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Manipulating the L-valley electron g factor in Si-Ge heterostructures
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The Zeeman effect for theL valley conduction band electrons in SiGe heterostructures is considered. A
detailed calculation of the electrong tensor is performed in the framework of a relevantk•p model, developed
specifically for theL point of the Brillouin zone. Electrons at theL point are considered under the influence of
the different crystallographic orientations, alloy composition, quantum confinement, strain, and electric field,
whose interplay causes a considerable deviation of theg tensor components from their bulk values. Our result
strongly suggests that the SiGe-based quantum wells are a promising choice for theg tensor engineering for
spin manipulation.
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I. INTRODUCTION

An ability to in situ control the electron Landeg tensor in
the solid state is considered by many an important prere
site for the practical manipulation of individual electro
spins.1–3 A suggestion that such a manipulation can be m
easily realized in the SiGe-based heterostructures and
ticularly SiGe quantum dots,4 is also gaining support. Thus,
theoretical guidance is needed for the early experiment
this field ~and ultimately for the actual device fabrication!.

To begin, let us speculate about the situation, suggeste
Ref. 4. Assume that we have a layered SiGe heterostruc
where lowest electron states in two adjacent layers
formed fromX ~Si-rich layer! andL ~Ge-rich! valley states,
respectively. We can apply electric field and use it to partia
shift the electron wave function through the interface. Th
the question of how to calculate electrong factor for the
whole heterostructure arises. Simple averagingg5gXwSi
1gLwGe of the X andL bulk g factors with probabilitieswSi
andwGe to find electron in the Si- and Ge-rich layers is n
adequate.

Instead, one should first calculate ground electron st
in the biased structure separately for bothL and X valleys,
and compare their eigenstate energies. If theX state is lower,
the answer for the whole heterostructureg factor isgX , cal-
culated for the quantum-confinedX state. Otherwise, one
should focus on theg tensor for the quantum-confinedL
state. In the very narrow interval of parameters where e
gies EL and EX of the quantized levels are very close, o
needs to consider microscopic properties of the heteroin
face between two layers and evaluate small intervalley m
ing potentialVX-L . After that, one must solve a two-leve
problem with the Hamiltonian

Ĥ5S EX VX-L

VX-L* EL
D

in order to find out the probabilitywX(wL) for the electron in
the whole system to haveX ~L! character. The ‘‘final’’ answer
is

g5gXwX1gLwL .
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The evaluation of the intervalley mixing potential is beyo
the scope of the present paper, but we will provide in-de
recipes for the calculation ofgL ~calculation ofgX turns out
to be trivial, see below!.

The Zeeman effect at theX andL points in bulk Si and Ge
was originally considered by Roth.5 Extensions followed
promptly by allowing refinement of the model, discrimina
ing contributions of individual bands and their symmet
classes, etc.~see, for example, Ref. 6!. Apart from the always
existing free electron contribution (g0'2), the electron ef-
fective Lande factor in a particular valley depends stron
on the direct energy gaps to the nearby spin-split ban
~evaluated at the valley minimum in thek space! and the
strength of these spin-orbit~SO! splittings.

For theX electron~or, actually,D in the vicinity of theX
point! the situation is quite simple. It happens that the ga
with all the relevant bands are large. It was also pointed
that the spin splitting for the most important valence ba
vanishes exactly at theX point and is consequently small i
its vicinity; the same can be found for the relevantpz mo-
mentum matrix element.5 As a result, the spin-orbit correc
tion to the free electron valueg0 is universally small for the
X (D) electrons, not only in the diamondlike semiconducto
but also in the zinc blende–type III-V compounds and th
respective heterostructures.7 Thus, to a rather good accurac
one can conclude that for anyX (D) electron, bulk or quan-
tum confined, itsg factor is approximately isotropic~in con-
trast to the effective mass tensor! and equal tog0. For Si, this
statement is additionally strengthened by the extreme int
sic smallness of the SO interaction.

It was also established, both theoretically5,6 and
experimentally,8,9 that theg factor of the bulkL electron is
highly anisotropic~just like the effective mass! and can be
characterized by the two componentsgi andg' responsible
for the directions parallel and perpendicular to theL axis,
respectively. However, experiments would often deliver
average of theg factor tensor over all four~or some! of the
equivalentL valleys. For example, for the ground donor sta
the symmetric superposition of the electron wave functio
in all four L valleys makes theg factor isotropic. Luckily, the
valley equivalence can be easily disturbed by strain, elec
field, etc.
©2003 The American Physical Society06-1
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FIG. 1. Band structure of a diamond-type semiconductor at theL point. ~a! Dispersion of the lowest conduction (G28-L1c) and upper
valence bands (G258 -L3v8 ) along the (111) direction. The SO splitting of the valence states is also sketched.~b! Dispersion of theL1c andL3v8
electron states in the vicinity of theL point—shown for the~111! plane.~c! Energy diagram introducing important gaps and the vacu
level, suitable~in the first approximation! for the definition of the band offsets in the layered structures.~d! Coordinate systems (x,y,z) and
(x8,y,z8) associated with theL valley and heterostructure, respectively.
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Qualitatively, it is natural to expect that quantum confin
ment, strain, electric field in the low-dimensional SiG
heterostructures will result in further renormalization
the L electrong tensor. To our knowledge, no theoretic
treatment of this problem was provided so far, unlike t
G electron in zinc blende– and wurzitelike III-V an
II-VI heterostructures.10–14 We fill this gap with the presen
analysis.

The rest of the paper is organized as follows. First,
introduce a two-bandk•p Kane-like model suitable for the
description of the confinedL valley electrons in SiGe hetero
structures~Sec. II!, accompanied by the analysis of theL
electron quantum-confined states in the QW with both in
nite and finite interface offsets. In Sec. III we provide a ge
eral recipe for the calculation of the Lande tensor and, for
particular case of theL electron in the QW heterostructure
derive closed expressions for three most important direct
of the external magnetic field. We have made an attemp
collect available band structure data for SiGe heterost
tures, which we discuss in Sec. IV. In Sec. V we analyze
numerically evaluate effects of the spacial confinement, c
tallographic orientation, structure composition, electric fie
etc., on theL electrong factor. We conclude with a shor
summary.

II. k"p MODEL FOR L VALLEY ELECTRONS

Figure 1~a! shows a dispersion of the lowest conducti
(G28-L1c) and upper valence bands (G258 -L3v8 ) along the~111!
direction of the Brillouin zone~we use the classical notatio
by Herman15!. It happens that all other bands are separa
by substantial energy gaps at theL point. This fact offers an
opportunity to introduce a rather simple two-band model
scription of theL1c electron states in heterostructures~the
same approximation was extensively discussed in relatio
the Ge and Si bulk properties previously5,6!. To begin the
analysis, we represent the electron wave functionC in the
form

C5ûuL1c&1 v̂xuL3v8
x&1 v̂yuL3v8

y&,
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whereû andv̂x ,v̂y are spinor envelope functions in the co
duction and valence bands, respectively. Two states of
upper valence bandL3v8 would be degenerate in the absen
of the SO interaction.

Now the general multibandk•p Hamiltonian H(k) re-
duces to a 636 matrix. In terms ofû andv̂x ,v̂y , the Schro¨-
dinger equation for the state with energyE can be conve-
niently written as

Eû5~1/21F remote!k
2û2 iPkxv̂x2 iPkyv̂y ,

~E1Eg!v̂x5 iPkxû2 i
d

2
ŝzv̂y ,

~E1Eg!v̂y5 iPkyû1 i
d

2
ŝzv̂x . ~1!

Here the directionsx,y,z are associated with the principa
axes of a particularL valley, z5(111) or equivalent;Eg is
the direct energy gap at theL point L1c-L3v8 ~defined neglect-
ing the SO interaction!; d is the SO splitting of theL3v8

valence band;P is the momentum matrix element; andŝa
are the Pauli matrices.

Thus, the proposed two-band model@see Fig. 1~b! for a
visual guide# accounts explicitly and fully for thek•p mixing
between the lowest conduction statesL1c and upper valence
statesL3v8 . In an attempt to mimic theL1c dispersion better,
we have additionally included into the electron Hamiltoni
a kinetic term with the free electron mass~which is 1 in
atomic units that we use hereafter! as well as the approxi-
mate contribution from all other bands. These bands
treated as remote~due to much larger bandgaps as mention
above!, so their contribution is included~i! only for the con-
duction states~addition of similar terms into the valenc
band would produce minimal influence on theL1c param-
eters! and ~ii ! in a quadratic-in-k approximation. Altogether,
this results in a correction 2Fremote to the L1c inverse mass
tensor m21 ~as well as a correction to the Lande tens
Dgremote).
6-2
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With the help of Eq.~1!, the valence-band spinorsv̂x ,v̂y

can be expressed via the conduction-band spinorû as fol-
lows:

Pv̂x5 iAkxû2ŝzDkyû,

Pv̂y5 iAkyû1ŝzDkxû, ~2!

where

A5
P2

2 S 1

E1Eg2d/2
1

1

E1Eg1d/2D ,

D52
P2

2 S 1

E1Eg2d/2
2

1

E1Eg1d/2D . ~3!

We would like to specifically note that the coefficientsA and
D are energy-dependent.

The dispersion equation for the spinorû in the hetero-
structure now takes a form

$k•m•k2 i ŝz~kxDky2kyDkx!1~V2E!%û50, ~4!

wherem is a diagonal tensor with components (m' ,m' ,m i),

m'51/21F remote
' 1A, m i51/21F remote

i .

The heterostructure profile/electrostatic potentialV(r) and
the variation of the composition are incorporated into E
~1!–~4! by changingE to E2V ~everythere, not just in the
Schrödinger equation! and also explicitly via the material
dependent band-structure parameters (Eg , d, P, andFremote).
Hence, theA and D in the heterostructure become allr de-
pendent. The placement of the tensorm and coefficientD
betweentwo wave vector differential operators in Eq.~4!
accounts properly for these coordinate dependencies and
allows generation of the appropriate boundary conditions
particular, theŝzD term is especially interesting: with a
incorrect order of the operators, it would be always exac
zero. Even with a correct order of the operators, it diminis
when D is constant in real space~this happens in the bulk
material!. Thus, theŝzD term can play a role only in the
biased structures and at the heterointerfaces~through the
boundary conditions!.

The first boundary condition is traditionally17 chosen to
require continuity of the functionû; the second one inarbi
trarily follows from Eq.~4! and requires continuity of

N•$m•kû2 i ŝzD@1z3k#û% ~5!

at an interface with a normalN. Here we write the expres
sion compactly in a vector form with a help of a unit vect
in the z direction1z . It is worth mentioning that this bound
ary condition is obviouslyspin dependentdue to theŝzD
term which can be nonzero on theoblique ~with respect to
theL axis! interfaces and for the nonzero in-plane wave v
tors. For example, for an electron in the (111)L valley
where axisz is also parallel to the (111), a common heter
structure grown along (001) direction would also form o
lique interfaces. When an electric field is present in the h
19530
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erolayers, similar spin dependence takes place not only
the interfaces, but also inside layers.

A. QW with infinite barriers

As an important intermediate step, we consider firs
single-band spinless electron with the effective mass ten
m in the QW of widtha with a hard-wall confinement. Ori-
entation of the heterostructure is defined by the angleu be-
tween the valley axisz and the QW growth directionN. For
the particular case of the (111)L valley andN5(001) we
get cosu51/A3 and sinu5A2/3. We introduce a new or
thogonal coordinate system (x8,y,z8) associated with the
structure as follows:z8 is along the structure growth direc
tion N, x8 lies in the plane ofz andz8, andy is the same in
both systems and orthogonal to the (z–z8) plane @see Fig.
1~d!#.

The eigenstates form subbands with energies

En~kx8 ,ky!5mgrowthkz8,n
2

1m in-planekx8
2

1m'ky
2 , ~6!

where kz8,n5pn/a, mgrowth5m'sin2u1micos2u, m in-plane
5m'm i /mgrowth, and n is an integer. Their correspondin
eigenfunctionsf can be expressed as

f 5Cei (kx8x81kyy1 k̃z8)H cos~kz8,nz8! for odd n,

sin~kz8,nz8! for even n.
~7!

Herek̃5kx8(m'2m i)cosu sinu/mgrowth andC is the normal-
ization constant. This more complex form of the quantiz
states arises because the quantization axis does not coi
with any of the principal axes of the effective mass tens
Nevertheless, the most important outcome from this exam
is that the subband minima are reached atkx85ky50 and the
electron wave function for this state accepts a conventio
and simple form.

In the framework of the 636 k•p model, the conduction
and valence band envelopes for the two spin-degenerate
tron states at the bottom of the ground subband are

ûs5C cos~kz8,nz8!âs ,

v̂x,s5m'kz8,nsinu sin~kz8,nz8!âs ,

v̂y,s5 i ŝzDkz8,nsinu sin~kz8,nz8!âs , ~8!

where âs denotes columnsâ↑5(10) andâ↓5(01), which
are two-component spinors corresponding to spin up
down pure states along the original axisz ~and written in the
ŝz basis!.

B. QW with finite barriers

Now we turn to the case of a QW with finite interfac
offsets. Starting from Eq.~5!, we readily find an equation fo
the second boundary condition in the structure fra
(x8,y,z8), which is continuity of

$mgrowthkz81~m i2m'!cosu sinukx82 i ŝzD sinuky%û
~9!
6-3
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at the interface. TheŝzD term is present for anyuÞ0,
which essentially means that this boundary condition is s
dependent and can potentially result in the splitting of s
states↑ and↓ at a finite in-plane wave vectorky manifesting
the intrinsic SO effect. We will return to this point later.

Eigenstates of theL electrons characterized by the arb
trary kx8 , ky components of the in-plane wave vector shou
be found numerically as a solution of the transcende
equation in the case of the QW with finite barriers. Similar
the situation of the QW with infinite barrier, subband e
trema take place at the zero in-plane momentum which a
allows substantial simplifications. Luckily, we are interest
in the analysis of theg factor values only at the bottom of th
ground subband.

Strain is very important in SiGe heterostructures, sinc
is the strain-induced shift of the conduction band states
allows formation of the QW confinement potential in th
Ge-rich layer. Without that, Ge-rich layer would form a ba
rier instead. Shifts of the conduction and valence band ed
due to strain are easily included into the Eq.~1! and the
calculation procedure.

III. TENSOR OF THE ELECTRON g FACTOR

The general procedure how to calculate theg factor tensor
in heterostructures is thoroughly described.12,14In short, for a
pair of statesus& (s5↑ or ↓), the Zeeman contribution to th
effective 232 Hamiltonian can be expressed as

dHss8[
1

4c
sss8g•B[

1

4c
sa,ss8gabBb5^sudHBus8&

1H K sU A

c

]H
]k Us8L 2

^A&
c K sU ]H

]k Us8L J , ~10!

where 1/4c stands for one half of the Bohr magnetonmB/2 in
atomic units,^A&5^suAus&. The first and second terms a
due to the explicit (B field directly! and implicit ~through the
vector potentialA) magnetic field dependence. The seco
term inside the curly brackets subtracts the diamagnetic c
tribution originating from the real-space motion of th
charged particle in the crossed electric and magnetic fie
This term becomes zero in a system with a reflection sy
metry. All matrix elements should be calculated on the ze
field wave functionsus&. Equation~10! can be considered a
a definition of theg factor tensorgab . Note that its practical
usefulness depends on the possibility to evaluate all ancil
matrix elements.

A. Bulk g tensor

In the framework of the two-band model, one can produ
the following expressions for the components of the elect
g factor in the bulk semiconductor:

gi5g01Dgremote
i 14DuE50 ,

g'5g01Dgremote
' . ~11!
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Here the coefficientD, defined in Eq.~3!, is evaluated at the
bottom of the L valley (E50) to give 4DuE50

522P2d/(Eg
22d2/4). In agreement with the original find

ings of Ref. 5, we obtain that theg tensor is highly aniso-
tropic, upper valence statesL3v8 contribute only to the longi-
tudinal component, and, consequently,g' is close tog0.

B. Magnetic field along thex8 direction

For the confined electron state withkx85ky50, the
spinor û can be presented as

ûs5 f âs , ~12!

where f (z8) is a real scalar function. It satisfies the secon
order differential equation

2
d

dz8
S mgrowth

d f

dz8
D 1~V2E! f 50, ~13!

with the adjacent boundary conditions requiringf and
mgrowthd f /dz8 to be continuous at the heterointerfaces. T
spinor componentsv̂x and v̂y can be easily expressed viaf
with the help of Eq.~2!. The straightforward derivation by
using Eq.~10! for the magnetic fieldBix8 with the vector
potential taken in the gaugeA5(0,2z8B,0) yields

dĤ5
1

4c
~ ŝzGisinu1ŝxg'cosu!B, ~14!

where

Gi5g01Dgremote
i 1Dg,

Dg524E dz8~z82^z8&!D
d f2

dz8
, ^z8&[^suz8us&,

~15!

and the linear-in-B splitting of the two spin states can b
described by the effective in-planeg factor

gin-plane, x85AGi
2sin2u1g'

2 cos2u. ~16!

Thus, one should essentially evaluate an average ofD over a
proper electron quantum-confined state in the heterost
ture, as given in Eq.~15! ~all other terms are constant!. Note
that f-relatedDg contributes only to theGi component~with
a sinu angle dependence in the final expression!. Essentially,
this reiterates a fact that for the bulkg tensor, only one com-
ponent of theg factor tensor~i.e., along theL valley axisz)
is affected by the interaction with theL3v8 valence band.

Another finding worth mentioning is the presence of t
spin-dependent diamagnetic contribution in theDg for Bix8
in asymmetric structures—thêz8& term. It appears due to
the nonzero in-plane group velocity of the states withkx8
5ky50

v̂ in-plane, y5ŝzsinuE dz8D
d f2

dz8
, ~17!
6-4
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so one can conclude that the effective 2D electron Ham
tonian in asymmetric structures does contain the linear-inky

spin-dependent term18 dĤ5hŝzky ~which is similar in ori-
gin to the structure-asymmetry-induced term in III-V hete
structures at theG point19,20!.

C. Magnetic field along they direction

Let us now evaluate the in-planeg factor for the magnetic
field along they axis. The result is not surprising:

dĤ5
1

4c
ŝyg'B, gin-plane, y5g' , ~18!

which is exactly the bulk transverseg factor, as no contribu-
tion due to thek•p coupling with theL3v8 band is possible for
this orientation of the magnetic field~and we neglect what
ever effects of quantum confinement on the remote band!.

D. Magnetic field along thez8 direction

Now we derive an equation for the electrong factor when
magnetic field is applied along the structure growth axisz8.
The perturbation theory and Eq.~10! in particular can be
readily applied to a system of finite size. On the contrary
any extended structure~such as an actual QW! the matrix
element of the coordinatex8 or y is a poorly defined quantity
One of possible solutions to this obstacle was provided
Ref. 14. This method makes use of the spatially modula
magnetic field~similar to how it was done when calculatin
the magnetic susceptibility21!. Let us consider an externa
magnetic field in the formB5(Bz8e

ikyy,0,0)iz with the cor-
responding vector potentialA5( iBz8e

ikyy/ky,0,0), find
dHss8 for us& with kyÞ0 and go to the limitky→0. For
kx850,kyÞ0, the presentation of Eq.~12! for ûs transforms
into

ûs5eikyy~ 1̂ f 2kyŝzsinuh!âs , ~19!

whereh(z8) is also a real function. Here 1ˆ is the 232 unity
matrix. Let us derive equations for the functionsf andh. As
it was mentioned before, in the presence of the electric fie
within the layers~or composition grading, which is equiva
lent for that matter!, the ŝzD term causes spin-depende
mixing on the interfaces as well as inside the heterolay
For the expansion of Eq.~19!, this results in the coupling
betweenf andh. Up to the terms linear in the small quanti
ky , the functionf (z8) still satisfies Eq.~13! with the corre-
sponding boundary conditions. Thus,f is approximately in-
dependent ofh. To the same accuracy, the functionh can be
found as a solution of the following nonhomogeneous diff
ential equation:

2
d

dz8
S mgrowth

dh

dz8
D 1~V2E!h5

dD

dz8
f . ~20!

HereE is the electron energy atky50. In the same first orde
in ky , the boundary conditions forû can be satisfied, requir
ing continuity ofh and the combination of functionsf andh:
mgrowth(dh/dz8)1D f .
19530
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Evaluating Eq.~10!, we arrive in the limit ofky→0 at the
final expression forggrowth in the SiGe QW at theL point

dĤ5
1

4c
~ ŝzGicosu2ŝxg'sinu!B, ~21!

where22

Gi5g01Dgremote
i 1Dg,

Dg54E dz8FD f 21A sin2u
d

dz8
~ f h!G . ~22!

Thus,

ggrowth5AGi
2cos2u1g'

2 sin2u. ~23!

When comparing Eqs.~23! and~16!, one would immediately
notice an exchange of cosu and sinu terms due top/2 dif-
ference in the orientation of the magnetic field. But that
not all! We would like to draw an attention to the fact th
Eqs.~15! and ~22! for Dg do differ which is a consequenc
of overall reduced system symmetry~in comparison to the
bulk! which we induce with heterostructure potentia
interfaces and/or biased regions. It is exactly the same e
that makes theG electrong factor anisotropic in the III-V
heterostructures,10 despite the fact that the constituent bu
semiconductors are characterized by the isotropicg factor.

E. Arbitrary direction of the magnetic field

With the effective 232 Zeeman HamiltoniandĤ found
for the three orthogonal directions of the external magne
field, generalization to the case of arbitrarily oriented ma
netic field is straightforward.

IV. PARAMETERS

The most serious problem shadowing the reliability of t
eigenstate calculations in SiGe heterostructures is the lac
a proven complete set of the band structure parameters
have worked through the available data delivered by the
periment along with the first-principle calculations as p
sented in our data set compilation of Table I~for pure Si and
Ge!. Unless otherwise is mentioned explicitly, the data
taken from Ref. 23. We provide the definition of the quan
ties @referred to Fig. 1~c!# as well as the comment on th
parameter evaluation scheme for the SiGe solid solution

For most of the parameters~called ‘‘basic’’ here!, we use
the simple linear interpolation for the SiGe solid solution
This group contains all band gaps, interband matrix e
ments, etc. Rigorously, one also needs the bowing const
of the interpolation curves but unfortunately those are mo
unavailable~for very rare exceptions, we specifically me
tion such cases in the text!. On the other hand, some param
eters are evidently model derivatives~such as, for example
effective masses andg factors! and defined by a subset o
basic quantities. As they are not expected to follow a lin
interpolation law, we denote them ‘‘composite’’ and apply
6-5
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different approach. We use the model formulation to util
their experimentally determined values and extract the d
for the yet-to-be-known more basic quantities~they are listed
in the first column of Table I in the square brackets!. Then
the procedure of linear interpolation is applied to those ba
quantities for SiGe alloys. Whenever needed, we reconst
the necessary composite quantity for the particular a
from the interpolated basic parameters.

Whenever the reference data for one of the paramete
controversial or nonexistent, we test the sensitivity of
electron state andg factor equations to this particular param
eter. In this way, we can identify the most critical quantiti
and minimize the possible error by a more careful select
A further discussion on these issues is provided below as
go through the list of the material parameters.

For the band line up, we use the model-solid theory wh
is well described in Ref. 24. The average potential for e
SiGe layer is calculated as a linear interpolation between
values for Si and Ge.DSO

G is the SO splitting of the uppe
valence bandG258 , that, together withEav, defines absolute
energy positions of heavy/light hole (G8v) and SO-splitted
bands~assumed linear!. EL1c

and EL
3v8

are energy positions

of the lowest conduction band and upper valence band~ne-
glecting SO splitting! at theL point with respect to theG8v
band~both assumed linear, which is only approximately c
rect; at the same time, a linear approximation for the prin
pal band gap at theL point Eg[EL1c

2EL
3v8

is believed to be

reasonable25!. With the SO interaction at theL point in-
cluded,L3v8 states are split into two doublets separated

d[d
SO
L3v8 ~assumed linear!. This splitting is known for Ge,

while for Si we traditionally5 choose it to be abou
(2/3)DSO

G . Setting this value to be exactly zero~again, the
SO interaction is altogether small in Si! has negligible effect
on the result of our calculation. Components of the effect

TABLE I. Band structure parameters for Si and Ge as well
the type of the interpolation procedure for the SiGe compoun
Unless the source for the particular parameter is cited explicitly
the text, the data is taken from Ref. 23.

Si Ge SiGe

Eav ~eV! 27.03 26.35 linear
DSO

G ~eV! 0.044 0.29 linear
EL1c

~eV! 2.04 0.744 linear
EL3v

~eV! 21.2 21.53 linear
d[DSO

L ~eV! (2/3)DSO
G 0.23 linear

mi @Fc# 1.418 1.349 composite
m' @P,Fc# 0.130 0.0791 composite
gi @Dgremote

i # 0.82 composite
g' @Dgremote

' # 1.93 composite
a0 ~Å! 5.425 5.645 Eq.~24!

c11 (1012 dyn/cm) 1.675 1.315 linear
c12 (1012 dyn/cm) 0.65 0.494 linear
c44 (1012 dyn/cm) 0.801 0.684 linear
aL1c

~eV! 21.7 20.9 linear
aL3v

~eV! 1.4 1.4 constant
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mass tensor in the conduction band at theL point are model
derivatives~composite! defined by thek•p interactions with
the nearby bands. Knowing independently the relevant
ergy gaps, we use these values to derive the strength o
k•p coupling with the closestL3v8 band ~P! as well as to
estimate the contribution of the remote bands to the effec
mass atL1c (Fc). For both P and Fc , we assume linear
dependence on the alloy Ge fraction.

Measurements of the Zeeman effect on the bulkL elec-
trons ~typically, donor bound! in strained Ge allowed an ac
curate determination of the bulkg factor tensor~the compo-
nentsgi andg').8,9,16As these quantities are defined by th
k•p interactions with the nearby SO-split bands, we tre
them as ‘‘composite.’’ Along with the knowledge of the ban
gap and interband momentum matrix element for theL3v8
states, we can estimate contribution of the remote band
the bulk g factor (Dgremote

i and Dgremote
' ). For obvious rea-

sons~i.e., the lowest electron states are at theX point!, no
such knowledge is available for theL point in Si. We decided
to use the Ge values ofDgremote

i and Dgremote
' for any SiGe

composition. Another natural assumption thatDgremote
i and

Dgremote
' are zero in Si does not noticeably modify the resu
For the lattice constant, we make use of the experime

tabulation including the bowing26

a0~x!5xa0
Ge1~12x!a0

Si20.00188x~12x! Å. ~24!

The elastic modulici j define strain in the pseudomorphical
grown heterostructures and are assumed here to be li
interpolations for solid solutions. Due to the importance
the strain for the conduction band lineup in the SiGe hete
structures, the conduction band deformation potentialsaL1c

are often discussed and known in Si and Ge to so
accuracy28–31 ~assumed linear!. It is worth mentioning that
these strain-induced shifts are valley dependent and there
actually two independent energy constantsJd , Ju defining
the shift of the electronic energy of thei th valley due to
strain.16,27,32

On the contrary, the deformation potentialaL
3v8

for the L

point valence states are probably the least known part of
parameter set~assumed constant!. As a guess for theL3v8
states, we use the averaged hydrostatic deformation pote
for the valence states at theG point in Ge and Si~Ref. 30
supplemented by derivations from Refs. 23, 33, and 34!. We
also neglect any additional strain-induced splittings of
L3v8 states, for the lack of information on the correspondi
deformation potentials.

V. RESULTS AND DISCUSSION

As an example of a typical SiGe structure, we conside
three-layer Ge-rich QW Si12aGea /Si12xGex /Si12bGeb
~which can generally be asymmetric,aÞb). It is assumed
grown pseudomorphically on a suitable substrate, which
fines the in-plane lattice constant for the whole structure a
consequently, the strain tensor in individual layers.

s
s.
n
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MANIPULATING THE L-VALLEY ELECTRON g FACTOR . . . PHYSICAL REVIEW B 68, 195306 ~2003!
A. Effect of composition and quantum confinement

In Fig. 2~a! the components of theL electrong factor
@in-plane ~solid lines, lower part! and along the growth di-
rection~dashed lines, upper part!# are given as a function o
the QW width for the (001) structure. The two barrier com

FIG. 2. g factor ofL electron as a function of the QW width.~a!
In-plane component~solid lines! of the Lande tensor and the com
ponent along the structure growth axis@i.e., ~001!# ~dashed lines!;
~b! L3v8 SO contributionDg calculated for the in-plane magnet
field @Eq. ~15!, solid lines# and along the growth axis@Eq. ~22!,
dashed lines#. The barriers on the left and right are formed by t
Si0.3Ge0.7 and Si0.2Ge0.8, respectively; the Ge content in the QW
internal layer is defined byx.
19530
-

positions are chosen to be different (a50.7 andb50.8).
The material of the substrate is assumed to match the la
constant of one of the barrier layers~for example, this could
be a relaxed thick slab of Si12bGeb). In case of the suffi-
ciently thick well, bothg factor components saturate to th
respective bulk values of the strained homogeneous mat
~evaluated alongx8 and z8). The bulkg factor tends to be
more positive for higher Si content as a collective effect
larger band gaps, smaller interband momentum matrix
ment, and weaker SO interaction. Thus, by simply chang
the composition of the Si12xGex internal well layer~lines are
shown for x50.9, 0.95, and 1.0!, we can substantially
modify this asymptotic value. In narrower QW’s, quantu
confinement effects pick up, makingg factor even more posi-
tive. This manifests to a lesser degree for the grow
direction component@scales for the lower and upper parts
Fig. 2~a! are exactly the same# mostly due to the orientation
factors sinu vs cosu in Eqs. ~16! and ~23!. In very narrow
QW’s, the electron wave function is finally squeezed out
the well layer into one of the barrier regions~whichever is
lower!, so the bulkg factor tensor in that layer now define
the Lande factor of the quantized electron in the whole h
erostructure.

As it was mentioned above, for any chosen and fixedu,
whole g factor modulation is actually governed exclusive
by theL3v8 -related SO contributionDg. Its dynamics is docu-
mented in Fig. 2~b! whereDg is calculated for the in-plane
magnetic field@Eq. ~15!, solid lines# and the field applied
along the growth axis@Eq. ~22!, dashed lines#. Although ex-
ercising a qualitatively similar behavior, respective solid a
dashed lines do not coincide, which is a manifestation of
reduced symmetry~of the heterostructure in comparison
the bulk!. Their difference does not exceed 0.1–0.15~so it is
only a small part of the whole SO contribution to theg
factor! and the maximum is reached in the QW of about 1
Å width. The difference goes down for both wider and na
rower wells as the effect of the ‘‘asymmetry’’ of the heter
structure potential on the confined electron declines at b
limits.

B. Effect of crystallographic orientation

The crystallographic orientation of the heterostructure
also a profound effect on the Zeeman splitting~see Fig. 3!.
An extreme anisotropy of both the effective mass tensor
the bulk Lande factor itself are reflected in this strongu
dependence on the orientation as documented by the
sets generated for the (001)-, (011)-, and (111)-gro
Si0.3Ge0.7/Ge/Si0.2Ge0.8 structures. Not surprisingly, the mos
flat dependence of the in-planeg factor on the QW width is
obtained for the (111) structure, where the lowestL valley is
oriented exactly along the growth direction. This is a ve
peculiar situation for two reasons: First, it provides the la
est effective mass for the spatial confinement~small confine-
ment energy! and, secondly, the in-planeg factor is derived
exclusively from the transverse component of the bulkg ten-
sor. This transverse component is defined by interacti
only with remote bands that are not sensitive to the mode
quantum confinement due to the large interband gaps.
6-7
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F. A. BARON et al. PHYSICAL REVIEW B 68, 195306 ~2003!
can see that the effect of spatial confinement is more p
nounced in (011) and is the largest in the (001) structu
where the longitudinal bulkg factor has the largest contribu
tion. The magnitude of the bulkgi is substantially smaller
thang' , which is reflected in the position of (001), (011
(111) lines in Fig. 3~a! with respect to each other. This ord
is changed to the opposite, when we consider theg factor in
the growth direction@see Fig. 3~b!#. The strength of the de
pendence on the well width is also modified by the orien
tion (sinu/cosu factor!.

C. Effect of electric field

Now we turn to the most practically important question
the ability to manipulateg factor value in SiGe heterostruc
ture in situ with the help of the applied electric field. Th

FIG. 3. g factor ofL electron in a SiGe/Ge/SiGe QW for differ
ent crystallographic orientations of the heterostructure.~a! In-plane
component of the Lande tensor.~b! Component along the structur
growth axis.
19530
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possibility to controlg factor value by the electric field wa
originally analyzed in Ref. 11 where the dependence of
Zeeman splitting of electron spin states on the applied bia
III-V QW’s had been calculated. The renormalization of t
g factor value comes mostly from the effect of spatial co
finement in the triangular QW at the heterointerface and
quires application of relatively high electric fields. At th
time, this effect was also observed experimentally by me
of the quantum beats spectroscopy in GaAs/Al0.35Ga0.65As in
electric fields up to 93104 V cm21 by Hallsteinet al.35 Re-
cent experiments delivered additional confirmations.3,36 A
substantial tunability of theg factor was obtained in Ref. 3
by using a heterostructure with a very wideparabolicpoten-
tial profile, allowing large spatial displacement of the who
electron wave function to the layer with a different value
the electrong factor.

Figure 4 presents the results of our calculation for SiG
Here theL electrong factor in the 100, 150, and 200 Å (001
QW’s is shown as a function of the field strength for bo
positive and negative values. In the first approximation o
can neglect the effect of the applied field on theg factor
component in the growth direction~upper part, dashed
lines!—to reinforce this statement, the scales for the up
and low parts of the graph in Fig. 4 are again chosen to
identical. Thus, we will concentrate on the modulation of t
in-planeg factor component. The main effect of the electr
field is to increase the electron quantum confinement
squeezing electron wave function towards the heteroin
face, which is also accompanied by the penetration of
electron into the barrier region~with a different, more posi-
tive net g factor!. The effect is small in moderate fields~it

FIG. 4. g factor of L electron versus applied electric field: in
plane component of the Lande tensor~solid lines! and the compo-
nent along the (001) structure growth axis~dashed lines! shown for
the 100, 150, and 200 Å QW’s.
6-8
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MANIPULATING THE L-VALLEY ELECTRON g FACTOR . . . PHYSICAL REVIEW B 68, 195306 ~2003!
would be exactly quadratic in small fields in a symmet
QW!. It is also clear that the overall sensitivity to the sm
field is higher in thicker QW’s where the spatial confineme
is weak. A sub-quadratic dependence is obtained in stron
fields. There is a tendency of saturation to a comm
asymptotic which is independent of the QW width. This ha
pens when the electric field shifts a confined electron
wards one of the QW interfaces and finally traps it in t
triangular electrostatic potential at the heterojunction, so
spatial position of the second interface has no effect on
trapped electron.11

The overall dependence is slightly asymmetric which c
be expected for the asymmetric structure. The large asym
try comes into a play when we discuss the useful range
the applied field. We terminate our curves when substan
leakage of the electron from the QW into the barrier lay
starts due to the electric field. As the barriers on the left a
right are different, this happens at notably different posit
and negative fields. These fields would tend to reduce as
well becomes more shallow~i.e., with increasing content o
the Si in the internal layer or increasing Ge content in
barriers!. The magnitude of theg factor modulation is on the
order of a few per cent, consequently, electric manipulat
of the L electron spin resonance seems to be feasible.

VI. SUMMARY

We developed a consistent theory of the Zeeman effec
the L point in SiGe heterostructures. It is based on the
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propriatek•p model derived for theL point states of group
IV semiconductors. Effects of the alloy composition, cryst
lographic orientation, spatial confinement, strain, and elec
field are accounted for and documented for an example of
realistic structure design.

Several comments are due. First, the calculation is d
for a single valley~out of four!. For particular growth orien-
tations, states in two or more valley can be degenerate. A
result, the experiments would measure theg factor values
averaged over several valleys~as in the case of the previ
ously discussed Zeeman measurements on the donor sta
the unstrained bulk Ge providing an isotropic quantity!.
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