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Abstract . In this paper, we review the early motivation for photonic crystal
research which was derived from the need for a photonic bandgap in quantum
optics . This led to a series of experimental and theoretical searches for the elusive
photonic bandgap structures : those three-dimensionally periodic dielectric
structures which are to photon waves, as semiconductor crystals are to electron
waves. We shall describe how the photonic semiconductor can be `doped',
producing tiny electromagnetic cavities . Finally, we shall summarize some of the
anticipated implications of photonic band structure for quantum electronics and
the prospects for the creation of photonic crystals in the optical domain .

1 . Introduction
In this paper we shall pursue the rather appealing analogy [1, 2] between the

behaviour of electromagnetic waves in artificial, three-dimensionally periodic
dielectric structures, and the rather more familiar behaviour of electron waves in
natural crystals .

These artificial two- and three-dimensionally periodic structures we shall call
`photonic crystals' . The familiar nomenclature of real crystals will be carried over to
the electromagnetic case . This means that the concepts of reciprocal space, Brillouin
zones (BZs), dispersion relations, Bloch wavefunctions, Van Hove singularities, etc .,
must now be applied to photon waves . It makes sense then to speak of photonic band
structure and of a photonic reciprocal space which has a Brillouin zone approxi-
mately 1000 times smaller than the Brillouin zone of the electrons . Owing to the
periodicity, photons can develop an effective mass, but this is in no way unusual,
since it occurs even in one-dimensionally periodic, optically layered structures . We
shall frequently leap back and forth between the conventional meaning of a familiar
concept such as `conduction band', and its new meaning in the context of photonic
band structure .

Under favourable circumstances, a 'photonic bandgap' can open up : a frequency
band in which electromagnetic waves are forbidden, irrespective of propagation
direction in space . Inside a photonic bandgap, optical modes, spontaneous emission
and zero-point fluctuations are all absent . Because of its promised ability to control
spontaneous emission of light in quantum optics, the pursuit of a photonic bandgap
has been a major motivation for studying photonic band structure .

2 . Motivation
Spontaneous emission of light is a major natural phenomenon, which is of great

practical and commercial importance . For example, in semiconductor lasers,
spontaneous emission is the major sink for threshold current, which must be
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surmounted in order to initiate lasing . In heterojunction bipolar transistors (HBTs),
which are non-optical devices, spontaneous emission nevertheless rears its head . In
some regions of the transistor current-voltage characteristic, spontaneous optical
recombination of electrons and holes determines the HBT current gain . In solar
cells, surprisingly, spontaneous emission fundamentally determines the maximum
available output voltage . We shall also see that spontaneous emission determines the
degree of photon number state squeezing, an important new phenomenon [3] in the
quantum optics of semiconductor lasers . Thus the ability to control spontaneous
emission of light is expected to have a major impact on technology .

The easiest way to understand the effect of a photonic bandgap on spontaneous
emission is to take note of Fermi's golden rule . The downward transition transition
rate w between the filled and empty atomic levels is given by

w= h
IFJ Zp(E),

	

(1)

where I VI is sometimes called the zero-point Rabi matrix element and p(E) is the
density of final states per unit energy . In spontaneous emission, the density of final
states is the density of optical modes available to the photon . If there are no optical
modes available, there will be no spontaneous emission .

Before the 1980s, spontaneous emission was often regarded as a natural and
inescapable phenomenon, one over which no control was possible . In spectroscopy it
gave rise to the term `natural linewidth' . However, in 1946, an overlooked note by
Purcell [4] on nuclear spin levels had already indicated that spontaneous emission
could be controlled . In the early 1970s, the interest in this phenomenon was re-
awakened by the surface-adsorbed dye molecule fluorescence studies, of Drexhage
[5] . Indeed during the mid-1970s, Bykov [6] proposed that one-dimensional
periodicity inside a coaxial line could influence spontaneous emission . The modern
era of inhibited spontaneous emission dates from the Rydberg atom experiments of
Kleppner. A pair of metal plates acts as a waveguide, with a cut-off frequency for one
of the two polarizations . Rydberg atoms are atoms in very high-lying principal
quantum number states, which can spontaneously emit in the microwave region of
wavelengths. Kleppner and coworkers [7] showed that Rydberg atoms in a metallic
waveguide could be prevented from undergoing spontaneous decay . There were no
modes available below the waveguide cut-off .

There is a problem with metallic waveguides, however . They do not scale well
into optical frequencies . At high frequencies, metals become more and more lossy .
These dissipative losses allow for virtual modes, even at frequencies which would
normally be forbidden . Therefore it makes sense to consider structures made of
positive-dielectric-constant materials such as glasses and insulators, rather than
metals. These can have very low dissipation, even all the way up to optical
frequencies . This is ultimately exemplified by optical fibres which allow the light
propagation over many kilometres, with negligible losses . Such positive-dielectric-
constant materials can have an almost purely dielectric response with low resistive
losses. If arrayed into a three-dimensionally periodic dielectric structure, a photonic
bandgap should be possible, employing a purely real reactive dielectric response .

The benefits of such a photonic bandgap for direct gap semiconductors are
illustrated in figure 1 . On the right-hand side of the figure is a plot of the photon
dispersion (frequency against wave-vector) . On the left-hand side of figure 1, sharing
the same frequency axis, is a plot of the electron dispersion, showing conduction and
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Figure 1 . On the right-hand side is the electromagnetic dispersion, with a forbidden gap at
the wave-vector of the periodicity . On the left-hand side is the electron wave dispersion
typical of a direct-gap semiconductor, the full circles representing electrons and holes .
Since the photonic bandgap straddles the electronic band edge, electron-hole recom-
bination into photons is inhibited . The photons have no place to go .

valence bands appropriate to a direct-gap semiconductor . Since atomic spacings are
1000 times shorter than optical wavelengths, the electron wave-vector must be
divided by 1000 in order to fit on the same graph with the photon wave-vectors . The
full circles in the electron conduction and valence bands are meant to represent
electrons and holes respectively . If an electron were to recombine with a hole, they
would produce a photon at the electronic band-edge energy . As illustrated in figure
1, if a photonic bandgap straddles the electronic band edge, then the photon
produced by electron-hole recombination would have no place to go . The
spontaneous radiative recombination of electrons and holes would be inhibited. As
can be imagined, this has far-reaching implications for semiconductor photonic
devices .

One of the most important applications of inhibited spontaneous emission is
likely to be the enhancement of photon-number-state squeezing, which has been
playing an increasing role in quantum optics lately . The form of squeezing
introduced by Yamamoto et al. [3] is particularly appealing, in that the active
element producing the squeezing effect is none other than the common resistor .
When an electrical current flows, it generally carries the noise associated with the
graininess of the electron charge, called shot noise . The corresponding mean square
current fluctuations are

<(Ai) 2 > = 2eiAf,

	

(2)

where i is the average current flow, e is the electronic charge and Of is the noise
bandwidth. While equation (2) applies to many types of random physical processes,
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it is far from universal. Equation (2) requires that the passage of electrons in the
current flow be a random Poissonian process . As early as 1954, Van der Ziel [8], in an
authoritative book called Noise, pointed out that good-quality metal film resistors,
when carrying a current, generally exhibit much less noise than given by equation
(2) . Apparently, the flow of electrons in the Fermi sea of a metallic resistor represents
a highly correlated process . Far from being a random process, the electrons
apparently sense one another, producing shot noise far below equation (2) (so low as
to be difficult to measure and to distinguish from thermal or Johnson noise) . Sub-
Poissonian shot noise has the following meaning . Suppose that the average flow
consists of ten electrons per nanosecond . Under random flow, the count in successive
nanoseconds could sometimes vary from eight to 12 electrons . With good-quality
metal film resistors, the electron count would be ten for each and every nanosecond .

Yamamoto et al . put this property to good use by driving a high-quantum-
efficiency laser diode with such a resistor . Suppose that the laser diode quantum
efficiency into the cavity mode were 100% . Then for each electron passing through
the resistor there would be one photon into the laser cavity mode . A correlated
stream of photons are produced whose statistical properties are unprecedented ever
since Einstein's interpretation of the photoelectric effect . If the photons are used for
optical communication, then a receiver would detect exactly ten photoelectrons each
nanosecond. If 11 photons were detected, it would be no mere random fluctuation
but would represent an intentional signal . Thus information in an optical commun-
ications signal could be encoded at the level of individual photons . The term photon-
number-state squeezing is associated with the fixed photon number per unit time
interval . Expressed differently, the bit-error rate in optical communication can be
diminished by squeezing .

There is a limitation to the squeezing, however . The quantum efficiency into the
lasing mode is not 100% . The 4n sterad outside the cavity mode can capture a
significant amount of random spontaneous emission . If unwanted electromagnetic
modes capture 50% of the excitation, then the maximum noise reduction in
squeezing would be only 3 dB . Therefore it is necessary to minimize the spontaneous
recombination of electrons and holes into modes other than the lasing mode . If such
random spontaneous events were reduced to 1%, allowing 99% quantum efficiency
into the lasing mode, the corresponding noise reduction would be 20 dB, well worth
fighting for. Thus we see that control of spontaneous emission is essential for
deriving the full benefit from photon-number-state squeezing .

We have motivated the study of photonic band structure for its applications in
quantum optics and optical communications . Positive dielectric constants and fully
three-dimensional forbidden gaps were emphasized . It is now clear that the
generality of artificial multidimensional band structure concepts allows for other
types of wave, other materials, and various lower-dimensional geometries, limited
only by imagination and need .

3 . Search for the photonic bandgap
Having decided to create a photonic bandgap in three dimensions we need to

settle on a particular three-dimensionally periodic geometry . For electrons, the
three-dimensional crystal structures come from nature . Several hundred years of
mineralogy and crystallography have classified the naturally occurring, three-
dimensionally periodic lattices. For photonic bandgaps, however, we must create an
artificial structure using our imagination .
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Figure 2 . The f .c .c . BZ in reciprocal space .

0)

Figure 3 . The forbidden gap (shaded) at the L point is centred at a frequency about 14%
lower than the X-point forbidden gap . Therefore it is difficult to create a forbidden
frequency band overlapping all points along the surface of the BZ .

The f .c .c . lattice appears to be favoured for photonic bandgaps and was suggested
independently by Yablonovitch [1] and John [2] in their proposals . Let us consider
the f.c .c . BZ as illustrated in figure 2 . Various special points on the surface of the BZ
are marked . Closest to the centre is the L point oriented towards the body diagonal of
the cube. Farthest away is the W point, a vertex where four plane waves are
degenerate (which will cause problems later) . In the cubic directions are the familiar
X points .

Consider a plane wave in the X direction . It will sense the periodicity in the cubic
direction, forming a standing wave, opening up a forbidden gap as indicated by the
shading in figure 3 . Suppose on the other hand that the plane wave is going in the L
direction. It will sense the periodicity along the cubic body diagonal, and a gap will
form in that direction as well . However, the wave-vector to the L point is about 14%
smaller than the wave-vector to the X point. Therefore the gap at L is likely to be
centred at a 14% smaller frequency than the gap at X. If the two gaps are not wide

i
I

	

I

I

I

I

I

I

	

I

I

I

I

	

I

I

	

I

I

	

I

I

	

I

1

	

I

I

	

I

I

	

I

1

	

I

	

~

L X

	

k



178

	

E. Yablonovitch

enough, they are unlikely to overlap in frequency. In figure 3 as shown, the two gaps
barely overlap . This is the main problem in achieving a photonic bandgap . It is
difficult to ensure that a common frequency overlap is assured for all possible
directions in reciprocal space .

The lesson from figure 3 is that the BZ should most closely resemble a sphere in
order to increase the likelihood of a common frequency overlap in all directions of
space. Therefore let us examine two common BZs : the f .c .c. BZ and the b .c .c. BZ .
The b .c .c. BZ has pointed vertices which make it difficult to achieve a common
frequency overlap in all directions. Likewise most other common BZs deviate even
farther from a spherical shape . Among all the common BZs the f .c .c . BZ has the least
percentage deviation from a sphere . Therefore until now all photonic bandgaps in
three dimensions have been based on the f .c .c . lattice . There has been a report
recently of a photonic bandgap in a simple-cubic geometry [9] .

The photonic bandgap is different from the idea of a one-dimensional stop band
as understood in electrical engineering. Rather, the photonic bandgap should be
regarded as a stop band with a common frequency overlap in all 4n sterad of space .
The earliest antecedent to photonic band structure, dating [10] back to 1914 and Sir
Lawrence Bragg, is the dynamical theory of X-ray diffraction . Nature gives us f.c .c .
crystals and X-rays are bona fide electromagnetic waves . As early as 1914, narrow
stop bands were known to open up . Therefore, what was missing?

The refractive index contrast for X-rays is tiny, generally 1 part in 10 4 . The
forbidden X-ray stop bands form extremely narrow rings on the facets of the BZ . As
the index contrast is increased, the narrow forbidden rings open up, eventually
covering an entire facet of a BZ and ultimately all directions in reciprocal space . We
shall see that this requires an index contrast of about 2 to 1 or greater . The high-index
contrast is the main new feature of photonic band structure beyond dynamical X-ray
diffraction . In addition we shall that electromagnetic wave polarization, which is
frequently overlooked for X-rays, will play a major role in photonic band structure .

In approaching this subject, we adopted an empirical viewpoint . We decided to
make photonic crystals on the scale of microwaves, and then we tested them using
sophisticated coherent microwave instruments . The test set-up, shown in figure 4, is
what we would call in optics a Mach-Zender interferometer . It is capable of
measuring phase and amplitude in transmission through the microwave scale
photonic crystal . In principle, one can determine the frequency against wave-vector
dispersion relations from such coherent measurements . Later we used a powerful
commercial instrument for this purpose, the HP8510 network analyser . The
philosophy of the experiments was to measure the forbidden gap in all possible
internal directions in reciprocal space . Accordingly the photonic crystal was rotated
and the transmission measurements repeated . Owing to wave-vector matching along
the surface of the photonic crystal, some internal angles could not be accessed . To
overcome this, large microwave prisms, made out of poly(methyl methacrylate),
were placed on either side of the test crystal in figure 4 .

Early the question arose of what material should the photonic crystal be made?
The larger the refractive index contrast, the easier it would be to find a photonic
bandgap . In optics, however, the largest practical index contrast is that of the
common semiconductors, silicon and GaAs, with a refractive index n=3 .6 . If that
index was inadequate, then photonic crystals would probably never fulfil the goal of
being useful in optics . Therefore we decided to restrict the microwave refractive
index to 3 . 6, and the microwave dielectric constant to n2 =12 . A commercial



MODULATOR
5 kHz

Photonic crystals

	

1 79

MONOPOLE

	

MONOPOLE

XX } } } )
	 IICRYSTAL

ANECHOIC CHAMBER

-10 dB

SWEEP
OSCILLATOR

1 - 20 GHz

rfA• r

X-Y RECORDER

Figure 4 . A homodyne detection system for measuring phase and amplitude in transmission
through the photonic crystal under test . A sweep oscillator feeds a 10 dB splitter . Part of
the signal is modulated (MOD) and then propagated as a plane wave through the test
crystal . The other part of the signal is used as local oscillator for the mixer (MXR) to
measure the amplitude change and phase shift in the crystal . Between the mixer and the
x-y recorder is a lock-in amplifier (not shown) .

microwave material, Emerson & Cumming Stycast 12, was particularly suited to the
task since it was machinable with carbide tool bits . Any photonic band structure that
was found in this material could simply be scaled down in size and would have the
identical dispersion relations at optical frequencies and optical wavelengths .

With regard to the geometry of the photonic crystal, there are a universe of
possibilities . So far, the only restriction we have made is toward f.c .c . lattices . It
turns out that a crystal, with a f .c .c . BZ in reciprocal space, as shown in figure 2, is
composed of f .c .c. Wigner-Seitz (W-S) unit cells in real space as shown in fig . 5 . The
problem of creating an arbitrary f .c .c. dielectric structure reduces to the problem of
filling the f.c .c . W-S real-space unit cell with an arbitrary spatial distribution of
dielectric material . Real space is then filled by repeated translation and close packing
of the W-S unit cells . The decision before us is what to put inside the f .c .c . Wigner-
Seitz cells . There are an infinite number of possible f.c .c . lattices since anything can
be put inside the fundamental repeating unit . The problem before us is : what do we
put inside the f .c .c. W-S unit cell in figure 5? In X-ray language, we have to find a
`form factor' for the W-S unit cell which would produce a crystal with a photonic
bandgap .

This question provoked strenuous difficulties and false starts over a period of
several years before finally being solved . In the first years of this research, we were
unaware of how difficult the search for a photonic bandgap would be . A number of
f.c .c . crystal structures were proposed, each representing a different choice for filling
the rhombic dodecahedron f .c .c . W-S cells in real space . For example the very first
suggestion [1], was to make a three-dimensional 'chequerboard', in which cubes
were inscribed inside the f .c .c. W-S real space cells in figure 5 . Later on, the
experiments [11] adopted spherical `atoms' centred inside the f .c .c . W-S cell
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(a) (b)

Figure 5 . The W-S real-space unit cell of the f .c .c . lattice is a rhombic dodecahedron . (a)
Slightly oversized spherical voids are inscribed into the unit cell, breaking through the
faces, as illustrated by the broken circles . (b) W-S cell structure possessing a photonic
bandgap. Cylindrical holes are drilled through the top three facets of the rhombic
dodecahedron and exit through the bottom three facets.-The resulting atoms are
roughly cylindrical and have a preferred axis in the vertical direction .

000000
000000

Figure 6 . Construction of f .c .c . crystals consisting of spherical voids . Hemispherical holes
are drilled on both faces of a dielectric sheet. When the sheets are stacked, the
hemispheres meet, producing a f.c .c . crystal .

composed of precision A1 20 3 spheres, n z 3 . 06, each about 6 mm in diameter. This
structure was tested at a number of filling ratios from close packing to very dilute .
Nevertheless, it always failed to produce a photonic bandgap!

Then we tested the inverse structure in which spherical voids were inscribed
inside the f .c .c. W-S real space cell. These could be easily fabricated by drilling
hemispheres onto the opposite faces of a dielectric sheet with a spherical drill bit as
shown in figure 6 . When the sheets were stacked so that the hemispheres faced one
another, the result was a f.c .c . array of spherical voids inside a dielectric block . These
were also tested over a wide range of filling ratios by progressively increasing the
diameter of the hemispheres. These also failed to produce a photonic bandgap!

The typical failure mode is illustrated in figure 7 . As expected, the `conduction
band' at the L point falls at a low frequency, while the `valence band' at the W point
falls at a high frequency . The overlap of the bands at L and W results in a band
structure which is best described as 'semimetallic' .
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50% VOLUME FRACTION fcc AIR-SPHERES

PREDOMINANTLY "P" POLARIZED
Figure 7 . Typical semimetallic band structure for a photonic crystal with no photonic

bandgap. An overlap exists between the conduction band at L and the valence band at
W.

The empirical search for a photonic bandgap led nowhere until we tested a
spherical void structure with oversized voids breaking through the walls of the W-S
unit cells as shown in figure 5 (a) . For the first time, the measurements seemed to
indicate a photonic bandgap, and we published [11] the band structure shown in
figure 8 . There appeared to be a narrow gap, centred at 15 GHz, and forbidden for
both possible polarizations . Unbeknownst to us however, figure 8 harboured a
serious error . Instead of a gap at the W point, the conduction and valence bands
crossed at that point, allowing the bands to touch . This produced a pseudo-gap with
zero density of states but no frequency width . The error arose owing to the limited
size of the crystal. The construction of crystals with about 10 4 atoms required tens of
thousands of holes to be drilled . Such a three-dimensional crystal was still only 12
cubic units wide, limiting the wave-vector resolution and restricting the dynamic
range in transmission . Under these conditions, it was experimentally difficult to
notice a conduction-valence-band degeneracy which occurred at an isolated point in
k space, such as the W point .

While we were busy with the empirical search, theorists began serious efforts to
calculate photonic band structure . The most rapid progress was made, not by
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Figure 8 . The purported photonic band structure of the spherical void structure shown in
figure 5 (a) . The right-sloping lines represent polarization parallel to the X plane, while
the left-sloping lines represent the orthogonal polarization which has a partial
component out of the X plane . The shaded region is the reported photonic bandgap .
This figure fails to show the crossing of the valence and conduction bands at the W point
which was first discovered by theory .

specialists in electromagnetic theory but by electronic band-structure theorists who
were accustomed to solving Schrodinger's equation in three-dimensionally periodic
potentials . The early calculations [12-15] were unsuccessful, however . As a short
cut, they treated the electromagnetic field as a scalar, much as is done for electron
waves in Schrodinger's equation . The scalar wave theory of photonic band structure
did not agree well with experiment. For example, it predicted photonic bandgaps in
the dielectric sphere structure, where none was observed experimentally . The
approximation of Maxwell's equations as a scalar wave equation was not working .
Finally, incorporating the full vector Maxwell's equations, theory began to agree
with experiment . Leung and Liu [16] were probably the first to publish a successful
vector wave calculation in photonic band structure, followed by others [17,18] with
substantially similar results . The theorists agreed well with one another, and they
agreed well with experiment [11] except at the high-degeneracy points U and
particularly W. What the experiment failed to see was the degenerate crossing of
valence and conduction bands at those points .

The unexpected pseudo-gap in the f .c .c. crystal triggered concern and a search
for a way to overcome the problem . A worried editorial [19] was published in Nature
but, even before the editorial appeared, the problem had already been solved by the
Iowa State group of Ho et al. [18] . The degenerate crossing at the W point was very
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susceptible to changes in symmetry of the structure . If the symmetry was lowered by
filling the W-S unit cell, not by a single spherical atom, but by two atoms positioned
along the (111> direction as in diamond structure, then a full photonic bandgap
opened up . Their discovery of a photonic bandgap using a diamond `form factor' is
particularly significant since diamond geometry seems to be favoured by Maxwell's
equations . A form of diamond structure [20] gives the widest photonic bandgaps
requiring the least index contrast, n ~ 1 .87 .

More generally, the spherical void symmetry in figure 5 (a) can be lowered by
distorting the spheres along the <111> direction, lifting the degeneracy at the W
point. The W-S unit cell in figure 5 (b) has great merit for this purpose . Holes are
drilled through the top three facets of the rhombic dodecahedron and exit through
the bottom three facets . The beauty of the structure in figure 5 (b) is that a stacking of
W-S unit cells results in straight holes which pass clear through the entire `crystal'!
The `atoms' are odd-shaped, roughly cylindrical voids centred in the W-S unit cell,
with a preferred axis pointing to the top vertex, <111 > . An operational illustration of
the construction which produces a f .c.c `crystal' of such W-S unit cells is shown in
figure 9 .

A slab of material is covered by a mask containing a triangular array of holes .
Three drilling operations are conducted through each hole, 35 . 26° off normal

Figure 9, The method of constructing a f.c .c . lattice of the W-S cells as shown in figure 5 (b) .
A slab of material is covered by a mask consisting of a triangular array of holes . Each
hole is drilled through three times, at an angle 35.26 ° away from normal and spread out
120° on the azimuth. The resulting criss-cross of holes below the surface of the slab,
suggested by the cross-hatching shown here, produces a full three-dimensionally
periodic f.c,c . structure, with unit cells as given in figure 5 (b), The drilling can be done
by a real drill bit for microwave work, or by reactive ion etching to create a f .c .c .
structure at optical wavelengths .
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Figure 10. The BZ of a f.c .c . structure incorporating non-spherical atoms, as in figure 5 (b) .
Since the space lattice is not distorted, this is simply the standard f .c.c . BZ lying on a
hexagonal face rather than the usual cubic face . Only the L points on the top and bottom
hexagons are three-fold symmetry axes. Therefore they are labelled L 3 . The L points on
the other six hexagons are labelled L 1 . The U3-K3 points are equivalent since they are a
reciprocal-lattice vector apart . Likewise the U 1 -K1 points are equivalent .

incidence and spread out 120° on the azimuth . The resulting criss-cross of holes
below the surface of the slab produces a fully three-dimensionally periodic f.c .c .
structure, with W-S unit cells given by figure 5 (b)! The drilling can be done by a real
drill bit for microwave work, or by reactive ion etching to create a f .c .c . structure at
optical wavelengths .

In spite of non-spherical atoms in figure 5 (b), the BZ is identical with the
standard f .c .c. BZ shown in textbooks . Nevertheless, we have chosen an unusual
perspective from which to view the BZ in figure 10 . Instead of having the f .c .c . BZ
resting on one of its diamond-shaped facets as is usually done, we have chosen in
figure 10 to present it resting on a hexagonal face . Since there is a preferred axis for
the atoms, the distinctive L points centred in the top and bottom hexagons are three
fold symmetry axes, and are labelled L 3 . The L points centred in the other six
hexagons are symmetric only under a 360° rotation and are labelled L 1 . It is helpful
to know that the U 3-K3 points are equivalent since they are a reciprocal-lattice
vector apart . Likewise the U 1-K1 points are equivalent .

Figure 11 shows the dispersion relations along different meridians for our
primary experimental sample of normalized hole diameter d/a=0 .469 and 78%
volume fraction removed (where a is the unit cube length). The oval points represent
experimental data with s polarization (perpendicular to the plane of incidence, and
parallel to the slab surface), while the triangular points represent p polarization
(parallel to the plane of incidence and partially perpendicular to the slab surface) .
The horizontal abscissa in figure 11 (b), L3 -K3 -L1-U3-X-U3-L3 represents a full
meridian from the north pole to the south pole of the BZ . Along this meridian the
Bloch wavefunctions separate neatly into s and p polarizations. The s and p-
polarized theory curves are the solid broken curves respectively . The dark shaded is
the totally forbidden photonic bandgap . The lighter shaded stripes above and below
the dark band are forbidden only for s and p polarizations respectively .

At a typical semiconductor refractive index, n=3 .6 ; the three-dimensional
forbidden gap width is 19% of its centre frequency . Calculations [21] indicate that
the gap remains open for refractive indices as low as n=2. 1 using circular holes . We
have also measured the imaginary wave-vector dispersion within the forbidden gap .
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Figure 11 . Frequency co against wave-vector dispersion along the surface of the BZ shown in
figure 10, where c/a is the speed of light divided by the f.c .c . cube length : (0),
experimental points for s polarization ; (A), experimental points for p polarization ;
(	-) calculations for s polarization ; (---), calculations for p polarization ; the dark
shaded band is the totally forbidden bandgap ; the lighter shaded stripes above and
below the dark band are forbidden only for s and p polarizations respectively .

At midgap we find an attenuation of 10 dB per unit cube length a . Therefore the
photonic crystal need not be very many layers thick to effectively expel the zero-
point electromagnetic field . The construction in figure 9 can be implemented by
reactive ion etching as shown in figure 12 . In reactive ion etching, the projection of
circular mask openings at 35° leaves oval holes in the material, which might not
perform as well . Fortunately it was found [21], defying Murphy's law, that the
forbidden gap width for oval holes is actually improved, fully 21 .7% of its centre
frequency .
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microfabrication by
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Figure 12 . Construction of the non-spherical void photonic crystal of figure 5 (b) and figures
9-11 by reactive ion etching .

4 . Doping the photonic crystal
The perfect semiconductor crystal is quite elegant and beautiful, but it becomes

ever more useful when it is doped . Likewise the perfect photonic crystal can become
of even greater value when a defect [22] is introduced .

Lasers, for example, require that the perfect three-dimensional translational
symmetry should be broken . Even while spontaneous emission into all 471 sterad
should be inhibited, a local electromagnetic mode, linked to a defect, is still necessary
to accept the stimulated emission . In one-dimensional distributed feedback lasers
[23], a quarter-wavelength defect is introduced, forming effectively a Fabry-Perot
cavity. In three-dimensional photonic band structure a local defect-induced
structure resembles a Fabry-Perot cavity, except that it reflects radiation back upon
itself in all 4tt spatial directions .

The perfect three-dimensional translational symmetry of a dielectric structure
can be lifted in either one of two ways .

(1) Extra dielectric material may be added to one of the unit cells . We find that
such a defect behaves very much like a donor atom in a semiconductor . It
gives rise to donor modes which have their origin at the bottom of the
conduction band .

(2) Conversely, translational symmetry can be broken by removing some
dielectric material from one of the unit cells . Such defects resemble acceptor
atoms in semiconductors . The associated acceptor modes have their origin at
the top of the valence band . We shall find that acceptor modes are
particularly well suited to act as laser microresonator cavities . Indeed it
appears that photonic crystals made of sapphire or other low-loss dielectrics
will make the highest-Q single-mode cavities (of modal volume about A . 3 )
covering electromagnetic frequencies above the useful working range of
superconducting metallic cavities . The short-wavelength limit in the ultra-
violet is set by the availability of optical materials with refractive index of
about 2 or greater, the threshold index [18, 21 ] for the existence of a photonic
bandgap .
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Figure 13 . A< 1, 1, 0> cross-sectional view of our f.c .c . photonic crystal consisting of non-
spherical `air atoms' centred on the full circles . The dielectric material is represented by
the shaded area . The broken rectangle is a face-diagonal cross-section of the unit cube .
Donor defects consisted of a dielectric sphere centred on an atom . We selected an
acceptor defect as shown, centred in the unit cube . It consists of a missing horizontal
slice in a single vertical rib .

Figure 13 is a <1,1, 0,> cross-section of our photonic crystal in figure 5 (b) and
figures 9-11, cutting through the centre of a unit cube . Shading represents dielectric
material . The full circles are centred on the air atoms and the broken rectangle is a
face-diagonal cross-section of the unit cube . Since we could design the structure at
will, donor defects were chosen to consist of a single dielectric sphere centred in an
air atom . Likewise, by breaking one of the interconnecting ribs, it is easy to create
acceptor modes . We selected an acceptor defect as shown in figure 13, centred in the
unit cube . It comprises a vertical rib which has a missing horizontal slice .

The heart of our experimental apparatus is a photonic crystal embedded in
microwave absorbing pads as shown in figure 14 . The photonic crystals were eight to
ten atomic layers thick in the (1, 1,1 > direction . Monopole antennae, consisting of
6 mm pins, coupled radiation to the defect mode. The HP 8510 network analyser was
set up to measure transmission between the antennas . Figure 15 (a) shows the
transmission amplitude in the absence of a defect . There is very strong attenuation
(about 10 -5 ) between 13 and 16 GHz, marking the valence- and conduction-band
edges of the forbidden gap . This is a tribute to both the dynamic range of the network
analyser, and the sizeable imaginary wave-vector in the forbidden gap .

A transmission spectrum in the presence of an acceptor defect is shown in figure
15 (b) . Most of the spectrum is unaffected, except at the electromagnetic frequency
labelled Deep acceptor within the forbidden gap . At that precise frequency,
radiation `hops' from the transmitting atenna to the acceptor mode and then to the
receiving antenna . The acceptor level frequency, within the forbidden gap, is
dependent on the volume of material removed . Figure 16 shows the acceptor-level
frequency as a function of defect volume removed from one unit cell . When a
relatively large volume of material is removed, the acceptor level is deep as shown in
figure 15 (b) . A smaller amount of material removed results in a shallow acceptor
level, nearer the valence band . If the removed material volume falls below a
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HP 8510 NETWORK ANALYZER

MONOPOLE ANTENNAS

INVERIA

:01JW.A
CRYSTAL

Figure 14 . Experimental configuration for the detection of local electromagnetic modes in
the vicinity of a lattice defect . Transmission amplitude attenuation from one antenna to
the other is measured . At the local mode frequency the signal hops by means of the local
mode in the centre of the photonic crystal, producing a local transmission peak. The
signal propagates in the <1, 1, 1> direction through eight to ten atomic layers .

threshold volume, the acceptor level falls within the continuum of levels below the
top of the valence band, becoming metastable .

On an expanded frequency scale we can measure the resonator Q of the deep-
acceptor mode, which is about 1000, as limited by the loss tangent of the Emerson &
Cumming Stycast material of which the photonic crystal was made .

The behaviour of an off-centre donor defect is shown in figure 15 (c) . In that case
the donor volume was only slightly above the required threshold for forming bound-
donor modes . Already two shallow-donor modes can be seen in figure 15 (c) . When
the donor is centred in the W-S unit cell, the two modes merge to form a doubly
degenerate donor levels as in figure 16. Single donor defects seem to produce
multiple donor levels . Figure 16 gives the donor-level frequency as a function of
donor volume. As in the case of acceptors, there is a threshold defect volume
required for the creation of bound modes below the conduction-band edge .
However, the threshold volume for donor defects is almost ten times the acceptor
threshold volume. Apparently this is due to the electric field concentration in the
dielectric ribs at the top of the valence band . Bloch wavefunctions at the top of the
valence band are rather easily disrupted by the missing rib segment .

We have chosen in figure 16 to normalize the defect volume to a natural volume of
the physical system, ( .l/2n) 3 , which is basically a cubic half-wavelength in the
dielectric medium . More specifically, 2 is the vacuum wavelength at the midgap
frequency, and n is the refractive index of the dielectric medium . Since we are
measuring a dielectric volume, it makes sense to normalize to a half-wavelength cube
as measured at the dielectric refractive index . On the basis of the reasonable scaling
of figure 16, our choice of volume normalization would seem justified .
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Figure 15 . (a) Transmission attenuation through a defect-free photonic crystal, as a function
of microwave frequency . The forbidden gap falls between 13 and 16 GHz . (b)
Attenuation through a photonic crystal with a single acceptor in the centre . The large
acceptor defect volume shifted its frequency near midgap . The electromagnetic
resonator Q was about 1000, limited only by the loss tangent of the dielectric material .
(c) Attenuation through a photonic crystal with a single donor defect, an uncentred
dielectric sphere, leading to two shallow donor modes .
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The vertical rib with a missing horizontal slice, as in figure 13, can be readily
microfabricated . It should be possible to create it in III-V materials by growing an
aluminium-rich epitaxial layer and lithographically patterning it down to a single dot
the size of one of the vertical ribs . After regrowth of the original I I I-IV composition
and reactive ion etching of the photonic crystal, HF acid etching, whose [24]
selectivity is 10 8 or more, will be used to remove the aluminium-rich horizontal slice
from the one rib containing such a layer . The resonant frequency of the microcavity
can be controlled by the thickness of the aluminium rich sacrificial layer .

Therefore by doping the photonic crystal, it is possible to create high-Q
electromagnetic cavities whose modal volume is less than a half-wavelength cubed .
These doped photonic crystals would be similar to metallic cavities, except that they
would be usable at higher frequencies where metal cavity walls would become lossy .
Using sapphire as a dielectric for example, it should be possible to make a millimetre-
wave cavity with Q > 109 . The idea is not to compete directly with superconducting
cavities, but rather to operate at higher frequencies where the superconductors
become lossy . Given the requirement for refractive index greater than 2, doped
photonic crystals should work well up to ultraviolet wavelengths where diamond
crystals and Ti02 are still transparent .

5 . Applications
The forthcoming availability of single-mode microcavities at optical frequencies

will lead to a new situation in quantum electronics . Of course microwave cavities
containing a single electromagnetic mode have been known for a long time . At
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microwave frequencies, however, spontaneous emission of electromagnetic radi-
ation is a weak and unimportant process . At optical frequencies, spontaneous
emission comes into its own . Now we can combine the physics and technology of
spontaneous emission with the capability for single-mode microcavities at optical
frequencies where spontaneous emission is important . This combination is funda-
mentally a new regime in quantum electronics .

The major example of this new type of device is the single-mode light-emitting
diode (SMLED), which can have many of the favourable coherence properties of
lasers, while being a more reliable and threshold-less device . Progress in electro-
magnetic microcavities, allows all the spontaneous emission of a light-emitting diode
(LED) to be funnelled into a single electromagnetic mode .

As the interest in low-threshold semiconductor laser diodes has grown, for
example for optical interconnects, its spontaneously luminescent half-brother, the
LED, has begun to re-emerge in a new form . In this new form the LED is
surrounded by an optical cavity . The idea is for the optical cavity to make available
only a single electromagnetic mode for the output spontaneous emission from the
semiconductor diode. In fact the figure of merit for such a cavity is fl, the fraction of
spontaneous emission which is being funnelled into the desired mode . What is new
for this application is the prospective ability to make high-# cavities at optical
frequencies employing photonic crystals . The three-dimensional character of the
cavities ensures that spontaneous emission will not seek out those neglected modes
which are found to propagate in a direction away from the optical confinement .

With all the spontaneous emission funnelled into a single optical mode, the
SMLED can begin to have many of the coherence and statistical properties normally
associated with above-threshold lasing . The essential point is that the spontaneous
emission factor $ should approach unity . (A closely related concept is that of the
,zero-threshold laser', in which the high spontaneous emission factor produces a
very soft and indistinct threshold characteristic in the care of light output against
current input of laser diodes .) The idea is to combine the advantages of the LED
which is threshhold-less and highly reliable, with those of the semiconductor laser
which is coherent and very efficient .

The coherence properties of the SMLED are illustrated in figure 17 . In a laser,
single-mode emission is the result of gain saturation and mode competition . In the
SMLED, there is no gain and therefore no gain saturation, but the output is still a
single mode, because only one mode is available for emission . Since a single spatial
mode can always be mode converted into a plane wave, the SMLED can be regarded
as having spatial coherence .

What about temporal coherence? The spectral linewidth of the SMLED is
narrower than the luminescence band of the semiconductor . All the radiation is
funnelled into the narrow spectral band determined by the microcavity Q . Thus
SMLEDs have both spatial and temporal coherence as represented by the words
Directional and Monochromatic in figure 17 .

What about the modulation speed of SMLEDs in comparison with laser diodes
under d.c. modulation? Generally, the modulation speed depends on the carrier
lifetime. Since electron-hole pairs in laser diodes experience both spontaneous and
stimulated recombination, they have an advantage . However, single-mode cavities
concentrate zero-point electric field fluctuations into a smaller volume, creating a
stronger matrix element for spontaneous emission . Detailed calculations indicate
that spontaneous emission can be speeded up by a factor of about ten owing to this
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Figure 17 . An illustration of the properties of the SMLED, whose cavity is represented by
the small open circle inside the rectangular photonic crystal, on the left-hand side . The
words Monochromatic and Directional represent the temporal and spatial coherences
of the SMLED output as explained in the text . The modulation speed can be greater
than 10 GHz, and the differential quantum efficiency can be greater than 50%,
competitive with laser diodes, but there is no threshold current for the SMLED as
indicated by the L-I curves at the bottom . The regular stream of photoelectrons e are
meant to represent photon-number-state squeezing, which can be produced by the
SMLED if the spontaneous emission factor /3 of the cavity is sufficiently high .

cavity quantum electrodynamic (QED) effect . In figure 17 we indicate that a
modulation speed greater than 10 GHz should be possible for SMLEDs .

The same cavity QED effects can enhance the spontaneous emission efficiency of
SMLEDs since the radiative rate can then compete more successfully with non-
radiative rates . External efficiency should exceed 50%, but this can come most easily
from intelligent LED design [25] rather than from cavity QED effects .

Shown at the bottom of figure 17 is the curve of light output against current input
of SMLEDs and laser diodes. SMLEDs can compete with laser diodes in terms of
differential external efficiency, but the SMLEDs can have the advantage of not
demanding any threshold current. Lack of threshold behaviour makes the output
power and the operating wavelength of a SMLED relatively insensitive to ambient
temperature . Combined with the inherent reliability of a LED, this should produce
many systems advantages for the SMLED concept .

The final SMLED property illustrated in figure 17 is photon-number-state
squeezing, as suggested by the regular sequence of photoelectrons on the horizontal
line. Stimulated emission is not required for these exotic squeezing effects . The
critical variable is absolute quantum efficiency . If the quantum efficiency of the
SMLED is high, then these useful correlations will exist in the spontaneous output
of the SMLED . This requires, most of all, a high spontaneous emission factor /3, our
overall figure of merit for microcavities .
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There are many other applications for photonic crystals, particularly in the
microwave and millimetre-wave regime . They are very imaginative, and they have
gone far beyond our initial goals for using photonic crystals in quantum optics .

6 . Conclusions
It is worthwhile to summarize the similarities and the differences between

photonic band structures and electronic band structure . This is best done by
reference to the table .

Electrons are massive and so the underlying dispersion relation for electrons in
crystals is parabolic . Photons have no mass ; so the underlying dispersion relation is
linear . However, as a result of the periodicity the photons develop an effective mass
in photonic band structure and this should not be surprising .

Electrons have spin 2, but frequently this is ignored and Schrodinger's equation
is treated in a scalar-wave approximation . In electronic band theory the spin 2 is
occasionally important, however . In contrast, photons have spin 1, but it is generally
never a good approximation to neglect polarization in photonic band-structure
calculations .

Finally we come to the accuracy of band theory. It is sometimes believed that
band theory is always a good approximation in electronic structure . This is not really
true. When there are strong correlations, as in the high-T c superconductors, band
theory is not even a good zeroth-order approximation . Photons are highly non-
interacting; so, if anything, band theory makes more sense for photons than for
electrons .

The final point to make about photonic crystals is that they are very empty
structures, consisting of about 78% empty space, but in a sense they are much
emptier than that . They are emptier and quieter than even the vacuum since they
contain not even zero-point fluctuation within the forbidden frequency band .

A summary of the differences and similarities between photonic band structure and electronic
band structure .

Acknowledgments
I would like to thank John Gural for drilling all the holes and Tom Gmitter for

making the measurements. Thanks are also due to Ming Leung and Bob Meade for
their collaborative work . The Iowa State group is thanked for making me aware of
their diamond structure results prior to publication .

Electronic band structure Photonic band structure

Underlying dispersion Parobolic Linear
relation

Angular momentum Spin z scalar-wave
approximation Spin-1 vector wave character

Accuracy of band theory Approximate owing to
electron-electron
interactions Essentially exact
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