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In-plane light-hole g factor in strained cubic heterostructures
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In the context of a proposed design of a solid-state receiver for quantum communications, we consider the
Zeeman splitting of the light-hole states in strained cubic heterostructures with an in-plane external magnetic
field. The choice of interband optical transitions that allows coherent transfer of photon polarization to electron
spin suggests that the magnitude of correspondingg factor component will be a critically important quantity for
the success of such devices. Our approach allows a straightforward calculation of this parameter and incorpo-
rates the quantum confinement, heterolayers composition, and strain effects on theg factor.
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I. INTRODUCTION

Secure quantum communication schemes are based o
entanglement of coherent quantum states~see Ref. 1 and
references therein!. To achieve this for practical use, on
must be able to transmit quantum information over long d
tances, perform elements of quantum computing to exe
error correction, and retain the information without decoh
ence. Such rigorous conditions require the development
system that is capable of receiving quantum information
the form of coherent photon states, storing the informati
performing the necessary operations, and then retransmi
the photon signal while maintaining quantum coheren
throughout the process. In particular, it was proposed
transfer quantum information from photons to atoms trap
in high-Q optical cavities.2,3 It is also well known that infor-
mation in the form of photon polarization can be transfer
to electron spin in semiconductors and vice versa in abs
tion and emission processes.4 Hence, utilizing the electron
spin degree of freedom in solids provides a clear pathwa
the development of a practical quantum communication s
tem. Such a system could reliably function as a repeate
transmit quantum information over long distances and wo
accomplish a number of goals, including, for example,
cure data transmission.

A promising scheme, based on nanoscale semicondu
technology, was recently proposed to achieve this functio5

The suggested quantum communication system resem
conventional optical communication systems except tha
takes advantage of particular photon absorption and emis
selection rules. The design of the proposed receiver~and
transmitter! needs to satisfy several demanding conditio
simultaneously; one of them requires that both electron s
levels should couple optically to a single ground hole sta
thus excluding entanglement with the quickly relaxing ho
spin. Application of an external magnetic field leads to t
desired valence-band splitting that should be sufficien
large to resolve hole sublevels spectroscopically. A pro
experimental setup provides selection rules of the co
sponding optical transitions that enable the transfer of pho
polarization into the electron spin. This setup is thoroug
0163-1829/2001/64~12!/125303~7!/$20.00 64 1253
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discussed in Ref. 5; we follow those proposed selection ru
and concentrate on the geometry with in-plane magn
field.

The free-electron spin splitting factor, of valueg
52.0023, defines the influence of the external magnetic fi
on the doublet of otherwise degenerate electron states
spin s561/2. Interaction of electron states with the lattic
potential in crystals leads to the~often strong! renormaliza-
tion of theg factor value.6 As one advances from bulk sem
conductors to heterostructures, quantum confinement eff
come into play that modify theg factor further. A compre-
hensive theory based on thekp method was developed t
predict behavior of the electrong factor in low-dimensional
systems including quantum wells, wires, and dots.7,8 Zeeman
splitting for electrons was studied experimentally mainly
III-V and some II-VI quantum wells~QW’s!. A very close
correspondence was found between theory and experim
including overall dependence on the well layer width a
more fine details such as electrong factor anisotropy.9 Some
theoretical results were published for the longitudinal~mag-
netic field along the growth direction! heavy-hole~HH! g
factor with moderate agreement with the so-far very sc
tered experimental data.10,11 There was a recent attempt t
evaluate the transverse~in-plane! g factor for HH’s and test
the calculated value in the experiment.12 Since the main con-
tribution, caused by the interaction with the conduction ba
is absent in this geometry,ugHH,'u is very small ('0.04).
Thus, HH states cannot be sufficiently split by an in-pla
magnetic field. They are not suitable for the quantum
ceiver, in which the hole states have to be resolved optica

No work has been done for the light-hole~LH! states to
the best of the author’s knowledge. That is due, in part, to
fact that the much smaller effective mass and result
higher quantization energies~compared to those for HH’s!
make it difficult even to detect LH states in typical heter
structures. Applied or lattice-mismatch-induced intrins
strain can reverse this situation, making the LH the grou
hole state in the structure with a QW. In this paper, we g
a consistent theoretical analysis of the in-plane Zeeman
fect for quantum-confined LH holes and evaluate possib
ties to design structures with the desired property of a largg
©2001 The American Physical Society03-1
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factor for these valence states.
The rest of the paper is organized as follows. We s

with a general description of the problem of calculating t
Landég factor for quantized electron~hole! states in hetero-
structures~Sec. II!, discuss variouskp models in order to
identify the suitable one for our problem in Sec. III, an
derive an equation for the in-plane LHg factor in the com-
plete 838 kp model ~Sec. IV!, followed by numerical ex-
amples for both strained and unstrained QW’s based on
InGaAsP heterosystems that are considered to be hi
promising for optical applications~Sec. V!. We conclude
with a short summary.

II. GENERAL APPROACH

The general approach to calculate theg factor for a pair of
Kramers-degenerate states in a heterostructure has alr
been described in the literature.7,8 The main result of the
derivation is summarized as follows: Let us consider a mu
band HamiltonianH(k) in the presence of an external ma
netic field B5¹3A. The procedure suggests two replac
ments k→k1A/c ~implicit magnetic field dependence
through a vector potential! and HamiltonianH→H1dHB
~explicit term, describing a direct interaction with the ma
netic field in the chosen model!. Hereafter we use the atomi
units e51,\51, and m051, where e is the electronic
charge,\ is Planck’s constant, andm0 is the free-electron
mass. As for the explicit magnetic field dependence of
effective Hamiltonian, if any is present, the termsiBa /c can
be treated merely as shortcuts for the anticommuta
ka11ka122ka12ka11 ~cyclic permutation of indicesa
5x,y,z is used!, thus converting the explicit perturbativ
term into its implicit, A-dependent form. Alternatively, on
could decide to evaluate these terms separately, resu
with the expansion

HS k1
1

c
A,BD'H~k!1

1

c H A
]H

]k J 1dHB . ~1!

Brackets$% are used here as a reminder that the proper
dering of the operators should be preserved, with the ve
potential A taking the place of the wave vectork as one
derives the velocity operator]H/]k from the HamiltonianH.
We will return to the question of proper order of operators
the effective mass Hamiltonian later.

For a pair of statesus& (s5↑ or ↓), the Zeeman contri-
bution to the effective 232 Hamiltonian can be written as

dHss8[
1

4c
sa,ss8gabBb5

1

c K sUA]H

]k Us8L 1^sudHBus8&,

~2!

whereŝa are the Pauli matrices and 1/4c stands for half of
the Bohr magnetonmB/2 in atomic units. In general, an ad
ditional term should be included in the right-hand side of E
~2! to compensate the diamagnetic contribution to the eff
tive Hamiltonian, but it is zero in symmetric structures wh
considering states at the subband extrema. Equation~2! can
be considered as a definition of theg factor tensor with real
componentsgab .
12530
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Thus, in order to calculate the tensorgab it suffices to
choose an adequate multibandkp model and find, first, the
envelope functionswn in the multicomponent expansionus&
5(nwn(r)un& in the semiconductor structure at zero ma
netic field and, second, evaluate the required matrix elem
*drwn* (r)$A]H/]k%nn8wn8(r), *drwn* (r)dHB,nn8wn8(r)
where the integration is performed separately over all str
ture domains bounded by interfaces. The ability to evalu
directly these matrix elements depends on the proper ch
of the vector potential gauge. For the quantized state in
QW with the growth directionz, the vector potential for the
in-plane magnetic field should be taken in the formA(z)
5(Byz,2Bxz,0). We stress that heren is the index enumer-
ating only the electronic bands in the constituent bulk se
conductors, not numerous individual quantum states.

III. CHOICE OF kp MODELS

It is well known that the electron spectrum in the crys
field potential of a semiconductor is found most convenien
within the ~multiband! effective mass approximation. Lut
tinger was the first to consider the problem of calculating
dispersion of degenerate hole states (G8 band! in GaAs-type
semiconductors.13,14 The precision with which hole state
can be obtained in the Luttinger model is determined by
ratio of the particle energy reckoned from the valence-ba
maximum to the relevant band gap. In wide-gap semicond
tors, this smallest energy gap is the spin-orbit~SO! splitting
between states in theG8 andG7 bands. While the Luttinger-
Kohn 636 Hamiltonian describes the holes belonging
these bands in a consistent way,13,15 it takes into account the
interaction of theG8 andG7 valence bands with theG6 con-
duction band and the remote bands only to within terms q
dratic in k. At the same time, the consistent perturbati
calculation of the dependence of the hole~or electron! g
factor on the energy of a state in a heterostructure requ
terms of the fourth order in the wave vectork ~see, e.g., Ref.
7!, which is critical especially in narrow QW’s with high
quantization energies. Thus, a more elaborate appro
should be applied. The simple Kane model16 takes fully and
consistently into account thekp interaction of theG6 , G8,
and G7 bands, but, for example, yields a wrong dispersi
relation for the HH states, since the curvature of the HH ba
is governed primarily by the interaction with the higher co
duction bands,G8

c1G7
c ~and all interactions with remote

bands are neglected!. Although it is not a matter of the high
est concern while analyzing electron states in the conduc
band, this leads to completely wrong results when focus
on the valence states.

Analyzing the merits and shortcomings of the vario
model Hamiltonians, we decided to use the complete 838
kp Hamiltonian17,18 in the holeg factor calculations, which
takes the interaction of theG6 , G8, andG7 bands exactly into
account~like the model of Kane! and does not omit the con
tributions of the remote bands by keeping them in
quadratic-in-k approximation~similar to the Luttinger-Kohn
approach!. Figure 1, graphically presenting the involve
band structure parameters andkp interactions for a typical
III-V semiconductor, uses the following notation:Eg is the
3-2
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IN-PLANE LIGHT-HOLE g FACTOR IN STRAINED . . . PHYSICAL REVIEW B64 125303
band gap,D is the spin-orbit splitting of theG8 and G7

bands, theEp parameter characterizes thekp interaction of
the valence- and conduction-band states and is related to
interband matrix element of the angular momentum oper
throughEp52P2, and the parameterF determines the con
duction band curvature due to the interaction with the rem
bands. The modified Luttinger parametersg1 ,g2 ,g3, andk
describe the effect of the remote bands on the (G81G7)
valence band of the semiconductor and can be expre
through the standard Luttinger constantsg i

L andkL ~see the
Appendix!. The parameterq, determining the cubic-in-J
valence-band spin splitting, is small and, hence, is drop
in the subsequent calculations. Following Foreman,19 we as-
sume that the quadratic-in-k conduction band term (F
11/2) is zero in order to eliminate spurious solutions w
very large real or imaginary wave vectors, as it was sho
that this modification of the 838 Hamiltonian does not lead
to a noticeable variation in the electron or hole dispersion
the same time, it allows us to conveniently express
conduction-band envelope via wave function component
the valence band. For consistency we neglect the rem
band contributions to theg factor of conduction electrons
thus,g0 in our calculation is equal to the Lande´ factor of free
electrons (>2). Again, as far as we focus on the states in
valence band, this can be done safely. The matrix elemen
the bulk 838 Hamiltonian are given in the Appendix of Re
18.

The question of boundary conditions for multicompone
envelopes emerges as the top priority in heterostructures
abrupt interfaces. Imposing the continuity condition on t
envelope functionswn(z) as the first boundary condition an
integrating the multiband Schro¨dinger equation over the in
terface region, we arrive at the second boundary condi
which is defined by the particular relative order of the diffe
entiation operatorskz52 i ]/]z and coordinate-~material-!
dependent band structure parameters in the Hamiltonian
this is not an issue in the bulk, the correct order of opera
can be easily obscured or not even established firsth
When one wishes to make a transition from the known b

FIG. 1. Band diagram of a typical III-V semiconductor.
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to a heterostructure effective Hamiltonian, it becomes imp
sible to reestablish this order, which prevents one from
tablishing correct boundary conditions. The only easily u
derstandable requirement to be fulfilled is that t
Hamiltonian eigenenergies be real. This condition can
met, for example, by the frequently used procedure of
so-called Hamiltonian symmetrization that forces real eig
values ~symbolically it can be presented as a substitut
Akakb→@kaAkb1kbAka#/2).

On the other hand, straightforward methods to constru
kp Hamiltonian for a heterostructure determine unambig
ously the order of the operators and, hence, the set of
boundary conditions.20,21 Relocating all material-dependen
parameters in the Ram-Mohan Hamiltonian18 in betweenthe
differentiation operatorska ,kb ~which is implicitly assumed
anyway in all approaches! while keeping the operator orde
intact, we end up with the form of Hamiltonian with a co
rect order of operators that is exactly equivalent to one, c
sistently derived in Ref. 21. Note that Ram-Mohanet al.18 in
their analysis used the symmetrization procedure inste
Still, as in any approach that explicitly accounts for the co
pling with the conduction band, the questionable order
operators in Ref. 18 concerns only the remote-band ter
Thus, the significance of the problem is greatly reduced
comparison to, for example, more simple 636 valence band
models that treat the conduction band as one of the rem
bands. It turns out that in our particular case of LH states
the bottom of the subband~so as withkx5ky50), the result
for the in-planeg factor is completelyindependent whethe
the symmetrization is applied or not.

IV. IN-PLANE COMPONENT OF THE LH g FACTOR

Let us start with a qualitative analysis of the limitin
cases of very wide and very narrow QW’s. Some sim
conclusions can be made based solely on the form of
Hamiltonian itself, without any numerical calculations in
volved. For very wide QW’s, we approach the case of a b
semiconductor where the applied magnetic field freely mi
together LH and HH states forming a double ladder of La
dau levels. When the magnetic field is still small in compa
son to the quantization energies~or strain-induced splittings
in the case of strained semiconductors!, the explicit form of
the 838 kp Hamiltonian allows one to obtain immediate
the g factor components for all three hole subbands as s
marized in Table I. The same is true in the case of ultran
row QW’s, where the parameters of the barrier layer defi
hole g factor tensors.

One immediately notes that the HH in-planeg factor is
zero in this model~where, as we already mentioned, th
small valence-band parameterq is neglected!. Even with the

TABLE I. ‘‘Bulk’’ hole g factors.

Growth axis In-plane

HH 26kL(0) 0
LH 22kL(0) 24kL(0)
SO 24kL(2D)22 24kL(2D)22
3-3
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A. A. KISELEV, K. W. KIM, AND E. YABLONOVITCH PHYSICAL REVIEW B 64 125303
parameterq accounted for, the in-planeg factor value is too
small for direct spectroscopic resolution of the HH sublev
in the available magnetic fields. The SO states canno
made the ground hole state in typical III-V heterosystem
Ultimately, only the LH states show promise. Thus, o
needs to design a structure where the LH subband will
pushed up by the intrinsic strain and evaluate the LHg factor
where the renormalization of the bulk value is due to str
and quantum confinement in the QW structure. To achi
this goal, we apply the general recipe outlined in Sec. II.

The LH wave functionu↑& in QW’s at the bottom of the
subband (kx5ky50) can be presented in the form

u↑&5u~z!uS↑&1v~z!uLH↑&1w~z!uSO↑&, ~3!

where u,v, and w are conduction band, LH, and S
z-dependent envelopes, respectively; Bloch amplitudesu j &
for the 838 model are given in the Appendix. The set
functions (u,v,2w) definesu↓&; it is a result of the particu-
lar choice of the phases in the Bloch amplitudes. HH sta
do not mix into functionsu↑&, u↓& at the bottom of the sub
band, simplifying derivations considerably. The electron
velopeu can be expressed via the first-order derivatives
functionsv andw as

~Eg2E!u5A2

3
Pkzv2

1

A3
Pkzw. ~4!

Excludingu(z), one finds that the functionsv(z) andw(z)
are solutions of a pair of second-order differential equati

S 2kzF1

2
g1

L~E!1g2
L~E!Gkz2E A2kzg2

L~E!kz

A2kzg2
L~E!kz 2

1

2
kzg1

L~E!kz2D2E
D

3S v

wD 50. ~5!

These equations are complimented by the boundary co
tions at the heterostructure interfaces, requiring continuity
the envelopes (v,w) and combinations of their first deriva
tives ]H/]kz(v,w), which together conserve electron flu
through the interface. The valence-band offsetV at the het-
erointerface should be incorporated into Eq.~5! when con-
sidering barrier layers in an obvious way through the sub
tution E→E1V. The normalization condition must b
applied to the total multicomponent wave function given
Eq. ~3!.

Our general procedure gives for the in-plane compon
of the LH g factor

gLH,'5gimp1gexp, ~6!

wheregimp is a result of the evaluation of the first, vecto
potential-related term in Eq.~2!,
12530
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gimp54E dzzF 3

A2
g3~w* v82v* w8!1

Ep

3~Eg2E!

3S v* v82
1

A2
v* w81A2w* v82w* w8D G , ~7!

while gexp comes from the second term responsible for dir
interaction with the magnetic field,

gexp54E dzF1

2
uuu22kuvu21S k1

1

2D uwu22
1

A2
~k11!

3~v* w1w* v !G . ~8!

In the last equation we decided not to express the envelou
via functionsv andw utilizing Eq. ~4!, as the present form
produces a more transparent result with terms that sim
account for the direct interaction with the magnetic field
the bulk conduction, LH, and SO bands. For the localiz
LH statesv andw are real andu is pure imaginary.

The theory developed thus far is equally applicable to a
cubic semiconductor with a band structure similar to th
shown in Fig. 1. This includes both III-V and II-VI pure
compounds and solid solutions. With the strain-induced
ergy shifts included, wurtzite crystals can be analyzed
well in the framework of the quasicubic model that trea
wurtzite crystal as a strained cubic one.

In our analysis, we assume the structure to be gro
pseudomorphically on an unstrained substrate. The choic
the substrate composition will define the common in-pla
lattice constantasub and, consequently, strains in the heter
structure layers: «'[«xx5«yy5asub/a021, « i[«zz5
22C12/C11«' . TheCi j are the bulk elastic moduli. Shifts o
the conduction- and valence-band edges due to the strain
defined by the deformation potentials and should be incor
rated into the calculation procedure via the 838 kp effective
Hamiltonian. In the first-order approximation, the energy d
placement of theG6 minimum is linear in strain. By symme
try, this shift can be written as

dEc5ec«, ~9!

where we used notation«5«xx1«yy1«zz.
For the relevant strain-induced shifts in the valence ba

we have

dEHH5av«2bv~« i2«'!,

dELH5av«1bv~« i2«'!, ~10!

dESO5av«,

dELH,SO52A2bv~« i2«'!,

whereav ,bv are the valence-band deformation potentials
the standard Bir-Pikus notation.22 All shifts are diagonal with
respect to the spin-up, spin-down electron and hole state
3-4
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V. NUMERICAL EXAMPLE AND DISCUSSION

For numerical illustration we have chosen structures w
both well and barrier materials based on the quaternary s
solution In12xGaxAsyP12y , which is useful for 1.3 and
1.55 mm optoelectronic applications. Although as its pa
ticular representative we use here only the most widely
lized In12xGaxAs/InP heterosystem, we decided to prepa
our numerical procedure and data, so that they are rea
applicable to more general, two-parameter material com
sitions for each heterolayer. Band structure parameters
constituent pure compounds are given in Table II. Comp
knowledge of the detailed band structure is unavailable
present for all InGaAsP solid solutions. Thus, based on
values in Table II, we use an interpolation scheme for so
tions with different (x,y) compositions. For the band gap w
apply an equation given in Ref. 23~with a proper adjustmen
for the low-temperature regime!:

Eg51.42410.713x21.084y10.758x210.078y220.078xy

20.322x2y10.03xy2 ~in eV!. ~11!

For other parameters of the band structure (D,Ep , modified
— only remote band contributions — Luttinger paramet
g i ,k) we apply a bilinear interpolation of values for pu
semiconductors. Slightly different interpolation schem
were also proposed;24 in common, they have an importan
provision that, while interpolating, conduction band cont
bution to conventional Luttinger parameters should
treated separately and diversely from remote-band contr
tions.

The lattice mismatch between solid solutions with diffe
ent compositions in the InGaAsP family can reach 8%. T
absence of reliable deformation potentials for InGaAsP s
solutions and drastic scattering of data for the respective p
III-V semiconductors suggests choosing some average va
for all compositions and not applying an interpolatio
scheme. For our calculation we useec510 eV,av520.7 eV,
andbv521.7 eV.

An interesting question arises concerning the values of
conduction- and valence-band offsets at the heterointerf
in the InGaAsP family. The only systematic measureme
found are for the lattice-matching In0.5310.47yGa0.47yAsyP12y

TABLE II. Parameters of the band structure for III-V semico
ductors.

GaAs GaP InAs InP

Eg ~eV! 1.519 2.895 0.418 1.424
D ~eV! 0.341 0.080 0.38 0.108
Ep ~eV! 28.9 ;25 22.1 20.4
g1

L(0) 6.85 4.2 19.7 5.0
g2

L(0) 2.10 0.98 8.4 1.6
g3

L(0) 2.90 1.66 9.3 2.0
kL~0! 1.2 0.34 7.68 0.97
a0 ~Å! 5.652 5.447 6.048 5.859
C11 (1011 dyn cm22) 11.26 14.05 8.33 10.11
C12 (1011 dyn cm22) 5.71 6.2 4.53 5.61
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solid solutions grown on an InP substrate, where
conduction-band offset isDEc5288y13y2 meV.25 In view
of the lack of other reliable information, we therefore assu
that this dependence governs the offsets ratioDEc /DEv on
the (x,y) compositions plane along the line (0.47y,y) of
lattice matching quaternary compounds, and for points
the line we take the nearest point on the line to defi
DEc/DEv .

Figure 2 presents calculatedg factor values for a free~not
bound in the exciton or localized! LH in the unstrained as
well as strained InGaAs/InP heterostructures as a functio
the InGaAs layer thickness. We repeat that the orientation
the applied magnetic field was assumed to be in-plane.
calculation was carried out for the hole states at the bot
of the LH subband in the single QW structure. Both solid a
dashed curves are produced using the procedure outl
above; a solid line is used when the LH forms the grou
hole state while the dashed line is used otherwise. Depen
on the concurrent effects of the strain caused by the lat
constant mismatch and the quantum confinement, ei
LH’s or HH’s form the ground hole states. In very wid
wells, strain alone defines the order of levels. If the effects
strain and confinement are opposite in sign, a crossove
the character of the ground state happens at some interm
ate well width, below which the effect of confinement pr
vails. We emphasize again that we are primarily intereste
the structure with the ground hole state formed by the L
Our calculation gives dependences that are steep at s
layer thicknesses, but asymptotically approach their resp
tive ‘‘bulk’’ values for very wide QW’s. Though not explic-
itly present in Fig. 2, at very narrow well widths~where the

FIG. 2. The in-plane LHg factor in In12xGaxAs/InP QW as a
function of the well layer width. Solid and dashed lines pres
results of the calculation using Eq.~6!. Depending on the QW width
and intrinsic strain defined by the InGaAs layer compositionx,
either the HH or LH subband acts as a ground hole state in the Q
this information is delivered by the line type: dashed and solid lin
respectively. The dotted line visualizes thenaiveapproach based on
the averaging of the material-dependent Luttinger parameterkL(E)
~‘‘bulk’’ in-plane LH g factor! with probabilities to find the hole in
the well and barrier layers.
3-5
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applicability of the macroscopickp method itself can prob-
ably be questioned! the in-plane LHg factor crosses zero fo
our heteropair choice. In this case, there will be no Zeem
splitting of the spin-up and spin-down LH states. For t
purposes of the quantum receiver,5 one should avoid this
region of well widths. Indeed, theg factor should be kept a
a reasonably large value, which we have shown is feas
for a broad range of structure widths.

Results of the unsophisticated approach, meaning sim
averaging of the~energy-dependent! ‘‘bulk’’ in-plane values
for LH’s ~given in Table I! with quantum-mechanical prob
abilities to find particle in different heterolayers, are al
given in Fig. 2 as the dotted line. By no means simple av
aging can be considered as a satisfactory procedure.

VI. SUMMARY

We have studied the effect of an external in-plane m
netic field on the structure of LH states in semiconduc
heterostructures with a single QW. The hole states w
found in the framework of the sophisticated 838 kp model.
The dependences of the in-plane LHg factor on the QW
parameters for both lattice-matched and -strained InGa
InP heterosystems were calculated. Significantly, the in-pl
LH g factors in heterostructures differ radically from th
value24kL, which should be considered to be the effecti
transverse LHg factor for a bulk semiconductor. Only in th
limiting cases does theg factor in QW approach this value
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APPENDIX

The Bloch amplitudesu j &, which are eigenstates of th
conduction and valence bands at theG point, can be ex-
v

T
ys

12530
n

le

le

r-

-
r
re

s/
e

e
al

pressed through Kane basis functionsS, X, Y, andZ in the
following way:

u1&5uS↑&,

u2&5uHH↑&52 i /A2u~X1 iY!↑&,

u3&5uLH↓&5 i /A6u~X2 iY!↑12Z↓&,

u4&5uSO↓&52 i /A3u~X2 iY!↑2Z↓&,

u5&5uS↓&,

u6&5uLH↑&52 i /A6u~X1 iY!↓22Z↑&,

u7&5uHH↓&5 i /A2u~X2 iY!↓&,

u8&5uSO↑&52 i /A3u~X1 iY!↓1Z↑&. ~A1!

The modified Luttinger parametersg i and k determine
the influence of the remote bands on the valence band
semiconductor (G71G8) and define the energy-depende
Luttinger parametersg i

L andkL as

g1
L~E!5g11Ep/3~Eg2E!,

g2
L~E!5g21Ep/6~Eg2E!,

g3
L~E!5g31Ep/6~Eg2E!,

kL~E!5k1Ep/6~Eg2E!. ~A2!

Values ofg i
L(0),kL(0) are typically presented in the litera

ture as they are derived from measurements on the h
states at the top of the valence band in bulk semiconduct
They are simply denoted then asg i

L ,kL. In the presence of
strain, an additional term~i.e., strain-induced shift of the
conduction banddEc) should be incorporated into the energ
denominators. The shift in the valence band will be a
counted for by the changes in the energy of the LH stateE.
.
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