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Ultrathin metallic films have an interesting electromagnetic behavior as the frequency of the incident field is
varied over several orders of magnitude, because of the dramatic dispersion exhibited by the metal permittiv-
ity. We study a finite multilayer of periodically placed planar conducting films for frequencies varying from
the dc limit to the far ultraviolet. We provide the optimized reflectivity and transmittivity of the system for
the various frequency regimes involved. Further, we produce the dispersion diagrams of the corresponding
photonic bandgap structures, which clearly show the transition of the system from a metallic (low frequencies)
to a dielectric (optical frequencies) behavior. In addition, simple design formulas for maximum reflectivity of
finite film number N are presented in terms of film thickness and film spacing in each of the representative
frequency ranges. © 1999 Optical Society of America [S0740-3232(99)00808-X]
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1. INTRODUCTION
Metallic conductors are excellent reflectors at microwave
frequencies but become transparent at optical
frequencies.1 This highly dispersive behavior is well de-
scribed by the permittivity given by the classical Drude
model.1 This model is a special case of a Lorentzian,
where the electron oscillators have become free charge
carriers. An important issue is whether one can enhance
this dispersive behavior of bulk metals by using coher-
ence effects resulting from appropriate design of thin
films2 periodically placed on dielectric substrates. This
is a subject that can be examined separately in the
microwave3 and the optical4,5 regime, because the metal
permittivity behaves very differently in each of these fre-
quency regions. According to the frequency regime, the
multiple Fabry–Perot resonances that are due to
periodicity6 will be superimposed on the inherent disper-
sion of the material, yielding a variety of filter responses.
The purpose of this paper is to examine the general filter
response of such structures, optimizing both the reflection
and the transmission, within the natural frequency re-
gimes that characterize the bulk behavior of the metal.

It has already been shown that, in the microwave re-
gime, one can increase the very high reflectivity of bulk
metal by appropriate design of ultrathin-metal-film mul-
tilayers, whose individual thickness is much smaller than
the skin depth at those frequencies.3 The reflectivity en-
hancement is produced by correctly distributing the in-
duced currents on all metal films, so that they create
minimum resistive losses. It has been shown that this is
a sensitive optimization, resulting in very narrow-band
designs.
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In this paper we will supply a unified description of this
behavior and, most importantly, its evolution at optical
frequencies through dispersion diagrams. This will also
describe how the maximum possible reflectivity develops
as the frequency increases. Our unified results will be
useful in designing optimum reflectors at any frequency
of engineering interest as well as optical filters in the
transparency regime above the plasma frequency.

2. REFLECTION AND TRANSMISSION
THROUGH A PERIODIC FILTER
CONSISTING OF N METAL FILMS
Consider the system of N metal films, laterally infinite,
each of thickness dc , with successive films separated by a
dielectric of thickness dd (da for air gaps), as in Fig. 1.
Using standard transfer-matrix theory,7 we can derive
closed-form, exact analytical expressions for the reflection
and transmission coefficients of the structure under
plane-wave incidence.3

Denoting the polarization state of the incident plane
wave by p ( p 5 1 → TE incidence, p 5 2 → TM inci-
dence) and the angle of incidence by u, we can write

GN
p ~ u! 5

2u21~1 2 jN!

~u11 2 u22!~1 2 jN! 1 z~u11 1 u22!~1 1 jN!
,

(1)

where

z 5
u11 2 u22

u11 1 u22
F1 1

4u12u21

~u11 2 u22!2G1/2

, j 5
1 2 z

1 1 z
.

(2)
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The matrix elements uij are obtained from the transfer
matrix U through one unit cell of the filter:

U 5 v 3 u,

u 5 F 1 2 Ga,c
1;pGa,d

1;p 2~Ga,d
1;p 1 Ga,c

1;pZa,d
p !

Ga,c
1;p 1 Ga,d

1;pZa,c
p 2Ga,c

1;pGa,d
1;p 1 Za,c

p Za,d
p G , (3)

where

v 5 v1v2 ,

vj 5 F1 2 ~Ga, j
p !2 exp~22g jdj!

1 2 ~Ga, j
p !2 Gexp~ g jdj!, j 5 1, 2,

(4)

and the functions Ga, j
1;p are the reflection coefficients of one

slab of material j P $conductor [ c, dielectric [ d% for
p-polarized plane-wave oblique incidence from air, given
by

Ga, j
1;p 5 Ga, j

p F 1 2 exp~22g jdj!

1 2 ~Ga, j
p !2 exp~22g jdj!

G , (5)

and the Za, j
p are closely related (but irreducible) func-

tions, given by

Za, j
p 5

2~Ga, j
p !2 1 exp~22g jdj!

1 2 ~Ga, j
p !2 exp~22g jdj!

. (6)

In these equations appear the intrinsic (bulk) reflection
coefficients of the materials, Ga, j

p , and the propagation
constants g j for the plane waves:

Ga, j
p51 5

~h j /cos u j! 2 ~1/cos u!

~h j /cos u j! 1 ~1/cos u!
,

Ga, j
p52 5

h j cos u j 2 cos u

h j cos u j 1 cos u
,

g j 5 jk0nj cos u j , (7)

where h j are the relative wave impedances and nj are the
refractive indices. For nonmagnetic materials, which we
will be using in this paper,

nj 5
1

nj
, nj 5 Ae j, (8)

and, from Snell’s law,

cos u j 5 ~1 2 h j
2 sin2 u!1/2. (9)

Fig. 1. Plane-wave incidence on a multilayer of metal films.
The transmission coefficient through the filter, TN
p ( u), is

similarly calculated:

TN
p ~ u! 5 GN

p ~ u!S u11 1 u22

u21
D

3 zF2Ga,c
1;pGa,d

1;p exp~2gcdc!exp~2gddd!

Ga,c
p Ga,d

p ~u11 1 u22!~1 1 z!
GN

3 ~1 2 jN!21. (10)

These formulas are exact, and the behavior of the sys-
tem is completely determined once the complex permittiv-
ity functions ec , ed are specified. It is important to note
that the dispersive behavior of GN , TN derives from two
sources:

1. The coherence that is due to periodicity. This
property resides in the phase factors exp( gj dj), which pro-
duce Fabry–Perot scaling with scale k0nj(v)dj . We note
that, for dispersive bulk media, the corresponding refrac-
tive indices nj are already frequency dependent; therefore
the above Fabry–Perot scaling deviates from the usual
one (k0dj) for nondispersive media.

2. The dispersion that is due to the bulk reflection co-
efficients Ga, j

p (v). These depend on the wave imped-
ances h j , which are clearly dispersive, but do not depend
on the thicknesses.

The combined effect of sources 1 and 2 can create sev-
eral different filtering options, especially in the plasma
frequency regime, where Gc exhibits the transparency
transition. We further note that, although our system is
simple geometrically, a complete examination and optimi-
zation of its parameter and frequency dependence is non-
trivial. Even for nondispersive permittivities for the ma-
terials (e j 5 e j

r 2 je j
i), the system’s reflection and

transmission depend on seven parameters (N, dc ,
dd , e c

r , e c
i , e d

r , e d
i ) and the frequency v. What we will

do is systematically optimize the system’s response in a
way that makes the physical scaling of those variables ap-
parent, and so the conclusions derived are numerically
valid without specifying concrete materials and fixed op-
tical constants.

3. NUMBER OF FILMS N ˜ `

The eigenvalues w1,2 of the unit-cell matrix U provide the
Bloch–Floquet propagation constant for the medium com-
posed of an infinite number of metal films (N → `):

exp@6jk~dc 1 da!# 5 w1,2

5
Tr~U! 6 $@Tr~U!#2 2 4 Det~U!%1/2

2

5
v~u11 1 u22!~1 6 z!

2
. (11)

One can show, after some tedious algebra, that
Det(U) 5 1, and hence the two eigenvalues are inverses
of each other and correspond to left/right propagation of
the Floquet modes inside the structure. Since we have
metallic films, which are lossy at all frequencies, there is
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always absorption, and hence the system has stop bands
at all frequencies. Therefore exp@ jk(dc 1 da)# has to be
identified with the eigenvalue whose modulus is . 1,
which happens to be

w [ w1 5
v~u11 1 u22!~1 1 z!

2
. (12)

Therefore, separating k 5 kr 2 jki and writing the total
thickness of the unit cell as a [ dc 1 dd , we obtain the
attenuating part of the Bloch–Floquet propagation con-
stant by

kia 5 lnUv~u11 1 u22!~1 1 z!

2
U. (13)

It is important to note that the above expression provides
the total attenuation of the wave as it propagates down
the structure. This amount of attenuation is adjustable,
because it depends irreducibly on both the coherence ef-
fect of the photonic bandgap (PBG) and the material dis-
persion, namely, on dd , dc , and v, which enter the func-
tions v, uij , and z above. For a given dc and dd , the
induced currents inside the conductor and the dielectric
produce a certain amount of resistive loss, which, how-
ever, can be adjusted by varying these thicknesses. This
adjustment affects the induced currents and, as we will
see below, produces resonances in the total attenuation,
which will actually be the most important part of the dis-
persion diagrams.

Another point that we wish to make, which is not often
mentioned, is that the above propagation constant is an
exact solution for the semi-infinite medium (N → `), fill-
ing up the half-space z . 0, not just for an infinite me-
dium. This is conceptually important because it allows
us to clearly separate the excitation region z , 0 from the
PBG medium region z . 0 and even to choose excitations
different from the plane waves that we present in this pa-
per (e.g., line or dipole excitations). This is easily seen by
computing the eigenvectors of U and showing that the
field incident on the semi-infinite structure and a re-
flected field with reflection coefficient

G` 5
U21

w 2 U22
5

vu21

w 2 cz
5

2u21

u11 2 u22 1 z~u11 1 u22!

(14)
form such an eigenvector.

The reflection coefficient in Eq. (14), on the other hand,
can be derived from the finite-N reflection coefficient, ob-
tained from Eq. (1) directly, by observing that

j [
1 2 z

1 1 z
5 exp~22jka ! → uju , 1 (15)

and hence that

lim
N5`

GN
p 5

2u21

u11 2 u22 1 z~u11 1 u22!
, (16)

which is identical with G` of Eq. (14), and thus the proof
is completed.

In the rest of this paper, we will present results for the
choice of air as the dielectric between metal films and for
normal plane-wave incidence only. Important dispersive
effects come from the metal rather than the dielectric;
therefore this will simplify the parameter dependence
without affecting the physical description or any of our
general conclusions. It will only mildly affect specific re-
sponses quantitatively in comparison with realistic de-
signs, where dielectric substrates would have to be used
to support the thin metal films.8 In that case one can re-
peat our analysis, using our above formulas and simply
substituting the permittivity of the desired dielectric.
Note that when the dielectric is chosen to be air, the for-
mulas in Eqs. (1)–(7) simplify, since Ga,d

p 5 Ga,d
1;p 5 0,

Za,d
p 5 exp(22gada).

4. SCALED PARAMETERIZATION OF
PHASE SHIFTS
It is important to study the above system in a way largely
independent of the precise values for vp and g that one
uses for any particular metal. Further, since we wish to
explore a large range of frequencies extending over 16 or-
ders of magnitude, the thicknesses of the metal films and
the air gaps should be parameterized in a natural way
that accounts easily for the scaling of the system with fre-
quency.

An excellent model for the metal permittivity is the
Drude model:

ec 5 1 2
vp

2

v~v 2 jg!
, (17)

where, for most metals, the permittivity parameters are
in the range

7 eV ,
hvp

2p
, 15 eV, 0.05 eV ,

hg

2p
, 0.13 eV

(18)

and result from fits to somewhat model-dependent and
surface-preparation-dependent reflectivity data.1,9 For
the rest of this paper, we will choose the representative
values

hvp

2p
5 7 eV→ vp 5 1016 Hz, g 5 1022vp . (19)

At microwave frequencies this gives a dc conductivity

e~v ! g! . 1 2 j
~vp

2/g!

v
→ s 5 e0

vp
2

g

. O~107 S/m!, (20)

which is typical of good conductors at low frequency.
The skin depth can be calculated from its definition, as

a function of frequency, without approximations. Given
that the refractive index of the metal is

nc 5 Aec [ b 2 ja, (21)

and with k0 denoting the free-space wave number, the
skin depth is

d ~v! 5
1

k0a
, (22)
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where we use the microwave definition of skin depth in
which the damping characterizes the field amplitude.
Using the Drude permittivity and the scaling parametri-
zation

s0 [
vp

g
, s [

v

g
, (23)

we obtain
From a scaling point of view, the natural parameteriza-
tion is to trade off the conductor thickness dependence dc
with the variable

x [
dc

d ~s, s0!
. (28)

Similarly, the phase shift produced by the dielectric (or
air-gap) thickness can be written as
b~s, s0! 5
1

A2
H S 1 2

s0
2

1 1 s2D 1 F S 1 2
s0

2

1 1 s2D 2

1 S s0
2/s

1 1 s2D 2G1/2J 1/2

, (24)

a~s, s0! 5
1

A2

s0
2/s

1 1 s2

H S 1 2
s0

2

1 1 s2D 1 F S 1 2
s0

2

1 1 s2D 2

1 S s0
2/s

1 1 s2D 2G1/2J 1/2 . (25)
The skin depth at all frequencies becomes

d ~s, s0! 5
l~ g!

2p

1

sa~s, s0!
, (26)

where we have used the notation for the free-space wave-
length l0 5 2pv/c [ l(v). For our purposes a natural
frequency normalization is provided by g, which is always
in the infrared (IR) range, between the dc limit and the
plasma frequency. Note that, while a plot of d (s, s0) as a
function of frequency v (in hertz) is sensitive to the exact
material parameters, as shown in Fig. 2, a plot of
d (s, s0)/l( g) versus s is completely insensitive to the ex-
act choice of parameters.

The parameterization of the conductor thickness can
also be done in a scalable way, which is equally natural.
The phase shift produced by the metal film is

gcdc 5 F j
b~s, s0!

a~s, s0!
1 1G dc

d ~s, s0!
. (27)

Fig. 2. Conductor skin depth versus frequency for various val-
ues of vp , g. The difference can be normalized away by trans-
forming the axes as v → v/g, d → d/l( g).
gada 5 jk0da 5 jy, (29)

where we have introduced the other natural variable pa-
rameterizing the air-gap thickness:

y [ k0da 5
2pda

l~v!
5 s

2pda

l~ g!
. (30)

Specifying the parameters vp , g in the metal introduces
one single length scale [l( g) with our choice]. Among the
three fundamental quantities dc ,da ,v characterizing the
design of our system, varying only y is equivalent to vary-
ing da , varying only x is equivalent to varying dc , but
varying only s(v) will affect not just the thickness-
independent bulk reflection coefficient Ga,c

p but also the
parameters x, y (phase shifts gcdc , gada) as well. This
trivial observation is, however, important for dispersive
media, as we have in our case, and is not often made, the
reason being that such systems have always been system-
atically analyzed in a unified way not over the whole spec-
trum but only within specific bands, where the metal op-
tical constants do not vary significantly.

From the above discussion it is obvious that the or-
thogonal cuts of the system’s response functions are the
frequency and the two phase shifts gcdc [Eq. (27)] and
gada [Eq. (29)]. Of the two phase shifts, the former
scales to the normalized thickness x [Eq. (28)], without
any extra frequency dependence, only for frequencies v
, g. We will respect this scaling accordingly in most of
the plots in this paper.

5. DISPERSION DIAGRAMS
In this section we will present the dispersion diagrams for
the semi-infinite structure (N → `). As explained
above, we will present the pairs of plots k0a versus Re(k)a
and Im(k)a, respectively.

Because we have a dissipative medium, both compo-
nents are necessary, especially since the latter completely
determines the systematics of field penetration inside the
PBG medium. We point out that we have several choices
in constructing these diagrams. The Bloch–Floquet
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Fig. 3. Continues on next page.
propagation constant k is an irreducible function of
dc , da , v for fixed permittivity parameters vp , g. To
present two-dimensional plots, one has to assume two
cuts in this parameter space. In other words, two rela-
tions fi(dc , da , v) 5 0, i 5 1, 2, have to be input. Com-
mon choices would be (1) dc , da 5 constants, v varies; (2)
dc , v 5 constants, da varies; (3) v 5 constant, dc
5 constant 3 da , da varies; etc.

Choosing option (1) would necessitate covering thou-
sands of Brillouin zones (for fixed film spacing), since the
frequency would vary over many orders of magnitude,
which would affect the air-gap phase shift y proportion-
ately, or producing many dispersion diagrams, all with
the same frequency variation but different film spacing
chosen to resonate in specific frequency bands. We pre-
fer option (2), which respects the separable functional de-
pendence of the system’s response, and we will scan the
various frequencies v parametrically, from the microwave
to the ultraviolet (UV) regime. This option is identical
with the way dispersion diagrams for PBG’s made up of
dispersionless materials are produced, since in those it is
precisely the phase shift that is being varied and the fre-
quency is entirely contained there. It also has the advan-
tage of always plotting within the first few Brillouin
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Fig. 3. Dispersion diagrams for the PBG medium: (a), (b) at v 5 0.001g (microwave); (c), (d) at v 5 g (far IR); (e), (f ) at v 5 10g (near
IR); (g), (h) at v 5 50g (visible); (i), ( j) at the plasma frequency v 5 100g (near UV).
zones, while the parametric variation provides a complete
description of the dispersive effects of the material on the
system response. Further, for any metal thickness of in-
terest and any frequency vp , 10g, the conventional
phase shift k0a that is always plotted in dispersion dia-
grams is almost entirely reproduced by the phase shift in
the air gap (k0da), because the metal film thicknesses are
tiny compared with the wavelength. To be able to com-
pare metal thicknesses directly, as the frequency changes
parametrically, we will choose the normalization stan-
dard for these thicknesses as the conductor skin depth at
frequency v 5 g:

dc 5 x0d0 , d0 [ d ~s 5 1, s0!, (31)

where the parameter x0 will be given fixed numerical val-
ues in the rest of this paper.

In Fig. 3 we plot the real and imaginary dispersion dia-
grams for parametrically varying frequencies from the
microwave to the optical. We see that for v < g the dis-
persion plots have a very different appearance from that
of the usual plots for dielectric PBG’s10: The real parts of
the plots are extremely flat near half-wavelength separa-
tion, while the imaginary plots show very large attenua-
tion for any separation except near half-wavelength.
There the attenuation gets close to zero. It is because the
wave penetrates deeply into the structure at these re-
gions that the reflectivity is expected to be enhanced
there. This is equivalent to an optimal distribution of
the induced currents, along the metal interfaces, that will
ensure minimum field amplitudes inside the metal films.
Indeed, it can be shown that, at these regions of k0a, the
field amplitude is minimum inside the metal, while at the
regions of k0a of high attenuation, the field amplitude is
maximum inside the metal. As we probe higher frequen-
cies [Figs. 3(g)–3( j)], the dispersion diagrams undergo a
transition to a low-loss dielectric PBG. The imaginary
parts of the plots show a broadband lossless behavior,
while the bandgaps become mostly reactive.

6. REFLECTIVITY MAXIMIZATION IN THE
MICROWAVE REGIME
In the rest of this paper, we will present results for power
reflection and transmission from the filter in specific fre-
quency regimes of engineering interest. We start from
the microwave regime, which appears, from the disper-
sion diagrams of Section 5, to extend all the way up to v
< g. In this regime the bulk reflectivity of the metal is
extremely close to 100%; therefore, for computational pur-
poses, we will quantify the reflectivity of our filter
through the unloaded Q factor

QN 5
1

1 2 uGNu2 , (32)
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which is really the finesse of a cavity having these filters
as walls. Further, we will normalize the above quantity
with respect to the intrinsic (bulk) metal Q factor

Qmetal 5
1

1 2 uGa,cu2 , (33)

with Ga,c provided in Eqs. (7) (we drop the polarization
superscript, since we will present only normal incidence).
Apart from yielding clean plots, this parameterization
provides a ratio QN /Qmetal completely independent of the
precise permittivity values that make up the dc conduc-
tivity s, provided that

vp
2

gv
@ 1 →

s0
2

s
@ 1, (34)

which is the case for all except extreme-UV frequencies.
In this section we will present results as a function of

metal film thickness (dc) or air-gap thickness (da) for a
fixed frequency, which we will choose as v 5 2p
3 5 GHz. We point out, however, that these results are
valid for all frequencies satisfying relation (34). To show
this, we can write in this regime the phase shift inside the
metal as

gcdc . ~1 1 j !x, (35)

since

b~s, s0!

a~s, s0!
. 1 1 O~s/s0

2!. (36)

Similarly,

Ga,c . 2S 1 2
1 1 j

D
D , D [ As0

2

2s
@ 1. (37)

In the microwave regime the quantity s0
2/s is typically of

the order of 108. Therefore, in this regime, the variables
x, y, and s become completely independent. Hence all our
results in this section will be valid for all microwave fre-
quencies if they are presented in terms of the scaling vari-
ables x, y and are normalized with respect to the intrinsic
Q of the bulk metal, Qmetal . The specific frequency de-
pendence of QN , apart from the scaling variables x, y is
introduced in the very large frequency-dependent factor
D, which affects QN , Qmetal multiplicatively (within an ac-
curacy of eight decimals) and therefore leaves the ratio
QN /Qmetal invariant.

A. Impedance of Free-Space Equivalent Thickness
We will first show the power balance of a single metal film
of arbitrary thickness in the microwave regime. The re-
sults of this subsection are very similar to those of Ref. 11,
especially Fig. 3 and Eq. (14) of that reference.

In Fig. 4 we see that the film becomes significantly re-
flecting once absorption and transmission start decreas-
ing with thickness. The length scale that sets the critical
film thickness is found at the peak of the absorption
curve. This critical thickness, which we will denote by
dIFSET , is independent of frequency (for frequencies
smaller than the near IR) and depends only on the mate-
rial conductivity:

dIFSET 5
2e0

sm0
5

2g

vp
2m0

. (38)

Therefore this is a new fundamental length scale charac-
terizing thin-film conductors. From Eq. (38) we have
chosen to call this fundamental length scale impedance of
free-space equivalent thickness (IFSET), and from Fig. 2
we see that it refers to ultrathin metal films, typically in
the range of nanometers, a full 3–4 orders of magnitude
smaller than the conductor skin depth.

B. Resonant Regions
For the microwave regime specifically, the attenuation
caused by the metal is huge, while the intrinsic reflectiv-
ity of the metal is also very high. Therefore the reso-
nances that minimize that attenuation are very narrow
band, and their positions are very fine tuned, as is seen in
Fig. 4. Hence it is useful to locate them analytically, de-
riving some simple design formulas along the way.

We expect these resonant regions to be at the vicinity of
y . p → da . l0/2. We will first show that such reso-
nant behavior indeed exists, by obtaining approximate ex-
pressions for G` . These approximations will also be use-
ful in locating the resonant regions and providing highly
accurate simplified expressions for the design of the sys-
tem. Let us parameterize the resonant regions in y by

y 5 p 2
e

2
, (39)

where e is a small parameter compared with 1. Starting
from the intrinsic reflection coefficient Ga,c , we can write

1 1 j

2D
[

1 1 j

2
t

e

2
[ h

e

2
, (40)

where we have parameterized the other small parameter
of the problem, 1/D, in terms of e, i.e.,

Fig. 4. Power balance of a single metal film, as a function of the
film’s normalized thickness in terms of its skin depth d, at fre-
quency v 5 2p 3 5 GHz. Pab , Ptr , and Pr refer to the ab-
sorbed, transmitted, and reflected power, respectively.
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1

D
5 t

e

2
, (41)

and t is a multiplicative parameter, which can be O(1) or
higher. Taylor-expanding Ga,c , Ga,c

1 up to O(e2), we have

Ga,c 5 2S 1 2 he 1
h2

2
e2D , (42)

Ga,c
1 5 2F1 2 h

1 1 x

1 2 x
e 1

1 1 x2 1 6x

2~1 2 x!2 e2G , (43)

where

x [ exp@2~1 1 j !2x#. (44)

The expansion of Ga,c
1 is valid only as long as x is not close

to zero and is very accurate up to x > 0.1. All our sub-
sequent expressions will also be valid in that range of
layer thicknesses. Finally,
Q`

Qmetal
5

hr

cr
S 1 2 ehr

1 2 ecr
D , (51)

where the e-dependent term may be retained if extreme
accuracy is required. The real parts of h and c can be
readily computed:

hr 5
t

2
, (52)

cr 5
t

2
XR2~x !

t
2

1

2t 2

1 H FR2~x !

t
2

1

2t 2G2

1 FR1~x !

t
2 1G2J 1/2C1/2

, (53)

where

R6~x ! [
1 2 exp~24x ! 6 2 exp~22x !sin 2x

1 1 exp~24x ! 2 2 exp~22x !cos 2x
. (54)

The final expression for the Q-factor ratio is
Q`

Qmetal
.

1

XR2~x !

t
2

1

2t2 1 H FR2~x !

t
2

1

2t 2G2

1 FR1~x !

t
2 1G2J 1/2C1/2 . (55)
Za,cZa,a~x, y ! 5 21 1 2S h
1 1 x

1 2 x
2

j

2 D e

2 2S h
1 1 x

1 2 x
2

j

2 D 2

e2. (45)

From these expressions we obtain

F1 2 exp~22jy !S 2Ga,c
1

1 2 Za,cZa,a
D G 1/2

5 eS h2 2 jh
1 1 x

1 2 x
2

1
4 D 1/2

[ ec, (46)

z 5 S 1 2 Za,cZa,a

1 1 Za,cZa,a
Dce, (47)

where, if e . 0, c would be in the first Riemann sheet in
order to yield z in the same Riemann sheet in the above
equation. The `-layer reflection coefficient becomes

G` 5
2Ga,c

1

1 2 z

1

1 1 ce

. 2F1 2 S c 1
j

2 D e 1
1

2 S c 1
j

2 D 2

e2G . (48)

These expressions allow us to readily compute the Q
factors in closed form:

uG`u2 5 1 2 e2cr 1 e22cr
2, (49)

uGa,cu2 5 1 2 e2hr 1 e22hr
2. (50)

Therefore
The functions R6(x) are O(1) or less in the range of x
where these expansions are valid, and relation (55) is a
form of resonance.

C. Results for the Reflectivity-Maximized System
In Fig. 5 we plot the normalized Q` factor for the semi-
infinite medium (N → `) for selected values of resonant
air-gap thicknesses (frequencies)

yR [ ~k0da!R 5 p 2
1

Dt
. (56)

We observe that the resonant Q factor is a monotonically
decreasing function of the normalized metal film thick-
ness, and the equation

Q`
max

Qmetal
5 Ap

d

dc
(57)

perfectly describes all the resonances. Therefore it pro-
vides a simple formula for the maximum possible reflec-
tivity of the semi-infinite system, made up of any good
conductor at any frequency less than the IR, as a function
of metal film thickness. For the important range 0.1
< dc /d, the curve of Eq. (57) can be reproduced from our
formula giving G` at the optimized line

yR~x ! [ ~k0da!R~x ! 5 p 2
x0.9965

D
. (58)

In Figs. 6 and 7, we examine the maximized reflectivity
response of a filter composed of a variable number N of
metal films. Note from these curves that the scaling law
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QN
max

Qmetal
U

dc ,da 5 opt

5 AN (59)

follows. Equations (57)–(59) together provide extremely
simple formulas for the design of the system, valid for any
conductor, at any frequency v , g.

Fig. 5. Normalized Q` for fixed resonant air-gap thicknesses
k0da 5 p 2 (1/Dt) versus normalized metal film thickness x
[ dc /d. The curves (from left to right) correspond to t
5 80, 70, 60, 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

Fig. 6. Normalized maximum QN (with continuously optimized
air-gap thicknesses y 5 p 2 (x0.9965/D)] versus normalized
metal film thickness x [ dc /d.

Fig. 7. Normalized QN , maximized in both dc and da , versus
number of layers N.
In Fig. 8 we show the E-field distribution (real part) in-
side the N 5 ` structure versus the nonlinear observa-
tion coordinate zn . This coordinate expands the film
thickness to allow detailed visualization of the field inside
the thin metal films. It relates to actual positions on the
z . 0 axis through the formulas (r is any integer on the
plots)

2r , zn , 2r 1 1 → z

5 r~dc 1 da! 1 ~zn 2 2r!dc ,

2r 1 1 , zn , 2~r 1 1 ! → z

5 r~dc 1 da! 1 dc 1 ~zn 2 2r 2 1 !da . (60)

The integers on the plots coincide with the successive air–
metal interfaces (zn 5 0 → first interface of first metal
film, zn 5 1 → second interface of first metal film, zn
5 2 → first interface of second metal film, etc.). We see
that for nonresonant spacing [Fig. 8(a)] the field is stron-
ger inside the metal than in the air gap (high dissipation)
and, interestingly, is more so for thinner than for thicker
films. On the contrary, for resonant spacing as in Fig.
8(b), the field distributes itself so that it has smaller val-
ues in the metal than in the air gap, more so for thinner
than thicker films. However, the minimum possible

Fig. 8. Electric field distribution, normalized to incident field
amplitude, inside the semi-infinite structure (z . 0) for normal
incidence and two film thicknesses and for two air-gap thick-
nesses: (a) quarter-wavelength (antiresonant) and (b) optimized
according to Eq. (58) for maximum reflectivity.
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value in the metal film is never zero, and the nodes of the
field are always in the air, close to the metal interface.

7. MICROWAVE-TO-OPTICAL TRANSITION
As is clear from the skin depth plots of Fig. 2 and espe-
cially from the dispersion diagrams of Fig. 3, a dramatic
transition occurs in the electromagnetic response of the
filter, for any number of films, as we cross the optical fre-
quency band g , v , vp . This can be seen even at the
well-known plasma frequency transparency transition of
the bulk metal,1 but filters will have a much more inter-
esting response because of multiple reflection coherence
effects that are superimposed on the bulk dispersion, as
has been shown in Ref. 5.

A. Optical Multiplexing
In Fig. 9 we show the filter response of an N-section filter
for fixed conductor and air-gap thicknesses. The air gap
is chosen to resonate at the plasma frequency. We see
that very high transmission is possible below the plasma
frequency, despite the fact that the total bulk of the metal
is much larger than 1 skin depth. In fact, a four-section

Fig. 9. (a) Reflectivity (solid curves) and transmittivity (dashed
curves) of a single metal film, versus v, for various film thick-
nesses parameterized in terms of conductor skin depth d0 (evalu-
ated at v 5 g); (b) transmittivity for fixed unit-cell thicknesses
as a function of N and v for N 5 1 (solid curve), N 5 2 (dashed
curve), N 5 3 (dotted curve), and N 5 4 (dotted–dashed curve).
filter transmits 95% of the power at a frequency where
the single film, with one fourth the total material, has
only 70% transmittivity. This is of course due to the
standing-wave effect produced by the periodicity, in con-
junction with the optical properties of the bulk metal at
that frequency range.

In Fig. 10 we show the optical multiplexing properties
of the filter. The periodicity of the response is controlled
by the air (dielectric) thickness, which we normalize as a
half-wavelength at parametrically chosen frequencies.
However, strong dispersive effects are prominent, and the
scaling of the response is not periodic. The response is
that of a comb filter, but it is modulated by the transmit-
tivity of the single metal film. Again, in the passbands
the transmittivity greatly overshoots the single-film val-
ues. In particular, in Fig. 10(b) we see that the four-
section filter can overshoot in transmission the single film
by as much as a factor of 3, despite having four times
more metal, totaling 8 skin depths. The first few stop
bands, on the other hand, transmit very close to zero.

B. Optical Mirrors
Another important issue is the performance of mirrors in
the optical regime, especially at UV frequencies. In this
subsection we will show the performance of the optimized
filter for maximum possible reflectivity, scaled again in a

Fig. 10. Multiplexing at optical frequencies for different air (di-
electric) thicknesses da : (a) for film thickness d0 and (b) for film
thickness 2d0 .
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universal manner that is largely independent of the spe-
cific parameters of the metal. We will first show the
maximum possible reflectivity for a semi-infinite system
for various optical frequencies.

In Fig. 11 we show the maximum reflectivity of the
semi-infinite system as a function of normalized metal
film thickness at the plasma frequency v 5 100g 5 vp ,
which corresponds to l 5 180 nm with our choice of pa-
rameters. The discrete points correspond to continu-
ously optimized parameters at discrete metal thicknesses.

Fig. 11. Maximum reflectivity for the semi-infinite system un-
der normal plane-wave incidence, versus normalized film thick-
ness, at the plasma frequency (near UV ).

Fig. 12. Same as in Fig. 11, but at the far UV (v 5 5vp).
We observe that the maximum reflectivity function is
quite high and is a decreasing linear function of the nor-
malized film thickness. This was also the case at micro-
wave frequencies, as seen from Fig. 5 and Eq. (57), if we
convert the Q-factor normalization of that figure:

Q`
max

Qmetal
5 Ap

d

dc
→ uG`

maxu2 5 1 2
Qmetal

Ap

dc

d
. (61)

In Fig. 12 we plot the same optimized reflectivity at the
extreme-UV frequency v 5 500g 5 5vp , corresponding
to l 5 36 nm with our parameter choice. We see that
the maximum reflectivity function now resonates in dc /d
and varies from zero up to very high values. The high
end of the reflectivity is shown in detail in Fig. 12(b).
Again, the reflectivity gets larger for thinner films but not
monotonically. Therefore it is important to avoid such
film thicknesses in the mirror design, since they would
ensure almost zero reflectivity no matter what the num-
ber of films.

These results are useful for specific designs of realistic
mirrors containing a finite number of unit cells. The way
in which the finite-N system approaches the semi-infinite
one is not linear in reflectivity versus film thickness.

Fig. 13. Convergence of the reflectivity at resonant spacing for
v 5 vp (corresponding to Fig. 11) and two selected thicknesses:
(a) film thickness d0 and (b) film thickness 0.1d0 .
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Therefore economy of design for given reflectivity specifi-
cations is an issue that can be analyzed by plotting the
response for various N.

In Figs. 13(a) and 13(b), we show the reflectivities of
finite-section filters, as they converge to the N 5 ` limit,
for film thicknesses dc 5 d0 and dc 5 0.1d0 , respectively,
at v 5 100g 5 vp . For the thicker film 14 sections es-
sentially approach the N 5 ` performance (98.5% reflec-
tivity for a total conductor thickness of 546 nm). The
thinner film yields 99.5% reflectivity for 115 sections with
449-nm total conductor thickness. In Figs. 14(a) and
14(b), we show corresponding results at v 5 500g
5 5vp . The thicker film saturates the performance
with 220 sections at 98% reflectivity, while the thinner
film does so with 330 sections and 99.5% reflectivity.

8. CONCLUSIONS
In this paper we have presented a general analysis of the
electromagnetic properties of planar periodic multilayers
consisting of an arbitrary number of thin metallic films of
arbitrary thickness. We covered a very large frequency
spectrum that encompasses most engineering applica-
tions, ranging from dc to the far UV. We presented
closed exact analytical formulas for the reflection and the
transmission of electromagnetic waves off these struc-

Fig. 14. Same as in Fig. 13, but at the far UV (v 5 5vp) and for
the two selected thicknesses in Fig. 12: (a) optimum film thick-
ness 0.7d0 and (b) film thickness 0.1d0 .
tures, as well as for the Bloch–Floquet complex propaga-
tion constant of the corresponding semi-infinite multilay-
ers. Our results were presented in appropriately scaled
variables and are therefore universal, correctly scaled
with respect to physical thicknesses and independent of
the specific permittivity parameters of the metal. Fi-
nally, several new scaling laws in the electrodynamics of
thin films were derived.

First, at microwave frequencies, we pointed out that a
new fundamental thickness for the metal film emerges,
the impedance of free-space equivalent thickness (IF-
SET). This thickness is a fundamental characteristic of
metals, independent of frequency and depending only on
fundamental parameters of the metal permittivity. In
that sense it characterizes the metal in a more fundamen-
tal way than the skin depth, which is frequency depen-
dent. Regarding the electromagnetic properties of IF-
SET, it is the film thickness at which the power balance of
the film has the maximum absorption and defines the
film’s lower thickness limit for high reflectivity.

We have further derived simple scaling laws for the
maximum reflectivity of the semi-infinite and finite mul-
tilayers as a function of both film thickness and number
of unit cells. At frequencies v , g the multilayer is com-
pletely opaque, and the reflectivity can overshoot the bulk
reflectivity of the metal considerably. At optical frequen-
cies the multilayer behaves as a multiplexer, with capa-
bilities of both high transmission and high reflection. In
the visible range, where single films of specific thickness
can be fairly opaque, very high transmission is possible
for a multilayer of such films. On the other hand, even at
UV frequencies, where a single thin metal film is almost
completely transparent, reflectivities of the multilayer of
99% are possible for a few hundred films.
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