
Analysis of photonic crystals for light emitting diodes using the finite
difference time domain technique

Misha Boroditsky', Roberto Coccio1i', Eli Yablonovitchb
a
Physics Department, UCLA

b Electrical Engineering Department, UCLA

ABSTRACT

The Finite Difference Time Domain method has been used to analyze the dispersion diagram of a photonic crystal

comprised of a perforated dielectric slab and the properties of a micro-cavity formed by introducing a defect into such a

crystal. Computational requirements of the method, its advantages and disadvantages, and results for the structure analyzed

are discussed.

1. INTRODUCTION

Structures with periodic modulation of the refractive index in two or three dimensions, or photonic crystals"2, exhibit

interesting optical characteristics, not yet available with ordinary materials. When properly designed, photonic crystals may

change significantly the way electromagnetic waves propagate: entire frequency bands or selected directions can be

forbidden, and modes can be localized around defects in the crystal lattice3. At optical frequencies, these properties may be

exploited to achieve, by the suitable design of the structure, performances not available with standard design techniques

because of losses. In particular, there are research efforts toward the usage of photomc crystals to realize high efficiency or

high-speed resonant-cavity light emitting diodes4'5 for applications in telecommunications.

Many efforts have been devoted to the experimental verification of the properties of photonic crystals as well as to

the development of suitable geometric configurations and of the nanofabrication technology needed for their realization at

optical frequencies. A smaller amount of work has concerned the numerical analysis, and most of it has been done using the

plane wave expansion method6, which presents some convergence problems and can deal with the presence of a defect only

by resorting to the computationally intensive super-cell approach. Only recently some well established methodologies, more

flexible than the plane wave expansion method, have been adapted to the periodic geometry and applied to the analysis of

photonic crystals. Among these, the Finite Element Method7 and the Finite Difference Method both in Frequency (FDFD) 8

and in Time Domains (FDTD)9 have been applied to practical cases.

In this paper, the application of the Finite Difference Time Domain method with a combination of periodic and

absorbing boundary conditions to the computation of dispersion diagrams is outlined referring to the case of a perforated

dielectric slab with a fmite thickness. The method is also used with absorbing boundary conditions only to characterize the

resonant modes of a micro-cavity formed by a defect introduced in the periodic structure.
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Fig. 1 — a) Dielectric slab with a triangular lattice ofholes; b) Irreducible Brillouin zone for a triangular lattice.

2. NUMERICAL ANALYSIS

A. DISPERSION DIAGRAM

Calculation of the dispersion diagram implies consideration of the propagation of the electromagnetic wave in the

infinite space tiled with identical cells. At a fixed instant of time, the only difference between the eigenmode's fields at

corresponding points in different cells is the phase. Consequently, the computational domain may be restricted to a single

unit cell of the crystal by enforcing appropriate periodic Bloch conditions at the boundary of the unit cell, and the problem

can be solved by using the FDTD to solve the time-domain Maxwell's equations in the unit cell. The periodic structure

under test is excited with either some initial electromagnetic field distribution or with a localized Gaussian pulse in time,

and the marching-in-time scheme is applied to compute the electromagnetic field in the computational domain. If a localized

source is used (a dipole in our case) to excite the structure, its spectrum must be wide enough to cover the frequency range

of interest. Since periodic boundary conditions are applied, the electromagnetic field will reach a steady state after some

time, and its spectrum will contain peaks at frequency values corresponding to the eigenmodes compatible with the wave

vector k chosen to enforce the periodic boundary conditions. To show in detail how the method works, let's consider the

case of a thin dielectric film with a triangular lattice of holes (Fig. la). The computational domain for the solution of

Maxwell's equations is the single unit cell in real space shown in Fig. 2, and the dispersion diagram can be computed by

varying the propagation vector along the edges of the irreducible Brillouin zone. In the case of a triangular lattice with

lattice constant a, the irreducible Brillouin zone in the wave vector space is the shaded twelfth of the hexagon with side

4'rr/(3a) shown in Fig. lb.

The computational domain shown in Fig. 2 is excited with a modulated Gaussian pulse and is terminated using Bloch

boundary conditions at the lateral surfaces x = /2, y = 0, and y = asJ /2, while Absorbing Boundary Conditions
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Fig. 2 — Computational domain in the real space for the computation of the dispersion diagram and boundary

conditions used to terminate it. a) Top view; b) side view.

(ABC) are employed at the surfaces z = By enforcing the periodic boundary conditions, one fixes a point in the wave

vector space. As a matter of fact, the periodic boundary conditions include the wave vector k, and can be expressed in the

frequency domain as:

E(r + R,t) = E(r,t)e_R H(r + R,t) =H(r,t)e_.lR (1)

with R standing for a lattice constant vector.

The implementation of the above relations in the time domain may be done in different ways, but to have stable

results it is convenient to introduce two electromagnetic fields'°, having time dependence sin(cot) and cos(ot), that will be

denoted with [e1 (x, y, z;t),h1 (x, y, z;t)] and [e2 (x, y, z;t), 2 (x, y, z;t)] , respectively. Then, the periodic boundary

conditions in equation (1) may be written in the time domain as:

e1 (r + R;t) = e1(r;t)cos(k .R) —e2 (r;t)sin(k .R) (2)

e2 (r + R; t) = e1 (r; t) sin(k . R) + e2 (r; t) cos(k R) (3)

e1 (r; t) = e1 (r + R; t) cos(k R) + e2 (r + R; t) sin(k R) (4)

e2 (r; t) = —e1 (r + R; t) sin(k R) + e2 (r + R; t) cos(k R) (5)

Certainly e1 and e2 can be thought of as real and imaginary parts of the complex electromagnetic fields. These relations,

together with the analogous ones for the magnetic field, allow updating the field at the periodic boundaries of the

computational domain. It is also worth stressing that equations (2-5) introduce the direction of propagation and the value of
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the phase constant into the

computations. For each value of the

wave vector k, which is normally
chosen along the edges of the Brilloum

zone, the Maxwell's equations are
solved and the field is observed at some

points of the computational domain.

Such observation points are placed out

of symmetry planes for the lattice to

avoid the possibility of probing the field

in the null of the possible modes. The

Fourier Transform of the computed

signal has peaks at frequencies of the

modes that can propagate in the structure

with a given value of the wave vector k.
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a defect, may cause localization of one

. . . . . . . . or more electromagnetic modes around
Fig. 3 — Dispersion diagram for a dielectnc slab with a triangular lattice of holes. a)

TM-like modes; b) TE-like modes. the defect itself. The FDTD algorithm

with absorbing boundary conditions on

all boundaries of the computational domain is applied to analyze these cavity modes and to determine their resonant

frequency and Q.

The Fourier transform of the electromagnetic field at observation points inside the cavity gives the resonant

frequencies of the cavity, while the Q of each mode can be estimated from the decay rate of the energy stored in the cavity.

Modeling of the cavities takes much more computer memory than calculation of the dispersion diagram because of the

bigger computational domain, while the number of time steps needed to reach a steady state is approximately the same.

It can be shown that in order to achieve high efficiency the resonant mode of a cavity-enhanced light emitting diode

must be localized as tightly as possible while its Q must be approximately equal to that ofthe active material". A Figure-of-

Merit for the cavity optimization is the mode's effective volume normalized to the cubic wavelength of the resonant mode

f
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3. NU1ER1CAL RESULTS

The finite difkrence Time Domain niethod has been applied to the analysis of a triangular array of circular holes

drilled in a thin dielectric slab. Wave propagation in such a structure was previously calculated using the plane wave

expansion method with the super-cell approach. Fig. 3 shows the dispersion diagram of the triangular array of holes in a

dielectric slab with £ 12 when the propagation vector k is varied along the border of the irreducible Brillouin zone (in-

plane propagation). The ratio between the thickness Iiof the slab and the lattice constant a Is Il/i 0.5, while ia —- 0.45 with
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FIgure 5 Energy density distribution of the fundamental mode of the cavity, a) Top view h)Side view.
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Fig. 4 — Defect realized by adding material in the bridge among three holes.

The dotted line denote ihe boundary of the computational domain where

A[3C are enforced. a) Top view, 1') side view.

The FDTD algorithm allows a straightforward

computation of the cfkctive volume of the cavity

modes with the highest Q. that is the mode that

survives after a sulficiently long waiting tune.

using Eq. 6.

Thus, we have tools to calculate resonant

frequencies. field and energy distrtbution of

resonant modes, as well as their Q and eftbctive

volume. .AlI this information is necessary for a

proper design at a cavity—enhanced light—emitting

diode.
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Figure 6 — Leakage ofthe energy stored in the cavity. The slope ofthe curve gives the cavity Q.

r being the radius of the holes. Our results for the two lower bands were within 5%of those reported in 12. A wide

forbidden gap for the TE polarization exists in the range of normalized frequencies 0.37 � a I? � 0.53 . This structure

can be used as a reflecting medium to build a cavity. In the following, we consider a more realistic structure where the

semiconductor slab is placed on a glass substrate with refractive index flgl .5.

A traditional way of creating a defect is to omit one hole. However, this is not the most prospective way of creating a

cavity since it does not give any tuning freedom, and produces rather big cavities. Instead, we studied modes created by

adding some extra material to the bridge between two or three holes as in Figure 4. This structure can be described by three

independent dimensionless parameters: normalized thickness t/a, normalized radius of the holes r/a and normalized size of

the radius defect na. Therefore, optimization of the effective volume f has to be performed in the three-dimensional

parameter space:

Jg(r)E2 (r)d3r
f(t/a,r/a,rd/a)= 31 2 (7)

(2in) (r)E )max
The energy distribution in the cavity after the steady state of the mode is reached, is shown in Fig. 5. It is evident that a

mode with C3 symmetry is tightly localized at the defect. The time dependence of the energy stored in the cavity, shown in

Fig. 6, gives the mode's Q=60. Short time Fourier transform of the electric field in the cavity gives the normalized resonant

wavelength X0/a=O.44, and the normalized cavity volume cavity volume f =2.1

We are currently working toward the optimization of the dimensions of the cavity to achieve maximum efficiency in

terms of mode's effective volume and the Q of the mode.
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4. CONCLUSIONS

We presented an FDTD technique to compute dispersion diagrams of two- and three-dimensional photomc crystals

and to characterize localized modes supported by a defect in the crystal lattice. The dispersion diagram is calculated on the

unit cell using a combination of periodic Bloch boundary conditions and absorbing boundary conditions. The resonant

modes of the cavity, their effective volume and quality factor are evaluated employing a larger computational domain with

absorbing boundary conditions only. A perforated slab with a defect m the periodic structure is shown to be a good

candidate for the fabrication of a microcavity light-emitting diode, a novel optoelectromc device which may be a valuable

component oftelecommunication systems due to its high raw efficiency and higher modulation speeds.
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