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Abstract—We present an optical tandem single-sideband The adjacent carier is not
receiver that enables the detection of signals having different Opfical fitey rejected
information in the two sidebands of the same optical carrier. The Y
technique relies on the use of a dual-electrode Mach—Zehnder (a) A

modulator and achieves heterodyne detection without the use of an
optical local oscillator. Sharp filtering requirements are met in the

. . .. . (Docl (Ooc2 Docs
electrical domain, eliminating the need for wasteful guardbands.

Index Terms—Heterodyning, optical-fiber communications, The two sidebands contain
subcarrier multiplexing, wavelength division multiplexing. different information

I. INTRODUCTION

HERE HAS been considerable interest in subcarrier
multiplexed (SCM) systems [1] owing to applications
in areas such as fiber-wireless systems [2] and multichan¥ 1. (®) Pure SSB WDM systems need guardbands to prevent adjacent
. L . . carriers from interfering with the desired signal. (b) TSSB signals enable
video distribution [3]. However, conventional SCM systeMgarriers to be twice as far apart without wasting bandwidth. Optical channels
use double-sideband modulation, reducing their spectral &y be separated by coarse optical filtering since the sidebands are finally
ficiency and increasing the dispersion penalty present in tieParated by sharpfilters in the electrical domain.
long-distance transmission of such signals.

Approaches to improving spectral efficiency include dispeby a photodetector since the two sidebands would interfere in
sion division multiplexing [4] and spectral overlap [5], whilethe microwave domain. Using an optical filter to distinguish
optical single-sideband (OSSB) modulation has been proposetween the sidebands [9] is spectrally very wasteful since
as a solution to both problems [2], [6]-[8]. However, wavelarge guardbands would be needed between the sidebands and
length division multiplexed (WDM) systems based on OSS8ptical carrier.
signals would require large guardbands between channels to adn this paper, we demonstrate a new type of TSSB receiver,
commodate the slow rolloff characteristic of optical filters [se@hich enables the reception of TSSB signals by achieving het-
Fig. 1(a)]. erodyne detection without the need for an optical local oscil-

We have recently demonstrated a modification of the SS&tor (LO). The system is built using off-the-shelf components
technique, which we callettndemsingle-sideband (TSSB) and uses sharp electrical filtering to ensure that the spectral effi-
modulation [9]. TSSB modulation doubles the informaeiency is notlimited by the slow rolloff present in optical filters.
tion capacity by transmitting different information in the
two sidebands of the same optical carrier. The separation)| EyperiMENTAL SETUP AND PRINCIPLE OF OPERATION
between optical carriers is also doubled compared to pure
SSB modulation, thus enabling easier rejection of adjacent™ Plock diagram of the experimental setup is shown in
and unwanted optical carriers by a coarse optical filter [s€éd- 2. To demonstrate our receiver, we generated TSSB signals

Fig. 1(b)]. However, TSSB signals cannot be directly detecté§ing the transmitter described in [9]. The light source is an
external-cavity tunable laser diode (ECT-LD) tuned fiQ
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Fig. 2. Block diagram of the experimental setup.

TABLE |
HETERODYNING TERMS PRESENTAFTER PHOTODETECTOR(NO FFP)

Term # Local Oscillator Sideband LSB/USB IF IF (f=2.5 Ghz, £,=9.5 Ghz)
frequency frequency
1 £, f.f, LSB f, 2.5
2 f, £+, USB f, 2.5
3 foc f°c+f2-f] LSB f2'f| 7.0
4 fl,c foc+f2+fl USB fz+f1 1 2 : O
5 £+, f A, LSB £+, 12.0
6 £ +f, £, USB £-f, 7.0
7 £+, f A, LSB f, 2.5
8 .t f USB f, 2.5

electrical modulation schemes may be chosen to further iBHz and the up-shifted version of the optical carrierfat ¢ f2)
prove spectral efficiency. The two signals in ariend B are  GHz, both serve as LOs and beat with the original, as well as
then fed to the two inputs of a 9@ybrid coupler, the outputs with the up-shifted sidebands. Since there are two LOs and four
of which are used to drive the quadrature biased DE-MZBIdebands (two original and two up-shifted), we would expect
through bias#’s. The signal that emerges from the DE-MZMa total of2 x 4 = 8 major terms from the heterodyning. The
is a TSSB signal consisting of an optical carrierfat GHz, a intermediate frequency (IF) at which each term would appear,
lower sideband (LSB) atf{,. — f1) GHz, and an upper sidebandwould be exactly equal to the difference in frequency between
(USB) at (f,c + f1) GHz [9]. the LO and the sideband signal causing it [10].

At the receiver, the signal is first coupled to a quadrature bi- Table | shows a list of the eight heterodyne terms expected.
ased DE—-MZM. Only inputB of the 90 hybrid is used and For a TSSB signal, clearly the pairs of signals, (3) and (6), as
the DE-MZM acts as an image rejection mixer up-shifting theell as (4) and (5), interfere with each other since the LSB and
incoming optical spectrum by, GHz, while suppressing the USB appear at the same IF. Thus, it is impossible to separate the
downshifted version [6], [9]. (We used only a single opticaiwo sidebands by this method if all eight terms are present. Elim-
wavelength; however, in a WDM system, we would need to sejpating terms (5) and (6) however, would enable us to recover the
arate the desired channel by a coarse optical filter like the ob8B and USB data from signals (3) and (4), respectively. Since
in Fig. 1(b) prior to upshifting.) terms (5) and (6) are obtained by the LSB and USB beating with

The optical spectrum at this stage would then consist of ttiee up-shifted carrier atf{.. + f2) GHz, we may suppress them
original spectrum centered At. GHz (carrier atf,. GHz, LSB by suppressing this carrier. This does not affect signals (3) and
at (fo — f1) GHz, USB at (,. + f1) GHz) and a copy of it (4) since they are obtained by the sidebands beating with the
centered atf,. + f2) GHz (carrier at {,. + f2) GHz, LSB at original optical carrier aff,. GHz.

(foe + fo — f1) GHz, USB at (... + f» + f1) GHz). When this  The up-shifted optical carrier af{. + f2) GHz is suppressed
signal is incident on a photodetector, the optical carrief,at by a fiber Fabry—Perot (FFP) of free spectral range (FSR)
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Fig. 3. Receiver performance in the case of purely LSB signals. (a) Optical spectra after the DE-MZM both with and without the use of FFP. Notéélde up-shi
carrier suppression when the FFP is used. (b) Projected microwave spectra, as obtained from Table |, after heterodyning in the photodetestmedc) Mea
microwave spectra showing the suppression of the unwanted term at 12 GHz when the FFP is used.

10 GHz and a finesse of 200 operating in reflection mode. ikor eye diagrams, and an error performance analyzer to measure
feedback loop keeps the FFP locked to the up-shifted carrkgt error ratio (BER).

wavelength. This has the effect of suppressing terms (5)—(8),

thus enabling the error-free recovery of the LSB and USB from

terms (3) and (4), respectively. We may thus conclude that terms [l. RESULTS AND DISCUSSION

(3) and (4) are very desirable to us, while terms (5) and (6)In order to test our design, we uséd. = 193.7 THz, f, =

are undesirable. We will use this notion in the remainder of oyr_ '~ andf, — 9.5 GHz with different 500-Mb/s PRBS data
discussions._Note that we do not really care about terms (1), (%)5, each’sideband. The 9Bybrid couplers used in the experi-
(7), and (8) since they all appearfatGHz and we have N0 way et dig not go all the way down to dc, thus restricting us to

of distinguishing between them. B a minimum f; of 2.5 GHz. The bandpass nature of the hybrid
_The signal reflected from the FFP was amplified by an egqypler places a limitation on the ultimate achievable spectral
bium-doped fiber amplifier (EDFA) and then detected by agfficiency, but this wastage of bandwidth is constant regardless
Agilent Lightwave Converter 11982A with a conversion gaigf the number of subcarriers used, suggesting that the spectral
of 300 V/W. No other electrical amplification was used. Thgfﬁciency can be improved by using more subcarriers.
output was connected to a bandpass filter (BPF) centered afe first tested the receiver with a pure LSB, obtained by con-
(f1+f2) GHz, followed by two stages of microwave down-connecting a signal only to inputt at the transmitter. The optical
version to bring the signal back to baseband. The RF LOs usgfbctrum entering the receiver consisted of an optical carrier at
for down-conversion were exactly those used for up-conversiof), = 193.7 THz, and an LSB atf,. — 2.5) GHz. Fig. 3(a)
enabling exact phase and frequency matching. In practical sggows that the DE-MZM at the receiver had the effect of cre-
tems where the transmitter and receiver are far apart, the RF ¢aiing an up-shifted copy of the spectrum centered at+£ 9.5)
rier can be recovered through the use of a Costas loop [11]. T®Eiz. The optical spectrum was measured immediately after the
baseband signal was connected to a 500-MHz low-pass filEDFA both with and without the use of the FFP to suppress the
(LPF), followed by a digital oscilloscope (HP 54542C) to monearrier at (f,. + f2) = (foc + 9.5) GHz.
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Fig.4. Receiver performance for the case of TSSB signals. (a) Optical spectra after the DE-MZM both with and without the use of FFP. Note theapishifted
suppression when the FFP is used. (b) Projected microwave spectra, as obtained from Table I, after heterodyning in the photodetector. (c) deaauesd mi
spectra showing that the use of the FFP enables undistorted recovery of the USB data at 12 GHz. (d) Eye diagrams of the signal at 12 GHz for bothdcases. A goo
eye diagram is obtained when the FFP is used.

Fig. 3(b) shows the predicted microwave spectra based orin Fig. 4, we show the receiver operation for a TSSB signal.
Table | for the optical spectra shown in Fig. 3(a). Table | suggesthis time the incoming optical spectrum consisted of an optical
that only the odd-numbered terms would be present after tbarier atf,. = 193.7 GHz, an LSB at {,. — 2.5) GHz, and a
photodetector, while the even-numbered terms would be absei®B with different data atf,.+2.5) GHz. Once again, Fig. 4(a)
since there is no USB. Thus, any signal appearing at 12 Gbklzows the original and up-shifted versions of the TSSB optical
would be solely due to term (5), since term (4) would be absespectrum, both without and with the use of the FFP.

Tuning the FFP to the up-shifted carrier frequencyfat 4 9.5) Fig. 4(b) shows the expected microwave spectrum for both
GHz would eliminate term (5). cases. When the FFP is not used, we would expect all eight

Fig. 3(c) shows measured microwave spectra for these tWeterodyning terms from the photodetector, thus resulting in all
cases, confirming our predictions. The undesirable LSB tesidebands interfered with each other. However, when the FFP is
(5) at 12 GHz was suppressed by more than 15 dB. used, we would expect to recover the LSB and USB data from
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TSSB modulation doubles the spacing between optical carriers
without needing guardbands, making this an effective scheme
to increase the overall spectral efficiency of a WDM system,
while also providing immunity from dispersion penalties.
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obtained for TSSB signals when the up-shifted carrier suppression is employed.

1
signals (3) and (4), at 7 and 12 GHz, respectively.

Fig. 4(c) shows the measured microwave spectra of the signal’!
at 12 GHz. When the FFP was not used, the PRBS spectrum was
severely distorted, giving us a strongly interfered eye diagram(3]
in Fig. 4(d) and confirming our reasoning. Notice that the dis-
tortion of the spectrum was minimal when the FFP was used,4
resulting in an excellent eye diagram in Fig. 4(d).

Fig. 5 shows BER data for the case of pure SSB transmission
and TSSB transmission both with and without up-shifted carrier(s)
suppression. When the up-shifted carrier is suppressed, a good
BER curve is obtained; however, there is a power penalty of a
little less than 2 dB in comparison to the pure SSB case. Wejg)
think that this is probably due to the imperfect suppression of
the up-shifted carrier and may be improved by using an FFP
with greater contrast in the reflection mode. 7

In all of the above cases, sharp microwave filtering is used
to distinguish between terms (3) and (4) , or the LSB and USB,
enabling the system to tolerate the slow rolloff present in optical

filtersd, thus eliminate guardbands. ]

(20]

IV. CONCLUSIONS [11]

[12]
We have successfully demonstrated a TSSB receiver that
achieves a heterodyning function without the use of an optical
LO and its associated complexities. This could lead to the
realization of other applications that up to now required an
optical LO to implement.
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