated for the in-plane magnetic
field [Eq. (15), solid line§ and along the growth axifEq. (22),
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positions are chosen to be differera=0.7 andb=0.8).

The material of the substrate is assumed to match the lattice
constant of one of the barrier laydffer example, this could

be a relaxed thick slab of Si,Gg)). In case of the suffi-
ciently thick well, bothg factor components saturate to the
respective bulk values of the strained homogeneous material
(evaluated along’ andz’). The bulkg factor tends to be
more positive for higher Si content as a collective effect of
larger band gaps, smaller interband momentum matrix ele-
ment, and weaker SO interaction. Thus, by simply changing
the composition of the $i,Ge, internal well layer(lines are
shown for x=0.9, 0.95, and 1)) we can substantially
modify this asymptotic value. In narrower QW'’s, quantum
confinement effects pick up, makimggactor even more posi-
tive. This manifests to a lesser degree for the growth-
direction componenscales for the lower and upper parts of
Fig. 2(a) are exactly the sanjenostly due to the orientation
factors sing vs cos# in Egs.(16) and (23). In very narrow
QW's, the electron wave function is finally squeezed out of
the well layer into one of the barrier regiofwhichever is
lower), so the bulkg factor tensor in that layer now defines
the Lande factor of the quantized electron in the whole het-
erostructure.

As it was mentioned above, for any chosen and fiked
whole g factor modulation is actually governed exclusively
by theL 3, -related SO contributioAg. Its dynamics is docu-
mented in Fig. tb) whereAg is calculated for the in-plane
magnetic field[Eq. (15), solid lineg§ and the field applied
along the growth axi$Eq. (22), dashed linels Although ex-
ercising a qualitatively similar behavior, respective solid and
dashed lines do not coincide, which is a manifestation of the
reduced symmetryof the heterostructure in comparison to
the bulk. Their difference does not exceed 0.1-0(46 it is
only a small part of the whole SO contribution to tige
facton and the maximum is reached in the QW of about 100
A width. The difference goes down for both wider and nar-
rower wells as the effect of the “asymmetry” of the hetero-
structure potential on the confined electron declines at both
limits.

B. Effect of crystallographic orientation

The crystallographic orientation of the heterostructure has
also a profound effect on the Zeeman splittiisge Fig. 3.
An extreme anisotropy of both the effective mass tensor and
the bulk Lande factor itself are reflected in this strofg
dependence on the orientation as documented by the data
sets generated for the (001)-, (011)-, and (111)-grown
Sig.sGe 7/ Gel Sp ,Ge, g structures. Not surprisingly, the most
flat dependence of the in-plamggfactor on the QW width is

dashed lines The barriers on the left and right are formed by the obtained for the (111) structure, where the lowesalley is
SipsGe 7 and SpGeyg, respectively; the Ge content in the QW oriented exactly along the growth direction. This is a very

internal layer is defined by.

A. Effect of composition and quantum confinement

In Fig. 2@ the components of thé electrong factor
[in-plane (solid lines, lower pajtand along the growth di-
rection(dashed lines, upper parare given as a function of

peculiar situation for two reasons: First, it provides the larg-
est effective mass for the spatial confinememball confine-
ment energy and, secondly, the in-plargfactor is derived
exclusively from the transverse component of the lgtkn-

sor. This transverse component is defined by interactions
only with remote bands that are not sensitive to the moderate

the QW width for the (001) structure. The two barrier com-quantum confinement due to the large interband gaps. One
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FIG. 4. g factor of L electron versus applied electric field: in-
o 14l plane component of the Lande tengsolid lines and the compo-
© S e nent along the (001) structure growth aiashed linesshown for
S | T Tteeeeeeaaaal the 100, 150, and 200 A QW's.
>0l (011)
"§ possibility to controlg factor value by the electric field was
o originally analyzed in Ref. 11 where the dependence of the
(M 10} Zeeman splitting of electron spin states on the applied bias in
11I-V QW'’s had been calculated. The renormalization of the
(111)
- g factor value comes mostly from the effect of spatial con-
08| . o ‘I' i 'I' s T finement in the triangular QW at the heterointerface and re-

0 ' 20 ’ 30 ' 120 ' 160 ' 200 quires application of relatively high electric fields. At that
] time, this effect was also observed experimentally by means
Well width (A) of the quantum beats spectroscopy in GaAghBa, gsAS in
electric fields up to % 10* V cm™? by Hallsteinet al*° Re-
FIG. 3. g factor of L electron in a SiGe/Ge/SiGe QW for differ- cent experiments delivered additional confirmatidfsA
ent crystallographic orientations of the heterostruct(aeln-plane  substantial tunability of the factor was obtained in Ref. 3
component of the Lande tensdb) Component along the structure by using a heterostructure with a very wigarabolic poten-
growth axis. tial profile, allowing large spatial displacement of the whole
electron wave function to the layer with a different value of
can see that the effect of spatial confinement is more prothe electrong factor.
nounced in (011) and is the largest in the (001) structure, Figure 4 presents the results of our calculation for SiGe.
where the longitudinal bull factor has the largest contribu- Here thel electrong factor in the 100, 150, and 200 A (001)
tion. The magnitude of the bulg is substantially smaller QW's is shown as a function of the field strength for both
thang, , which is reflected in the position of (001), (011), positive and negative values. In the first approximation one
(111) lines in Fig. 8) with respect to each other. This order can neglect the effect of the applied field on thdactor
is changed to the opposite, when we considerglifi@ctor in ~ component in the growth directiofupper part, dashed
the growth directiorfsee Fig. &)]. The strength of the de- lines—to reinforce this statement, the scales for the upper
pendence on the well width is also modified by the orienta-and low parts of the graph in Fig. 4 are again chosen to be
tion (siné/cosé facton. identical. Thus, we will concentrate on the modulation of the
in-planeg factor component. The main effect of the electric
C. Effect of electric field field is'to increase the electro'n quantum confinemer_lt by
' squeezing electron wave function towards the heterointer-
Now we turn to the most practically important question of face, which is also accompanied by the penetration of the
the ability to manipulate factor value in SiGe heterostruc- electron into the barrier regiofwith a different, more posi-
ture in situ with the help of the applied electric field. The tive netg factor. The effect is small in moderate field#
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would be exactly quadratic in small fields in a symmetric propriatek- p model derived for thé- point states of group
QW). Itis also clear that the overall sensitivity to the small |v semiconductors. Effects of the alloy composition, crystal-
field is higher in thicker QW's where the spatial confinement|ographic orientation, spatial confinement, strain, and electric

is weak. A sub-quadratic dependence is obtained in strongefe|q are accounted for and documented for an example of the
fields. There is a tendency of saturation to a commonggjistic structure design.

asymptotic which is independent of the QW width. This hap-  geyeral comments are due. First, the calculation is done

pens when the electng field shifts a c_onflned eIegtr_on toTor a single valley(out of four. For particular growth orien-
wards one of the QW interfaces and finally traps it in thetations states in two or more valley can be degenerate. As a

triangular electrostatic potential at the heterojunction, so th?esult, the experiments would measure théactor values

spatial position of the second interface has no effect on the . .

trapped electrof. averagt_ad over several valleyas in the case of the previ- _
The overall dependence is slightly asymmetric which canOUSIy d'SCF‘SSGd Zeeman me_a_sureme_nts on.the donlor state in

be expected for the asymmetric structure. The large asymmd€ unstrained bulk Ge providing an isotropic quantity

try comes into a play when we discuss the useful range for Second, so far, the experimental d_ata for some of the SiGe

the applied field. We terminate our curves when substantiaftructure parameters have been quite ambiguous. As a new

leakage of the electron from the QW into the barrier layerimproved set becomes available, our numerical results

starts due to the electric field. As the barriers on the left anghould be reevaluated in the framework of the current model.

right are different, this happens at notably different positiveThe model itself can also be refined to eventually include

and negative fields. These fields would tend to reduce as théetailed strain-induced splittings of the valence states when

well becomes more shallogi.e., with increasing content of the corresponding deformation potentials are tabulated ex-

the Si in the internal layer or increasing Ge content in theperimentally.

barriers. The magnitude of thg factor modulation is on the

order of a few per cent, consequently, electric manipulation

of the L electron spin resonance seems to be feasible. ACKNOWLEDGMENT
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