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High- Radio-Frequency Structures Using
One-Dimensionally Periodic Metallic Films

Harry Contopanagos, Nicolaos G. Alexopoulos,
and Eli Yablonovitch

Abstract—High-Q structures are very interesting theoretically, and
very important practically, for a variety of engineering applications in
communication systems. We address the issue of designing a thin-film
metal structure of reflectivity higher than the intrinsic reflectivity of
the bulk metal itself. We study a finite array of planar conducting
layers of arbitrary thickness periodically placed an arbitrary distance
apart, and we arrive at an exact analytical formula for the reflection
and transmission coefficients. These structures are equivalent to a one-
dimensional metallic photonic bandgap (PBG) system. We apply our
formulas to the microwave regime and fully explore the system’s three-
dimensional parameter space, consisting of the number of layers, their
thickness, and their spacing. We find very significant enhancements of
the radio frequency-Q, relative to the bulk metal, in narrow regions of
the parameter space.

Index Terms—High-Q structures, periodic metallic films, photonic
bandgap.

I. INTRODUCTION

Metallic conductors are excellent reflectors at microwave frequen-
cies. Their reflectivity is determined by their conductivity, which is a
physical characteristic of the material. An important issue is whether
it is possible to design a metallic periodic structure of reflectivity
higher than the intrinsic reflectivity of the bulk metal itself. It is well
known that if a dielectric material of modest intrinsic reflectivity is
considered, one can design a multilayer structure of dielectric films
whose reflectivity is far greater than the intrinsic reflectivity of the
bulk dielectric [1], [2]. The purpose of this paper is to examine
whether this is true for metals, whose reflectivity is very high to
start with, even for a single thin film [3], as well as determining the
regions of parameter space where this is possible.

The fundamental thin-film-thickness scale length for making a
good metallic reflector is not actually the “skin depth,” but rather
the smaller thickness which corresponds to 377-


2. That thickness
is more than a 1000 times less than a skin depth, and can be of the
order of angstroms.

By inserting such ultrathin layers at the nodes of a standing-wave
electromagnetic-mode pattern, the electric field within the metal film
can be made tiny, leading to small dissipation of energy and high-Q.
In fact, the energy dissipation per metallic layer at a node scales with
the thickness of that layer cubed. At the same time, the reflectivity of
each layer is proportional to the thickness per layer since it depends on
the phase shift between front and back surfaces. Therefore, by making
the layers thin enough, and using enough layers, an arbitrarily high
reflectivity can be achieved.

Thus, employing geometry to enhance the properties of normal
metals, such ultrahigh-reflectivity metallic structures could be fash-
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ioned into high-Q cavities with much higher performance than
ordinary metallic cavities.

II. N-LAYER SYSTEM

Our general system consists of an arbitrary number(N) of identical
conducting layers of conducting material, of thicknessd, spaced
within a materiald0 distance apart. Material can be arbitrary, but
we will consider air gaps for this paper. There are a total of2N +1
regions with2N interfaces, and we focus on normal incidence.

A. Matrix Solution of the Problem

The boundary conditions on all interfaces can be solved according
to a transfer-matrix formulation [4]. The following transfer matrixF ,
connecting two adjacent unit cells, can be found:

F =u� U
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In (2), �1, �in are the reflection coefficients of a single metal film
and intrinsic (bulk) metal, respectively,� is the conductivity of the
metal, and the skin depth� = �0=(2��). We will parameterize the
propagation constants by

kad
0 = j

2�d0

�0
� jy kbd = (1 + j)

d

�
� (1 + j)x: (3)

Therefore, the reflection and transmission coefficients are

�N =
(UN )21
(UN )11

TN = u�Nek d 1
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: (4)

TheN th power of the matrixU can be calculated analytically. The
result is shown in (5) and (6), at the bottom of the following page.

Similarly, we can write the transmission coefficient as
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TheN =1 limit may also be readily calculated from these formulas.
In this limit, the system is equivalent to an artificial one-dimensional
photonic crystal, which is hopefully exhibiting photonic bandgap
(PBG) behavior [5]. This limit is important for analytically isolating
the resonant regions of the parameter space, understanding better the
resonant behavior of the system as the number of layers increases,
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and deriving simplified closed-form approximate expressions for the
design parameters in the resonant regions. We find

�1 = �1 � 2

�(1 + z) + (1� z)
; T1 = 0: (8)

We will focus on the unloadedQ-factor (finesse) of the system
Q = 1=(1 � j�j2).

B. The Resonant Regions

We expect the resonant regions to be at the vicinity ofy ' � !
d0 ' �0=2. Since the layers are conducting and the metal has very
high intrinsic reflectivity, we expect narrow-band resonances. Let us
parameterize the resonant regions iny by

y = � � �

2

1

�
= �

�

2
(9)

where�� 1; � is a multiplicative parameter, which can beO(1) or
higher, and we have parameterized the other small parameter1=�
of the problem in terms of�. Taylor-expanding�in, �1 up toO(�2),
we get (10), shown at the bottom of this page, for theQ-factor ratio,
valid in the rangex � 0:1, where

R�(x) � 1� e�4x � 2e�2x sin 2x

1 + e�4x � 2e�2x cos 2x
: (11)

III. N UMERICAL RESULTS AND CONCLUSIONS

In this section, we present numerical results for theQ-factor ratio
Qs=Qin, where the system(s) will be either anN -layer or1-layer
system. In Fig. 1, we probe the thicknessesx 2 f0:01; 1g, with
corresponding resonances aty 2 f� � 1=(90�), � � 1=�g, andQ
enhanced by as much as a factor of 170. The peak values are fitted
very well by the equation

Qmax
1

Qin

=
p
�
�

d
: (12)

Regarding the(x; y) parameter space, the relation

y = � � x1��

�
(13)

with � = 0:0035 fits the envelope very well forx � 0:1. For � = 0,
which corresponds tod+ d0 = �0=2, (13) fits the envelope well for
x � 0:2. For smaller thicknesses, our general formulas show that the
resonances are in the region

d0

�0
' 1

2
� 1

�

�

�0
(14)

Fig. 1. TheQ-factor ratio for the1-layer system in the thickness region
x 2 f0:01; 2g and for resonancesy = � � 1=(��) (numbered curves cor-
respond to different values of� ). The fitted envelopeQmax

1 =Qin '
p
��=d

is also shown.

where� is a discretized parametrization of the resonances for given
thickness values

0:1 �d
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In Fig. 2, we show the power balance of the system ofN layers in
the thickness regionx 2 f0:1; 2g when the distance of two successive
layers is continuously optimized to ensure resonant behavior, as
shown in (13).

The final design issue is the number of layersN necessary for a
given gain (see Fig. 3). For a fixed number of layersN , the maximum
possibleQ-enhancement is given by

Qmax
N

Qin

=
p
N (16)

where, for large enoughN , (N � 5) layer thickness and spacing are
given by the design formulas for theN = 1 case above.

In conclusion, we have shown that by using spatial periodicity it is
possible to make metal resonators with much higherQ-factors than
those of cavities constructed by plain metal walls. We believe that
our findings will have important applications on systems where it is
necessary to exceed the customaryQ of normal metallic structures.
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Fig. 2. (a) Reflected power for theN -layer system for variousN (numbered curves), for thicknessesx � 0:1, and distances optimized continuously
at the resonance throughy = � � x1�0:0035=�. These results are for Cu(� = 5:76 S/m) at f = 5 GHz. The intrinsic reflectivity is also shown.
(b) Same as in (a) for absorption. (c) Same as in (a) for transmission.

Fig. 3. MaximumQ-factor enhancement as a function of number of layers
N . Each discrete data point is individually maximized in layer thickness(d)
and spacing(d0) for the corresponding fixed value ofN . The solid line
Qmax

N
=Qin =

p
N fits the data very well, except for the firstN = 1

point, which overshoots the fit by 8%. Strictly speaking, that point is not a
multilayer system.

One example is macroscopic cavities used for material measure-
ments at millimeter waves. If one cavity dimension is'10 cm, or
'130 half-wavelengths at 200 GHz, the loadedQ-factor would only
increase by 10% for an increase of that linear dimension by an
extra 14 half-wavelengths. On the other hand, with our design, the
same volume increase would accomplish a loaded-Q enhancement of
'
p
N = 7 = 260% (seven-layer shorts on each side).
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