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In-plane light-hole g factor in strained cubic heterostructures
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In the context of a proposed design of a solid-state receiver for quantum communications, we consider the
Zeeman splitting of the light-hole states in strained cubic heterostructures with an in-plane external magnetic
field. The choice of interband optical transitions that allows coherent transfer of photon polarization to electron
spin suggests that the magnitude of correspondifagtor component will be a critically important quantity for
the success of such devices. Our approach allows a straightforward calculation of this parameter and incorpo-
rates the quantum confinement, heterolayers composition, and strain effectsgpfather.
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[. INTRODUCTION discussed in Ref. 5; we follow those proposed selection rules
and concentrate on the geometry with in-plane magnetic

Secure quantum communication schemes are based on tfield.
entanglement of coherent quantum statese Ref. 1 and The free-electron spin splitting factor, of valug
references therein To achieve this for practical use, one =2.0023, defines the influence of the external magnetic field
must be able to transmit quantum information over long dis-on the doublet of otherwise degenerate electron states with
tances, perform elements of quantum computing to executspin s= +1/2. Interaction of electron states with the lattice
error correction, and retain the information without decoherpotential in crystals leads to tHeften strong renormaliza-
ence. Such rigorous conditions require the development of @on of theg factor value® As one advances from bulk semi-
system that is capable of receiving quantum information inconductors to heterostructures, quantum confinement effects
the form of coherent photon states, storing the informationcome into play that modify theg factor further. A compre-
performing the necessary operations, and then retransmittingensive theory based on thg method was developed to
the photon signal while maintaining quantum coherencepredict behavior of the electragfactor in low-dimensional
throughout the process. In particular, it was proposed tsystems including quantum wells, wires, and ddtZeeman
transfer quantum information from photons to atoms trappedplitting for electrons was studied experimentally mainly in
in high-Q optical cavities>® It is also well known that infor-  1lI-V and some II-VI quantum well§QW's). A very close
mation in the form of photon polarization can be transferredcorrespondence was found between theory and experiment,
to electron spin in semiconductors and vice versa in absorgnacluding overall dependence on the well layer width and
tion and emission processésience, utilizing the electron more fine details such as electrgriactor anisotropy.Some
spin degree of freedom in solids provides a clear pathway ttheoretical results were published for the longituditmabg-
the development of a practical quantum communication sysnetic field along the growth directiorheavy-hole(HH) g
tem. Such a system could reliably function as a repeater téactor with moderate agreement with the so-far very scat-
transmit quantum information over long distances and wouldered experimental dat&!* There was a recent attempt to
accomplish a number of goals, including, for example, seevaluate the transversm-plane g factor for HH’s and test
cure data transmission. the calculated value in the experiméfASince the main con-

A promising scheme, based on nanoscale semiconductdribution, caused by the interaction with the conduction band,
technology, was recently proposed to achieve this function.is absent in this geometrygy . | is very small 0.04).
The suggested quantum communication system resembl@hus, HH states cannot be sufficiently split by an in-plane
conventional optical communication systems except that itnagnetic field. They are not suitable for the quantum re-
takes advantage of particular photon absorption and emissiareiver, in which the hole states have to be resolved optically.
selection rules. The design of the proposed receiead No work has been done for the light-hdleH) states to
transmittey needs to satisfy several demanding conditionshe best of the author’s knowledge. That is due, in part, to the
simultaneously; one of them requires that both electron subfact that the much smaller effective mass and resulting
levels should couple optically to a single ground hole statehigher quantization energigsompared to those for HH's
thus excluding entanglement with the quickly relaxing holemake it difficult even to detect LH states in typical hetero-
spin. Application of an external magnetic field leads to thestructures. Applied or lattice-mismatch-induced intrinsic
desired valence-band splitting that should be sufficientlystrain can reverse this situation, making the LH the ground
large to resolve hole sublevels spectroscopically. A propehole state in the structure with a QW. In this paper, we give
experimental setup provides selection rules of the correa consistent theoretical analysis of the in-plane Zeeman ef-
sponding optical transitions that enable the transfer of photofect for quantum-confined LH holes and evaluate possibili-
polarization into the electron spin. This setup is thoroughlyties to design structures with the desired property of a lgrge
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factor for these valence states. Thus, in order to calculate the tensgy, it suffices to
The rest of the paper is organized as follows. We starthoose an adequate multibakd model and find, first, the
with a general description of the problem of calculating theenvelope functions, in the multicomponent expansidas)

Landeg factor for quantized electrofhole) states in hetero- =3 ,¢,(r)|n) in the semiconductor structure at zero mag-
structures(Sec. 1), discuss varioukp models in order to netic field and, second, evaluate the required matrix elements
identify the suitable one for our problem in Sec. lll, and [dre* (r){AdH/ 9K} @n (1), Jdrey (r) SHg nnr @ (1)

derive an equation for the in-plane Lgifactor in the com-  where the integration is performed separately over all struc-
plete 8<8 kp model (Sec. 1V), followed by numerical ex- ture domains bounded by interfaces. The ability to evaluate
amples for both strained and unstrained QW’s based on théirectly these matrix elements depends on the proper choice
InGaAsP heterosystems that are considered to be highlyf the vector potential gauge. For the quantized state in the
promising for optical applicationgSec. \J. We conclude QW with the growth directiore, the vector potential for the

with a short summary. in-plane magnetic field should be taken in the foAfz)
=(Byz,—B,z,0). We stress that hereis the index enumer-
Il. GENERAL APPROACH ating only the electronic bands in the constituent bulk semi-

. conductors, not numerous individual quantum states.
The general approach to calculate thiactor for a pair of g

Kramers-degenerate states in a heterostructure has already
been described in the literatut The main result of the lll. CHOICE OF kp MODELS
derivation is summarized as follows: Let us consider a multi- ¢ js well known that the electron spectrum in the crystal

band HamiltoniarH (k) in the presence of an external mag- fie|d potential of a semiconductor is found most conveniently
netic field B=VXA. The procedure suggests two replace-yjithin the (multiband effective mass approximation. Lut-
ments k—k+A/c (implicit magnetic field dependence, tinger was the first to consider the problem of calculating the
through a vector potentinland HamiltonianH—H + §Hg dispersion of degenerate hole statEg band in GaAs-type
(explicit term, describing a direct interaction with the mag- semiconductor$®** The precision with which hole states
netic field in the chosen modeHereafter we use the atomic can be obtained in the Luttinger model is determined by the
units e=1/=1, and my=1, wheree is the electronic ratio of the particle energy reckoned from the valence-band
charge,fi is Planck’s constant, anthy is the free-electron  maximum to the relevant band gap. In wide-gap semiconduc-
mass. As for the explicit magnetic field dependence of thegrs, this smallest energy gap is the spin-ofBi©) splitting
effective Hamiltonian, if any is present, the terils,/c can  petween states in thég andI'; bands. While the Luttinger-

be treated merely as shortcuts for the anticommutatorﬁohn 6X6 Hamiltonian describes the holes be]onging to
Ko+ 1Kar2—Kai2Ka1g (cyclic permutation of indicese  these bands in a consistent way?it takes into account the
=X,y,z is used, thus converting the explicit perturbative interaction of thel's andT'; valence bands with thE4 con-
term into its implicit, A-dependent form. Alternatively, one duction band and the remote bands only to within terms qua-
could decide to evaluate these terms separately, resultingratic in k. At the same time, the consistent perturbative

with the expansion calculation of the dependence of the hdte electron g
factor on the energy of a state in a heterostructure requires
Hl k+ EA,B) ~H(K)+ E[Aﬁ] +SHg. (1)  terms of the fourth order in the wave vecto(see, e.g., Ref.
c cl ok 7), which is critical especially in narrow QW's with high

Brackets{} are used here as a reminder that the proper prduantization energies. Thus, a more elahorate approach
dering of the operators should be preserved, with the vecto’i“hou.Id be apphed. The simple Kane mdﬁehkes fully and
potential A taking the place of the wave vectéras one consistently into account thiep Interaction of theFG., L, .
derives the velocity operat@H/dk from the HamiltoniarH. and _F7 bands, but, for exa_mple, yields a wrong dispersion
We will return to the question of proper order of operators m_relatlon for the_HH ;tates, since the gurvat'ure of the HH band
the effective mass Hamiltonian later. is gqverned primarily by the mtergctlon Wlth the. higher con-
For a pair of statess) (s=1 or |), the Zeeman contri- duction bandsI'g+T'% (and all interactions with remote
bution to the effective X2 Hamiltonian can be written as  °ands are neglectediithough it is not a matter of the high-
est concern while analyzing electron states in the conduction
band, this leads to completely wrong results when focusing
S'> +(s|oHgls"), on the valence states.
) Analyzing the merits and shortcomings of the various
model Hamiltonians, we decided to use the complete38
whereo, are the Pauli matrices and t/4tands for half of kp Hamiltoniart”*8in the holeg factor calculations, which
the Bohr magnetomg/2 in atomic units. In general, an ad- takes the interaction of tHég, I'g, andI’; bands exactly into
ditional term should be included in the right-hand side of Eg.account(like the model of Kangand does not omit the con-
(2) to compensate the diamagnetic contribution to the effectributions of the remote bands by keeping them in a
tive Hamiltonian, but it is zero in symmetric structures whenquadratic-ink approximation(similar to the Luttinger-Kohn
considering states at the subband extrema. Equéfionan  approach Figure 1, graphically presenting the involved
be considered as a definition of tggactor tensor with real band structure parameters akg interactions for a typical
components 4. l1-V semiconductor, uses the following notatioRy is the

A&H
ak

1 1
oHsg = ac Ua,ss'gaBB,B:E S
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\ TABLE I. “Bulk” hole g factors.
F 0 / Growth axis In-plane
g
N HH —6«-(0) 0

T LH —2«%(0) —44(0)

SO —4kH(—A)-2 -4k (—A)-2
P l g to a heterostructure effective Hamiltonian, it becomes impos-

sible to reestablish this order, which prevents one from es-
tablishing correct boundary conditions. The only easily un-

derstandable requirement to be fulfilled is that the

ASO Hamiltonian eigenenergies be real. This condition can be
\ met, for example, by the frequently used procedure of the
1_‘7 so-called Hamiltonian symmetrization that forces real eigen-
’y1,’y2,’ys,1( values (symbolically it can be presented as a substitution
Ak Kg—[KAkg+KgAK,]/2).
FIG. 1. Band diagram of a typical I1I-V semiconductor. On the other hand, straightforward methods to construct a

kp Hamiltonian for a heterostructure determine unambigu-

ously the order of the operators and, hence, the set of the
boundary condition’?! Relocating all material-dependent
arameters in the Ram-Mohan Hamiltorfiim betweerthe

band gap,A is the spin-orbit splitting of thdg and I';
bands, theE, parameter characterizes tkp interaction of
fche valence- ar_1d conduction-band states and is related to thgkarentiation operatork, ,k (which is implicitly assumed
interband matr|>2< element of the angular momentum operatogmyway in all approachgsvhile keeping the operator order
throughE,=2P<, and the parametéf determines the con- iyiact \we end up with the form of Hamiltonian with a cor-
duction band curvature due to the interaction with the remotat order of operators that is exactly equivalent to one, con-
bands. The modified Luttinger parameters vz, vs, andx  gistently derived in Ref. 21. Note that Ram-Motetral 8 in
describe the effect of the remote bands on thgT'7)  thejr analysis used the symmetrization procedure instead.
valence band of the semiconductor and can be expressedj|| as in any approach that explicitly accounts for the cou-
through the standard Luttinger constantsand <" (see the  pling with the conduction band, the questionable order of
Appendi¥. The parameter, determining the cubic-id-  gperators in Ref. 18 concerns only the remote-band terms.
valence-band spin splitting, is small and, hence, is droppegthys, the significance of the problem is greatly reduced in
in the subsequent calculations. Following Forerffawe as-  comparison to, for example, more simple 6 valence band
sume that the quadratic-ko-conduction band term K models that treat the conduction band as one of the remote
+1/2) is zero in order to eliminate spurious solutions withphands. It turns out that in our particular case of LH states at
very large real or imaginary wave vectors, as it was shownhe bottom of the subban@o as withk,=k,=0), the result
that this modification of the 8 8 Hamiltonian does not lead for the in-p|aneg factor is Comp|ete|yindependent whether
to a noticeable variation in the electron or hole dispersion. Athe symmetrization is applied or not.
the same time, it allows us to conveniently express the
conduction-band envelope via wave function components in
the valence band. For consistency we neglect the remote-
band contributions to thg factor of conduction electrons; Let us start with a qualitative analysis of the limiting
thus,g® in our calculation is equal to the Lané&ctor of free  cases of very wide and very narrow QW's. Some simple
electrons &2). Again, as far as we focus on the states in theconclusions can be made based solely on the form of the
valence band, this can be done safely. The matrix elements ¢familtonian itself, without any numerical calculations in-
the bulk 8< 8 Hamiltonian are given in the Appendix of Ref. volved. For very wide QW's, we approach the case of a bulk
18. semiconductor where the applied magnetic field freely mixes
The question of boundary conditions for multicomponenttogether LH and HH states forming a double ladder of Lan-
envelopes emerges as the top priority in heterostructures wittlau levels. When the magnetic field is still small in compari-
abrupt interfaces. Imposing the continuity condition on theson to the quantization energiés strain-induced splittings
envelope functiong,(z) as the first boundary condition and in the case of strained semiconducjpibe explicit form of
integrating the multiband Schdinger equation over the in- the 8x 8 kp Hamiltonian allows one to obtain immediately
terface region, we arrive at the second boundary conditiomhe g factor components for all three hole subbands as sum-
which is defined by the particular relative order of the differ- marized in Table I. The same is true in the case of ultranar-
entiation operator&,= —id/dz and coordinate{materialy row QW's, where the parameters of the barrier layer define
dependent band structure parameters in the Hamiltonian. Asole g factor tensors.
this is not an issue in the bulk, the correct order of operators One immediately notes that the HH in-plageactor is
can be easily obscured or not even established firsthandero in this model(where, as we already mentioned, the
When one wishes to make a transition from the known bulksmall valence-band parametgis neglectegl Even with the

IV. IN-PLANE COMPONENT OF THE LH g FACTOR
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parameteiq accounted for, the in-plangfactor value is too 3 E
small for direct spectroscopic resolution of the HH sublevels gimp:4f dzz —vy3(W*v' —v*wW’)+ ﬁ
in the available magnetic fields. The SO states cannot be V2 (Eg—E)

made the ground hole state in typical Ill-V heterosystems. 1
Ultimately, only the LH states show promise. Thus, one N * 1kt
needs to design a structure where the LH subband will be o \/Ev W 2w W w )
pushed up by the intrinsic strain and evaluate thegfidctor
where the renormalization of the bulk value is due to strainvhile gex, comes from the second term responsible for direct
and quantum confinement in the QW structure. To achievénteraction with the magnetic field,
this goal, we apply the general recipe outlined in Sec. Il.

The LH wave function1) in QW'’s at the bottom of the
subband k,=k,=0) can be presented in the form eXp:4f dz

X

. (D

1
Sl o2+

+1 2_ 2 +1
ot | W (1)

2
IT)=u(@)[S1)+v(2)|LHT) +w(2)[SOT), )

X(v*w+w*vp)

: ®

where u,v, and w are conduction band, LH, and SO

z-dependent envelopes, respectively; Bloch amplitud®s In the last equation we decided not to express the envelope
for the 8x8 model are given in the Appendix. The set of via functionsv andw utilizing Eq. (4), as the present form
functions (1,v,—w) defines||); it is a result of the particu- produces a more transparent result with terms that simply
lar choice of the phases in the Bloch amplitudes. HH stateaccount for the direct interaction with the magnetic field in
do not mix into functiong?), ||) at the bottom of the sub- the bulk conduction, LH, and SO bands. For the localized
band, simplifying derivations considerably. The electron en{ H statesy andw are real andi is pure imaginary.

velopeu can be expressed via the first-order derivatives of The theory developed thus far is equally applicable to any

functionsv andw as cubic semiconductor with a band structure similar to that
shown in Fig. 1. This includes both 1lI-V and 1I-VI pure
> 1 compounds and solid solutions. With the strain-induced en-
(Eg—B)u= \/;szv——szw. (4) ergy shifts included, wurtzite crystals can be analyzed as
V3 well in the framework of the quasicubic model that treats
wurtzite crystal as a strained cubic one.
Excludingu(z), one finds that the functions(z) andw(z) In our analysis, we assume the structure to be grown

are solutions of a pair of second-order differential equationgseudomorphically on an unstrained substrate. The choice of
the substrate composition will define the common in-plane
lattice constantg,, and, consequently, strains in the hetero-
L sub ’ )
k,—E ﬁkng(E)kZ structure layers: &, =g =&y, =agw/ao—1, &=&,~
1 —2C4,/Cy1e, . TheC;; are the bulk elastic moduli. Shifts of
V2k,g5(E)k, — Zk,gL(E)k,—~A—E the conduction- and valence-band edges due to the strain are
2 defined by the deformation potentials and should be incorpo-
v rated into the calculation procedure via the 8 kp effective

1
—kz[ig&(EHgé(E)

Hamiltonian. In the first-order approximation, the energy dis-
(5 placement of thé'g minimum is linear in strain. By symme-
try, this shift can be written as

These equations are complimented by the boundary condi-
tions at the heterostructure interfaces, requiring continuity of
the envelopesy,w) and combinations of their first deriva- where we used notatiofni=e,,+ &yy+ €.

tives gH/dk,(v,w), which together conserve electron flux  For the relevant strain-induced shifts in the valence band,
through the interface. The valence-band offgedt the het- we have

erointerface should be incorporated into E§. when con-

OE.=e.¢, 9

sidering barrier layers in an obvious way through the substi- OEpp=a,e —by(gj—¢,),
tution E—~E+V. The normalization condition must be
applied to the total multicomponent wave function given by SEp=a,e+b,(gj—¢&,), (10)
Eq. (3).
Our general procedure gives for the in-plane component SEso=a,¢,

of the LH g factor
SEnso=—V2b, (g 5.),

wherea, ,b, are the valence-band deformation potentials in
where gy, is a result of the evaluation of the first, vector- the standard Bir-Pikus notatiGAAIl shifts are diagonal with
potential-related term in Eq2), respect to the spin-up, spin-down electron and hole states.

OLH, L = GimpT Jexp: (6)
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TABLE Il. Parameters of the band structure for IllI-V semicon- -2
ductors.
-4+

GaAs GaP InAs InP o
Eq (eV) 1519 2.895 0.418  1.424 ‘§ e
A (eV) 0.341 0.080 0.38  0.108 =
E, (eV) 289 ~25 221 204 20
¥5(0) 6.85 4.2 19.7 5.0 -
¥5(0) 2.10 0.98 8.4 1.6 @ -10F
¥5(0) 2.90 1.66 9.3 2.0 &
KL(0) 1.2 034 768 097 o ter
ap (A) 5.652 5447  6.048  5.859 =
Cy; (101 dyn cnr?) 11.26 1405 833  10.11 4r
Cyp (10 dyncni2) 571 62 453 561 o 20 s 120 100 200

o

Well width (A)

FIG. 2. The in-plane LH factor in In,_,GaAs/InP QW as a
For numerical illustration we have chosen structures withfunction of the well layer width. Solid and dashed lines present
both well and barrier materials based on the quaternary soligesults of the calculation using E@). Depending on the QW width
solution In_,GaAs,P, y, which is useful for 1.3 and and intrinsic strain defined by the InGaAs layer composition
1.55 um optoelectronic applications. Although as its par- either the HH or LH subband acts as a ground hole state in the QW;
ticular representative we use here only the most widely utithis information is delivered by the line type: dashed and solid lines,
lized In,_,GaAs/InP heterosystem, we decided to preparerespectively. The dotted line visualizes theveapproach based on
our numerical procedure and data, so that they are readikjie averaging of the material-dependent Luttinger paramet¢)
applicable to more general, two-parameter material comp “bulk” in-plane LH g facton with probabilities to find the hole in
sitions for each heterolayer. Band structure parameters fdhe well and barrier layers.
constituent pure compounds are given in Table Il. Complete
knowledge of the detailed band structure is unavailable agolid solutions grown on an InP substrate, where the
present for all InGaAsP solid solutions. Thus, based on theonduction-band offset iA E.= 288y + 3y? meV?® In view
values in Table Il, we use an interpolation scheme for soluof the lack of other reliable information, we therefore assume
tions with different k,y) compositions. For the band gap we that this dependence governs the offsets rati. /AE, on
apply an equation given in Ref. 2&ith a proper adjustment the (x,y) compositions plane along the line (0y4y) of
for the low-temperature reginte lattice matching quaternary compounds, and for points off
the line we take the nearest point on the line to define
Ey=1.424+0.71%—1.084/+0.758%+0.078/2— 0.07&y AEJAE, .
_ 2 2 i Figure 2 presents calculatgdactor values for a freénot
0.322¢y+0.03«y” (in ev). (D bound in the exciton or localizéd_H in the unstrained as
For other parameters of the band structutel,, modified  well as strained InGaAs/InP heterostructures as a function of
— only remote band contributions — Luttinger parametersthe InGaAs layer thickness. We repeat that the orientation of
vi k) we apply a bilinear interpolation of values for pure the applied magnetic field was assumed to be in-plane. The
semiconductors. Slightly different interpolation schemescalculation was carried out for the hole states at the bottom
were also proposed:in common, they have an important of the LH subband in the single QW structure. Both solid and
provision that, while interpolating, conduction band contri-dashed curves are produced using the procedure outlined
bution to conventional Luttinger parameters should beabove; a solid line is used when the LH forms the ground
treated separately and diversely from remote-band contribthole state while the dashed line is used otherwise. Depending
tions. on the concurrent effects of the strain caused by the lattice
The lattice mismatch between solid solutions with differ- constant mismatch and the quantum confinement, either
ent compositions in the INnGaAsP family can reach 8%. TheLH's or HH's form the ground hole states. In very wide
absence of reliable deformation potentials for InGaAsP solidvells, strain alone defines the order of levels. If the effects of
solutions and drastic scattering of data for the respective purstrain and confinement are opposite in sign, a crossover in
[1-V semiconductors suggests choosing some average valugise character of the ground state happens at some intermedi-
for all compositions and not applying an interpolation ate well width, below which the effect of confinement pre-
scheme. For our calculation we use=10 eV,a,=—0.7 eV,  vails. We emphasize again that we are primarily interested in
andb,=—1.7 eV. the structure with the ground hole state formed by the LH.
An interesting question arises concerning the values of th©ur calculation gives dependences that are steep at small
conduction- and valence-band offsets at the heterointerfacéayer thicknesses, but asymptotically approach their respec-
in the InGaAsP family. The only systematic measurementsive “bulk” values for very wide QW’s. Though not explic-
found are for the lattice-matchingdgs; .47 Ga anASyP1 -y itly present in Fig. 2, at very narrow well widthghere the

V. NUMERICAL EXAMPLE AND DISCUSSION
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applicability of the macroscopikp method itself can prob- pressed through Kane basis functidgsx, Y, andZ in the
ably be questionedhe in-plane LHg factor crosses zero for following way:
our heteropair choice. In this case, there will be no Zeeman

splitting of the spin-up and spin-down LH states. For the [D=Ist),

purposes of the quantum receiveane should avoid this , ,

region of well widths. Indeed, the factor should be kept at |2)=|HHT)=—1/V2|(X+iY)1),

a reasonably large value, which we have shown is feasible ) )

for a broad range of structure widths. 3)=|LH|)=i/\6|(X=iY)T+2Z]),
Results of the unsophisticated approach, meaning simple ) )

averaging of thgenergy-dependentbulk” in-plane values 14)=[S0])=—i/\3[(X=iY)T-Z]),

for LH's (given in Table } with quantum-mechanical prob-

abilities to find particle in different heterolayers, are also 15)=1[SL),

given in Fig. 2 as the dotted line. By no means simple aver-

aging can be considered as a satisfactory procedure. 6)=|LHT)=—i/\6|(X+iY)|—22Z1),

VI. SUMMARY |7)=[HHL)=i/V2[(X=iY)]),

We have studied the effect of an external in-plane mag- 18)=|SOT)y=—i/\3|(X+iY)| +Z1). (A1)

netic field on the structure of LH states in semiconductor

heterostructures with a single QW. The hole states were The modified Luttinger parameterg and « determine
found in the framework of the sophisticateck8 kp model.  the influence of the remote bands on the valence band of a
The dependences of the in-plane IHfactor on the QW  semiconductor I(;+1I'g) and define the energy-dependent
parameters for both lattice-matched and -strained InGaAd/uttinger parameters'iL and k' as

InP heterosystems were calculated. Significantly, the in-plane

LH g factors in heterostructures differ radically from the Yi(E)=y,+E/3(Eq—E),
value — 4", which should be considered to be the effective .
transverse LHy factor for a bulk semiconductor. Only in the Y2(E)=y2+EL/6(Eg—E),

limiting cases does thg factor in QW approach this value.
Y5(E)=y3+E,/6(E,—E),
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APPENDIX strain, an additional ternti.e., strain-induced shift of the

conduction ban@E_) should be incorporated into the energy
The Bloch amplitudesj), which are eigenstates of the denominators. The shift in the valence band will be ac-
conduction and valence bands at thepoint, can be ex- counted for by the changes in the energy of the LH skate
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