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Virtual photoconductivity is the change in static dielectric susceptibility due to the virtual excita-
tion of electrons and holes by an optical beam in the transparent region of a semiconductor, near
the band edge. It is the inverse of the Franz-Keldysh effect, which is the change in optical constants
due to a strong static field. Previously, only the low-optical-intensity limit of virtual photoconduc-
tivity had been theoretically analyzed. We provide in this paper a nonlinear theory of virtual photo-
conductivity valid for strong optical fields. The main approximation is that the optical matrix ele-
ment be strong enough to overwhelm the Coulomb interaction between electron and hole, but weak
enough to avoid two-photon absorption. At high optical intensities, we find that the change of stat-
ic dielectric constant saturates at =~0.5 units. The saturated regime of virtual photoconductivity,
while difficult to attain experimentally, is best explored on the red side of the exciton absorption tail
in high-quality GaAs crystals at very low temperatures.

I. INTRODUCTION

There has been interest recently! ™ in the change of
static dielectric constant of a semiconductor caused by
optical radiation at a frequency just below the band gap.
When an optical beam propagates through a transparent
semiconductor crystal, it induces a population of virtual
electron-hole pairs which are readily polarizable by a
static electric field. This change in dielectric constant has
been called® ““virtual photoconductivity” to distinguish it
from the ordinary photoconductivity of real carriers pro-
duced by incident radiation in the absorbing region above
the band gap.

Virtual photoconductivity is only one member of a
general family of optoelectronic phenomena in which op-
tical waves and static electric fields interact. In different
contexts, these phenomena frequently have different
names, but their physical origin is usually the same. For
example, when an optical field changes the static (dc)
dielectric constant it is sometimes described by a non-
linear susceptibility x'*(0,0, —w,, w,), where w, is an op-
tical frequency, and the O’s represent a zero-frequency
electric wave. In the context of bulk semiconductors,
this is called virtual photoconductivity. In quantum
wells, it is known as the ac-dc Stark effect.

Conversely, the same )(m( — g, Wg,0,0), with variables
permuted, tells us how a dc electric field changes the opti-
cal refractive index. This has been called
electroreflectance,* electromodulation, or the quadratic
electro-optic effect. But xm(-—wo, @,,0,0) incorporates
only the lowest-order term of a Taylor expansion in the
dc field. In the limit of arbitrarily strong dc electric
fields, this phenomenon becomes known as the Franz-
Keldysh® effect, and it includes electrically induced opti-
cal absorption, as well as refractive-index changes.

Thus we see that the influence of arbitrarily strong dc
fields on the optical constants has been calculated and is
well known.> Furthermore, by permutation symmetry,
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the effect of a weak optical field on the static dielectric
constant, expressed by x*(0,0, —w,, wg), is also well
known.? But to our knowledge, the influence of strong
optical fields on the dc dielectric constant has never been
calculated. In this paper we will present this virtual-
photoconductivity effect in the limit of strong optical
fields.

Naturally, the optical constants for frequencies w, near
the semiconductor band edge are particularly sensitive to
a dc field perturbation. Conversely, an optical field at fre-
quency o, near the semiconductor band edge will pro-
duce an unusually large change in dc dielectric constant.
This is an expression of the effect of virtual carriers. The
closer the optical tuning to the band edge, the greater the
population of virtual carriers, the stronger is their effect
in screening the static dielectric constant. Once the opti-
cal frequency is above the semiconductor absorption
edge, real carriers are created, and the physics becomes
equivalent to conventional photoconductivity under in-
tense light.

Our calculation neglects excitonic effects due to the
electron-hole interaction. Inclusion of these effects at
moderately high optical intensities is a very difficult prob-
lem, which we are not prepared to tackle. In the case of
ordinary carriers, the effect of Coulomb interactions be-
comes negligible in the high-density limit. Likewise for
virtual electron-hole pairs, excitonic interactions are
negligible if the density is high due to a high optical in-
tensity. The virtual-electron-hole-pair density can be-
come larger than the reciprocal exciton volume if the op-
tical matrix element becomes comparable to the detuning
from the band edge. At the same time, two-photon ab-
sorption can remain negligible since it is nonresonant at
the band edge. The main requirement is that the optical
matrix element be strong enough to overwhelm the
Coulomb interaction between electron and hole, but weak
enough to avoid two-photon absorption.

12 480 ©1991 The American Physical Society



43 VIRTUAL PHOTOCONDUCTIVITY DUE TO INTENSE OPTICAL . ..

II. OUTLINE OF CALCULATION

The effect of a static electric field on semiconductor
band structure has an easy, exact, nonperturbative solu-
tion, as long as the electric field is below the limit where

interband Zener tunneling becomes possible. This is
sometimes called the acceleration theorem:®
#ik =eE(0) , (1)

where k is the electron wave vector in the semiconductor
band structure, e is the electronic charge, # is Planck’s
constant divided by 27, and E (0) is the static electric
field. This leads to a picture of the quantum states evolv-
ing in reciprocal space as k —k(t)=k +eE (0)t /%, which
is exact for large electric fields subject to the restriction
that Zener tunneling be negligible. An illustration of this
type of temporal evolution in reciprocal space is given in
Fig. 1(a).

To understand the effect of the dc field on the optical
properties of the semiconductor, consider a pair of
valence- and conduction-band states sharing the same po-
sition in k space. As they drift together in k space under
the influence of the electric field, k(¢)—k +eE(0)t /%,
the energy spacing of the two states varies with time. As
they approach the center of the Brillouin zone, the spac-
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FIG. 1. A comparison of the time evolutions of the electronic
wave functions in a direct-band-gap semiconductor, subject to
(a) a strong static electric field, and (b) a strong optical field.
Exact solutions exist in both cases. The optical spectrum of the
first one leads to the Franz-Keldysh effect, while the static sus-
ceptibility of the second one leads to virtual photoconductivity.
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ing can come as close as the band-gap energy. As they
recede from the center of the Brillouin zone, the energy
spacing becomes large again. To ask for the effect of a dc
field on the optical spectrum is to ask for the linear opti-
cal spectrum of a two-level system subject to time-
dependent energy spacing. In Eq. (1), the static problem
is solved to all orders; and now the optical problem needs
only to be solved to lowest order to determine the linear
optical constants.

A time-varying energy spacing is a standard problem
in spectroscopic line-shape theory. It has been solved in
connection with nuclear magnetic resonance.” There it
gave rise to the idea of motional narrowing and other in-
teresting changes in the linear, first-order, spectroscopic
line shape. The essential trick is to Fourier transform the
time-dependent phase factor as in line-shape theory, rath-
er than simply doing a time average of the frequency-
domain spectrum. That is in effect what Franz and Kel-
dysh introduced® when they calculated the effect of a
static field on the optical spectrum. Their calculations
found immediate application in  studies  of
electroreflectance from semiconductors, where the sur-
face depletion field significantly modifies the observed op-
tical spectrum.

The problem of the present paper is the inverse prob-
lem, namely, the effect of an arbitrarily strong optical
field on the static dielectric constant. The solution will
follow the same pattern as above, except for treating opti-
cal and static fields in reverse order. First we determine a
simple, exact solution valid for strong optical fields.
Then we treat the static field as a weak perturbation on
that time-dependent exact solution. We are fortunate
that the two-band optical problem is exactly soluble to all
orders, provided that we neglect other bands. In the
optical-dipole approximation, the lattice periodicity of
the crystal is maintained and the two-band system
reduces to a collection of independent two-level systems
indexed by the wave vector k. Two-level systems subject
to a strong harmonic field are a classic textbook problem
treated, for example, by Landau and Lifschitz® or in the
Feynman® Lectures. It is also identical to the spin-4
problem in nuclear magnetic resonance. The exact opti-
cal solution is schematically illustrated in Fig. 1(b) to
contrast it with the exact static field solution in Fig. 1(a).

With the exact optical solution in hand, we apply a
weak static field perturbation E(0). The induced
electric-dipole moment gives us the static electric suscep-
tibility, or the dielectric constant as a function of the op-
tical intensity.

Our neglect of excitonic and other Coulomb effects
means that our calculation is restricted to the case of
strong optical fields. In the opposite limit, weak optical
fields, excitonic and Coulombic effects are important and
have been included in the treatment of bulk? virtual pho-
toconductivity as well as in the ac-dc Stark effect in quan-
tum wells.! Those weak-field results will be contrasted
with the strong-field formulas in Sec. VII.

Schmitt-Rink, Chemla, and Miller have given3 an in-
teresting descriptive analogy for the two opposite limits
of weak and strong optical fields. They consider the
weak-field limit as electron-hole condensation in real
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space, due to the presumed importance of excitons; and
the strong-field limit, electron-hole condensation in
momentum space, due to the separation of the problem
into independent two-level systems indexed by momen-
tum wave vector k.

III. TWO-BAND MODEL IN AN OPTICAL FIELD

As outlined above, we want to find the exact solution
to the problem of a semiconductor experiencing a strong
optical field, i.e., we want to find the exact states of the
Hamiltonian:

+V

cryst > 2)

Ho(n)= Al

1 pu—
2m P

where c is the speed of light, m,, is the free-electron mass,
and A(t) the vector potential of the optical field at a fre-
quency @, and polarization %,

—lwyt

A(D)=[ 4 (wp)e' ™ — A (—wpe ] . 3)

In this paper, w, will be smaller than the band gap w,,,
but only slightly so, ., —®, <<, The amplitude A4 (wg)
is chosen imaginary, which makes the electric field real,
E(wy)=—ilwy/c)A(wy). The applied field is then
E(1)=2E (wg)cos(wyt ).
The electron states in the unperturbed crystal are

¥ (r,t)=®, (re "', 4)
where the index m takes on the values k¢ and kv for the
conduction and valence bands, respectively. When an
optical field is turned on adiabatically, these states evolve
into linear combinations:

VE(r )= 3 a ()W, (r,t) (5)

where the superscripts +, — label the states that evolved
from the valence and conduction band, respectively.
These superscripts will be dropped for the moment. The
coefficients a,,(¢) are determined from the time-
dependent Schrodinger equation. In Eq. (2), the term
quadratic in A(¢) does not depend on the electron vari-
ables and thus does not affect the electron states. Keep-
ing only the linear term and writing

e

Vit)y=— p- A1) (6)
myc

we find in the usual way the equations for the a,,(2),

i#i Sam _ 14

i ——? n(B)a, (7
where

Vo (=" """ @ (nV (D, () . (8)

At k =0, the momentum operator in Eq. (6) has only an
interband matrix element, n%m. At k50, it has also di-
agonal matrix elements, » =m, which in fact are propor-
tional to the group velocity of the carrier in that band
and depend on odd powers of k. These matrix elements,
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which reflect the loss of parity at k0 of the cell periodic
functions ®,,(r), are responsible for two-photon absorp-
tion in our model.!° Their direct effect on the wave func-
tions is small because, being linear in k, they are small
compared to the interband matrix element. We therefore
neglect them and keep only the off-diagonal terms mn
in Eq. (8). Since o, —wy,<<w,, the rotating wave ap-
proximation is made. Letting o, (k)= (k)—o,(k),
we define the k-dependent frequency e(k):

#ik?

e(k)=w,(k)—wy=¢gy+ 2y

) 9

where g, is the detuning frequency from the band edge,
£0=0w,(0)—wy and m is the reduced mass of the
electron-hole excitation.

For small detuning, the change of the interband matrix
element {c|p|v) with k can be neglected, and Eq. (7)
reduces to

(10a)
(10b)

ia (t)=—ge'®a,(t) ,
ia,(t)=—gqe ""a (1),

where the Rabi matrix element #ig measures the interac-
tion with the optical field:

e
#ig = mocpc” A(wy) , (11

where g is the Rabi frequency and p,, is the momentum
matrix element at the band edge. We choose the phases
of the Bloch functions such that p_, is pure imaginary.
Expressing p,, in terms of the coordinate matrix element
X,, through the relation

Pcv:imomchcv (12)

and neglecting the difference between w, and w,,, since
they are nearly the same, we can express the Rabi matrix

element #g in a physically more intuitive way as
fig =eX_, E(w,) , (11)

where X, and E (w,) are real.
Equations (9a) and (9b) are solved by eliminating a,(t),
which results in the equation
d.—iea.+q%,=0, (13)

whose solutions are

+__ logt
Tt

a; s (14a)
® ,
af=—TeitgE (14b)
q
where
5 172
— £ € 2
=£4+ |5 4
0= 4 79 (15)

The frequencies w, depend on the value of k through
e=¢e(k), Eq. (9). In the limit ¢—O0, the solutions
[a,F(2),a (¢)] and [a, (2),a, (1)] reduce, respectively, to
the unperturbed valence- and conduction-band states.
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Making use of the relation ¢>=—w  w_ which follows
from Eq. (15), and defining

a=-1-, (16)

+
we obtain the following expressions for the valence- and
conduction-band states (corresponding to + and —
above) in the presence of an optical field of arbitrary
strength:

—ilo,tw_)t

M@, (N +ad,, (e ™,

(o, —w_)t
[

W, =Ce ¢

v, =Ce (17a)

D (r)—ad,,(re ],  (17b)

where C=(1+a?)"!/? is a normalization constant. No-
tice the frequency shifts occurring in the time exponen-
tials of Eq. (17): They correspond to a repulsion in fre-
quency (since w_ is negative) between valence- and
conduction-band states induced by the incident optical
field.

IV. STATIC SUSCEPTIBILITY
IN A STRONG OPTICAL FIELD

We now calculate the linear response of our system to
a weak, static, uniform electric field. Initially the valence
band is full and the conduction band is empty. The opti-
cal field is turned on adiabatically as t— —o. The
valence- and conduction-band states evolve into the states
¥,, and ¥, of Eq. (17). These satisfy Schrodinger’s
equation:

av,,

i7
"o

=H,(1)¥,, , (18)

where H,(t) is the time-dependent Hamiltonian of Eq.
(2). A static electric field in the x direction gives rise to a

perturbation V’'= —eE (0)x and the perturbed wave func-
tions V;, satisfy
v, ,
i# 3 =[Hyt)+V']Y,, , (19)

where m again runs over kv and kc. The static suscepti-
bility is obtained from the time-independent part of the
expectation value of the dipole operator ex over the
time-dependent states Wj,, calculated to first order!! in
E(0).

It is easy to show, making use of Eq. (19), that the per-
turbed states ¥;, are found in the same way as when H|
is time independent, namely, writing
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the b, () satisfy the equations
LI 21
l ot - % mnYn

which are identical with Eq. (7).
To obtain ¥}, to first order in E (0) we take by, =1,
and from Eq. (21) obtain

1 R4 ’ ’
bee=—p :w"g’ Vi (¢dt' (22)
where { is a positive infinitesimal. Making use of Eq. (17)

we find that

Va(n=C%"% " [ar(@f, —adte ")
X[ —eE (0)x]
x(¢ku+a¢kce_i(00!) . (23)

A combination of frequencies appearing in the exponen-
tial time factor reduces to

0, —20_—wy=(e2+4¢*)""% . 24)

In Eq. (23), the singular operator x acting on the product
of a(k), a function of k, with a Bloch function, ®,, gives
da

xalk) Py =i =By k)X, Py (25)

where the matrix elements X,. of the lattice-periodic

operator X are given in Eq. (12). With use of Egs. (24)
and (25), we find that V', is equal to

eE (0)

1+a?

’ — i(e2+4¢2)1%t
ch(t)—

l.aa +X imot_azx e—iwot ) (26)
ok,

cv e ve

X

and the coefficient b, follows immediately from Eq. (22).
The expectation value of the dipole operator is finally

(ex ), =— Re[V..(t)b,.(1)] , 27

2
E(0)
where Re denotes the real part and V,,=V_*. From the
expression, Eq. (26), for V,, it is seen that {ex ), contains
terms with frequencies 0, w,, and 2w,. Separating out the
static (O-frequency) part of (ex );, and dividing by the

v, =3 b, ()V,, , (20) applied electric field E(0) and the normalization volume
m | %Y, we obtain
2 (3at /3K, )? X, I? X, ?
1 2e x I cv ‘ +a4 | cv l ) (28)

VE©) (T

VH(1+a?)? | (e2+4g2)!7?

This then is the linear static susceptibility of a virtual
electron-hole pair of wave vector k. The quantity
(e?+4¢*)'/? is familiar from magnetic-resonance work.
Of the three terms in Eq. (28), the first is the most impor-

(e2+4¢%)'?+w,

(e2+4¢>)1?—w,

-
tant and we will discuss it in due course, but all three

have simple physical interpretations.
The second term of Eq. (28) is simply the interband
static susceptibility of a valence electron of wave number
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k, modified by the repulsion between bands induced by
the optical field. This repulsion leads to a decrease of the
susceptibility with increasing |E( a)o)|.

The third term, proportional to a*, results from the in-
terband matrix element X, taken between the admixture
terms (second terms) of the wave functions in Eq. (17). It
produces a change in susceptibility which is proportional
to the optical intensity squared or |E(w,)|*. It is a three-
photon absorption term (two optical photons and one
zero-frequency photon), which becomes resonant for
wave vectors k far away from the band edge at a resonant
frequency,

2
(k)+——_

w0 | (29)

which is approximately one-half the electronic transition
energy. Such a three-photon absorption has the charac-
ter of a weak two-photon induced change in susceptibili-
ty. At exact resonance, w,=w,, the contribution to the
static susceptibility would be pure imaginary. It will tend
to be a weak effect since the prefactor a* is very small
and nonresonant. This effect is somewhat analogous to,
and competes with, a dc current flow of free electrons
and holes created by ordinary two-photon absorption,
having the same power and spectral dependence. On the
other hand, free electrons and holes can accumulate over
a period of time and provide a substantial ordinary two-
photon photoconductivity. This can be a serious com-
petitor with virtual photoconductivity, which is the first
term in Eq. (28) and the main point of this paper. We
will have to examine, on a case-by-case basis, whether
virtual photoconductivity or ordinary two-photon ab-
sorption induced photoconductivity is the dominant pro-
cess.

The second and third terms of Eq. (28) were previously
obtained by Schmitt-Rink, Chemla, and Haug,!? though
not in this form. Those authors were interested in the op-
tical (as opposed to static) polarization induced by a weak
optical probe field. Their Eq. (54) reduces to the sum of
our second and third terms in the limit where the fre-
quency o, of the test beam goes to zero. Our first term is
not included in their result because they considered only
the interband matrix element of the dipole moment.

We are interested in the static case, and so, in the fol-
lowing we concentrate on the first term of Eq. (28). This
is a generalization to arbitrarily strong optical field of the
perturbation result, Eq. (7) of Ref. 2. To see this, note
that to lowest order in E(®,) the numerator, (da/dk, )%,
reduces to

8a2

ok,

dk, (30)

eE(00X, |"1 [ de |
#ie )

2
q—0 €

Identifying #ie with — W, in Ref. 13, and making use of
identities (2.17a) and (2.17b) of that paper, and multiply-
ing by 2 to sum over spin states, we obtain the integrand
of Eq. (7) in Ref. 2:

e?lex,, |*#*
2m [ E,,(k)—iT —#wy]*

(31)
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where the phenomenological damping term I' has been
added, and E , =%w,,.

Note that da/dk, vanishes at very strong fields. At
any k value, if ¢ >>¢e(k), the limiting value of da /9k, is

da
ok,

_—1 de
2q dk,

(32)

and as g — o the virtual-photoconductivity effect goes
away. This seems contrary to physical intuition at first
sight, but the following parallel makes this result under-
standable: As is clear from Eq. (28), virtual photocon-
ductivity originates from the acceleration term of the
coordinate x, and not from the regular interband part
X,,. If one applies an electric field to an insulator, the
only contribution to the susceptibility arises from the in-
terband part X,. The acceleration term i(3/3k, ) causes
all the filled states to move rigidly through the Brillouin
zone, k(t)—k +eE (0)t /%, but this does not contribute
to the susceptibility.

Now, in the limit of very large optical field, the
valence- to conduction-band optical transition is saturat-
ed (a—1 for g— x ). The degree of mixing does not
change as k moves through the zone under the influence
of E(0) and the states move rigidly as if there were no
optical intensity. Thus there is no contribution from the
acceleration term to the susceptibility. In practice, of
course, the applied optical field is never so large that, for
all possible k, the Rabi frequency is greater than the de-
tuning, g >>€e(k). Thus there is always a contribution to
the susceptibility, but we may expect it to peak at a finite
value of Rabi frequency gq.

The total susceptibility x,; contributed by the first term
of Eq. (28) is obtained by summing over states k and in-
cluding a factor 2 for the electron spin. It is easily shown
that

1 da _ ¢ de
1+a? 3k, e’ +4q° dk, G3)
so that
4e? 1 3 q’ de |’
= —— . 34
Xs #% (277_)3 fd k (82+4q2)5/2 dkx ( )

Although this integral can be handled as it is, we prefer
to make a partial integration over k,, making use of the
zone periodicity of e(k) to transform the integrand into
an expression containing d’e/dk? instead of (de/dk, )%
This is achieved by using the relation

de
—_ | = 35
f(s)dkx 0 (35)

d
f Bzdk" ;1;

and setting

df _ 1
G R (36)

Equation (34) becomes
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5 ) ) ) 3/2
___ € 3 €
= dk|14+—= | —
Xs 6#ig® (2m)} f l 2 | e2+4q2
3/2
3 g? d’
—= |3 3 > @37
2 | e*+4q dk;
which is also equal to
X= 1 e? rwkidk |, €
s 3,”.2 Mg Y0 4q2 (52+4q2)1/2
2q9°%
TS T aaa | (38)
(52+4q2)3/2

where the effective mass approximation has been made.
(This approximation is good to within a few percent even
for very strong optical fields.) Because € depends on k
quadratically, Eq. (38) is an elliptic integral. It has been
calculated numerically; the result depends on the two pa-
rameters €,= A /#, the detuning frequency with respect to
the band edge, and n=gq2/e}=|eX,, E(w,)/Al% a nor-
malized intensity parameter which is the square of the ra-
tio of the Rabi frequency to the detuning frequency from
the band edge. Defining the dimensionless variable &
through &2=#k?/2m ge,, which measures the electron-
hole pair kinetic energy in terms of the detuning, the re-
sult for x; is

2 o [2me | 4K, [E, |
NTR3Rh fig, (= 3t | & Gt
(39)
where E, is the exciton Rydberg binding energy,

K,=4my, is the ordinary static dielectric constant which
appears in the exciton binding, and

_[egdE | _ 4
Gm= [ proll L s
1+¢&
X [1— : 40
[(1+§2)2+4n]1/2] o

The calculated G(7) is plotted in Fig. 2. It rises steeply
near the origin, as G(71)~ (37 /64)n, reaches a broad pla-
teau with a maximum at optical intensity parameter
17~4.4, and then decreases very gradually.

V. MAGNITUDE OF VIRTUAL
PHOTOCONDUCTIVITY

We confine the discussion of the applications of these
results to GaAs. The relevant material parameters fol-
low: reduced mass m 4 of the electron-hole pair is about
~0.05X m,, the free-electron mass, the exciton binding
energy E,~4.2 meV, the static dielectric constant
K,=13, and the band-to-band electric dipole matrix ele-
ment X, =7 A. Then the optically induced static suscep-
tibility x,, which is a function of normalized optical in-
tensity 7, and detuning energy A is
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Al meV 6. 1)

A —
Xs(A,7) A

For the value A=12 meV used in Ref. 2, and at an opti-
cal intensity parameter 7= 1, we find from Fig. 2 that the
optically induced change in static susceptibility is
Xs=0.037 and the change in dielectric constant
K, =4my,=0.46. This is substantially smaller than the
linear extrapolation employed in Ref. 2, and the reason is
evident from Fig. 2. There is already substantial non-
linear saturation of the virtual photoconductivity at
n < 1. For the same detuning, the maximum value of the
change in dielectric constant K, reached at an intensity
n=4.4, is (K,)p,.x=0.57. Comparing K; to the back-
ground static susceptibility, K, this is a ~5% increase.
To understand why the virtual photoconductivity is
not any larger, we first notice, from Eq. (28) that y, origi-
nates from the acceleration term in the interaction, while
the background static susceptibility Y, originates from
the interband term X, which is large in semiconductors.
It nevertheless would seem that the small denominator
(e2+4¢%)°”? in Eq. (34), which reduces to £° at ¢—O0,
would give a large enhancement at small detuning and
thus lead to a substantial effect. However, this denomi-
nator is small only over a small region of k space near the
direct gap. For larger energies the fifth power depen-
dence actually makes for a rapid increase of the denomi-
nator, and so most of k space contributes very little to ;.
In addition (e2+4¢?)°’? increases rapidly with gq,
which measures the optical field amplitude. This increase

0.06 I T I T

0.05 -

0.04 - .
0.03 - -
0.02 -

0.01 m

0 L | 1 |
8
2Normaliz‘ted Light Igtensity, n

Normalized Change in Static Susceptibility, G(1)

FIG. 2. The change in static susceptibility (virtual photocon-
ductivity), in bulk material is linearly proportional to G () ac-
cording to Eq. (39), where 7 is the dimensionless optical intensi-
ty. Here 7 is the square of the ratio of Rabi frequency (or opti-
cal matrix element) to detuning frequency A from the band
edge. At a detuning A=10 meV, =1 at 380 MW/cm?. The
peak change in the dielectric constant occurs at an intensity
n~4.4 and is (K )p.x=0.5.
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causes G(7) to level off even as the optical intensity pa-
rameter 1 approaches 2. That is why extrapolating the
perturbation result to 7~ 1 substantially overestimates
the saturated change in dielectric constant.

So far we have neglected the contributions of the
second and third terms of Eq. (28). Both lead to a de-
crease in the real part of the susceptibility with increasing
g, while the third term contributes, in addition, an imagi-
nary part. In the range of values of A and 7 of interest
here, both contributions can be neglected and we must
consider, instead, two-photon induced photoconductivity
as the most serious parasitic effect. Two-photon absorp-
tion does not appear in our formalism; as discussed after
Eq. (8) it is left out of our calculation. Away from the
band edge in GaAs, the s and p wave functions change
their symmetry, and two-photon absorption becomes al-
lowed. We will discuss it and other parasitic effects in the
experimental feasibility section at the end of this paper.

We should also reiterate at this point our key approxi-
mation of neglecting Coulombic interactions by the virtu-
al electrons and holes. At high intensities, the main re-
gime of this paper, such interactions tend to be much
weaker than the Rabi energy, #ig, and were therefore
neglected. But at low intensities such effects play a role.
In our previous paper on this subject, Ref. 2, which con-
centrated on the low-optical-intensity limit, we tried to
incorporate Coulomb effects by expressing the final re-
sults in terms of the empirical optical-absorption spec-
trum. The empirical spectrum obviously contains
Coulomb interactions. Thus Eqgs. (8)-(12) of Ref. 2 are
expressed in terms'* of the empirical interband optical-
absorption spectrum. In addition, the sharp exciton line
of the absorption spectrum was given special handling in
Eq. (12) of Ref. 2. At low optical intensity Coulomb
effects tend to enhance virtual photoconductivity, and
this is partly responsible for the overestimate inherent in
the linear extrapolation to higher intensity. Conversely,
the low intensity limit of our Egs. (37)-(41) should not be
expected to agree exactly with the equations given in Ref.
2. They are meant to be used at high intensities. Under
weak optical pumping use the virtual-photoconductivity
formulas given in Ref. 2.

Among the important Coulomb interactions which are
absent at our level of approximations is Coulomb damp-
ing, or simply electron-hole collisions. In our formalism
such damping would produce an imaginary component to
the susceptibility change x,. This would allow real ab-
sorptive transitions, as well as purely reactive virtual in-
terband transitions, to occur. After the passage of the
laser pulse, not all the virtual electrons would return to
the valence band, as required for a purely reactive pro-
cess. The virtual photoconductivity would have to com-
pete with ordinary one-photon interband photoconduc-
tivity. A strong Rabi energy #ig would tend to force a re-
versible adiabatic change. It is clear therefore that the
use of the ordinary linear absorption coefficient would
overestimate dissipative absorption. In the absence of
any better theoretical model, the linear absorption formu-
la would be a simple, worst-case bound for assessing the
importance of nonadiabatic, absorptive, interband photo-
conductivity. Experimental feasibility for the observa-
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tion of virtual photoconductivity in the presence of com-
peting processes will be reviewed in the final section of
this paper.

VI. VIRTUAL PHOTOCONDUCTIVITY
IN QUANTUM WELLS

In view of the current interest in quantum confined sys-
tems and heterostructures we now discuss two-
dimensional (2D) systems. Let us denote the susceptibili-
ty change by x,(2D) to distinguish it from the 3D case.
We will analyze only the case of static electric field in the
plane x-y of the layer. (The perpendicular dc field case
was already handled in Ref. 1, and it leads to weaker
effects since the polarization of the virtual electrons and
holes is limited by the walls of the quantum well.) We
find that for thin quantum wells x,(2D) can be slightly
larger than its 3D counterpart y,.

We proceed from Eq. (37). In two dimensions the sum
over electron states per unit volume is

1 1 1
= — dk, | dk, , 42
Z T amr ,(2 J i J ke, )

2
Lo g ik,

where L? is the area of the layer and r its thickness.
Summing over k, adds the contributions of the subbands
n. In each subband dk, dk, =2m(m/#)de’, where ¢’ is
the frequency associated with the kinetic energy at
k, and k,. The detuning, defined with respect to the en-
ergy at kx=ky=0, is now different for each subband.
Thus the detuning of the lowest subband is
eo(1)=0,,(0) —wy+(#%/2mq)(7/7)?, while that of the
higher subbands is eo(n)=gy(1)+(n2—1)(#/2m 47/
7)%. This rapid increase of gy(n) with n assures a rapid
convergence in the summation over n.

For each n, the quantity € in Eq. (37) is e=¢,+¢'. In-
tegrating Eq. (37) over ¢’ gives the result

2 1

e

1 [ee]
D)=
GOD)= S S L F,), (43)
where 77, =q*[ey(n)]%. The function F(7) is
1 1+2
Flp=—— |— 21 | 44
R 4n | (1+49)? ] @

This is plotted in Fig. 3, and it is seen to be fairly similar
to G(n). It rises with an initial slope F(7n)~%/2. The
ratio of y,(2D) to x, is obtained from Egs. (39) and (43);
keeping only the first term in the sum, this is

Xs2D) 1 [ #x2 1 |7

— F(n)
Xs 2 | 2m gr? Figg(1) G(n)

(45)

and at any given value of 7, it is determined by the square
root of the ratio of confinement energy to detuning ener-
gy. For GaAs at a detuning A=12 meV, the confinement
energy equals A for a thickness 7=270 A. For n=1, the
ratio x,(2D)/x; equals 1.5. For a thickness half of that,
7=135 A, the ratio becomes 2.3. These are not very
large ratios but they are somewhat interesting.

It is instructive to compare the behaviors of the func-
tions F(n) and G(n). From Figs. 2 and 3 we notice that
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FIG. 3. The change in static susceptibility contributed by the
lowest subband of a multiple-quantum-well structure is propor-
tional to F(n). The static field is assumed parallel to the layers.
As in Fig. 2, 1, the dimensionless optical intensity, is the square
of the ratio of Rabi frequency (or optical matrix element) to de-
tuning frequency A from the lowest subband edge.

F(7) rises more steeply than G(7) near the origin (both
are linear in 7)) but, having reached its maximum F(7)
then decreases more rapidly than G (7)) as 7 continues to
increase. This can be understood as a combination of two
facts.

(1) In a given subband (and in the effective mass ap-
proximation) the 2D density of states compared to the
3D density of states is larger at small k. The crossover
point is in fact at k= /7, at which value the kinetic en-
ergy in the x-y plane equals the confinement energy.

(2) The integrand f(g,q) in Eq. (37) is largest at kK =0
and decreases with increasing € at any fixed g (or 7).
However, this decrease is more pronounced near k 1 =0,
the smaller the value of % [f varies as (g/¢)* when
n—0]. At larger values, 7R 1, the integrand is fairly
constant over regions of k, space where kX (m/7).
Because the 2D density of states weights the integrand at
small values of k, more heavily, the integral in the 2D
case is more sharply peaked around its maximum than in
the 3D case. We mention in passing that the rectangular
state density of the 2D case resembles closely the approx-
imation we made in Ref. 2 for treating Coulomb effects in
the low-optical-intensity limit.

VII. EXPERIMENTAL FEASIBILITY

Considering how conceptually straightforward virtual
photoconductivity actually is, we wonder why it has not
yet been observed. Optics, and nonlinear optics in partic-
ular, have achieved by now a high level of sophistication
and many more subtle effects have already been experi-
mentally explored. To answer these questions, let us first
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take note of the requirement for a high-power laser beam
that is tuned almost to the absorption edge of a direct-
band-gap semiconductor. A number of competing effects
exist which could mask the virtual photoconductivity. In
this section we will analyze this competition and see how
to design an effective experiment.

With regard to the high-power requirements, let us ask
what optical intensity is required to make
n=q%/e3=|eX,., E(w,)/A|*=1 at a typical detuning, say
A=10 meV. Using a band-to-band dipole matrix element
X,=7 A, the electric field requirement is
E(wy)=1.43X10° V/cm. The optical intensity is
cn|E (wy)|? /27, where n is the optical refractive index,
n~3.5. This leads to a requirement for 380 MW/cm?,
which, while substantial, amounts to <<1 mJ/cm? in a
subpicosecond pulse. Furthermore, as can be seen from
Fig. 2, much of the power above n=0.5 is wasted due to
saturation of the virtual-photoconductivity effect. Thus
an intensity ~190 MW /cm? could produce almost the
same effect.

By far the most serious parasitic effect is ordinary pho-
toconductivity due to the real, as opposed to virtual, exci-
tation of electrons and holes. This ordinary photocon-
ductivity could be the result of one-photon absorption or
two-photon absorption. Neither effect was included in
our theory because (1) nonresonant one-photon absorp-
tion would require a Coulomb damping or other carrier
collisions to produce a finite linewidth. The theory of the
Urbach edge line shape is notoriously difficult, even in
linear optics. (2) Two-photon absorption was excluded as
explained after Eq. (8).

To analyze the competition between a static suscepti-
bility change as against a photocurrent density, note that
dP /dt plays the same role as electrical current J in
Maxwell’s equations. Therefore the photocurrent
NeuE(0) (in esu) should be compared against
(9x, /9t )E (0), where N is the photocarrier density and u
the mobility of the carriers and E(0) is the static bias
field as always. One of the best ways of detecting such
high speed currents is to use them to generate’> mi-
crowave or millimeter wave pulses, much as Hertz did
with radio waves 100 years ago. Then the microwave ra-
diated power is proportional to the square of the source
terms, dJ /9t in one case, and d32P /dt? in the other case.
Hertzian radiation is superior to a simple current mea-
surement in a conventional photodiode, since it discrim-
inates against long-lived real carriers which continue to
flow in a photodiode long after the laser pulse has gone.

Therefore we need to compare 3%y, /dt? against
eudN /0t. Since carrier lifetimes are generally very long
in good quality semiconductors, the photocarrier density
N is the time integral fdt M[n(t)], over the real carrier
generation rate per unit volume M, which is a function of
the dimensionless intensity 7(¢). For linear absorption
M 7] is linear, and for two-photon absorption M [7] is
quadratic. Now the comparison is between 3%y, /dt* as
against e,u.(a/at)fdt M[%n(t)] which in turn simplifies
nicely to euM[7(2)].

Using the information in this paper it is easy to esti-
mate 8y, /9t which can be written y, /T2, where T is a
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characteristic time which for most laser pulse shapes is
approximately one-half the laser pulse duration. An
average detuning of A=10 meV allows sufficient band-
width for a laser pulse ~0.12 psec in duration. Then for
the change y, =0.039, the source term of Hertzian radia-
tion becomes 82y, /92~ 1.08 X 10*/sec®. This has to be
compared against the ordinary photoconductive source
term, euM[n(t)], first for linear absorption, and then for
two-photon absorption.

In respect of the fact that the photoexcited carriers in
GaAs are likely to be quite energetic, let us employ a car-
rier mobility p~ 5000 cm?/V sec, which must be multi-
plied by 300 to convert to esu. The shape of the Urbach
edge in GaAs is known'® at 75 K and it is evident that it
must be even sharper at lower temperatures. At 4 K an
absorption coefficient <1/cm seems entirely reasonable
for a detuning of only 10 meV. Then the Hertzian source
term caused by linear absorption induced carriers is

-2

epx (1 cm xS0 MWem =) 5o x10%sec? .
fiw,,

(46)

This is safely less than the virtual source term

9%y, /3t2~1.08 X 10%°/sec?. :

Now let us consider two-photon transitions whose ab-
sorption coefficient!” in GaAs is f=2.6X10" 2 cm W™,
The Hertzian source term associated with two-photon in-
duced carriers is

(380 MW cm ~2)?

=1.2X10% sec™? 47)
F10)

eup
cv

which is marginally larger than the virtual source term
3%y, /8t2~1.08 X 10% /sec’. In the attempt to reach the
fully saturated regime of virtual photoconductivity, the
optical intensity has become high enough to cause com-
parable two-photon photoconductivity. To examine the
tradeoffs between the competing photoconductivities, let
us write down the following scaling laws for optical field,
and the Hertzian source terms for virtual, linear, and
two-photon photoconductivity in the saturated regime
where the dimensionless intensity 7~ 1:

|E (w0p)] ~A, (48a)
%y, /9t~ A3, (48b)
linear photoconductivity ~A? (48c)
two-photon photoconductivity ~ A% . (48d)

A thoughtful examination of these scaling laws tells us
that the saturated regime of virtual photoconductivity
demands the smallest possible detuning, A, if it is to dom-
inate the other photoconductivities. This in turn requires
the best possible material quality and the sharpest,
cleanest, exciton Urbach tail. A detuning of 10 meV per-
mits the two-photon photoconductive signal to be com-
petitive with the virtual photoconductivity. Clearly it is
desirable to work even closer, right at the red edge of the
bulk exciton, but before significant linear absorption sets
in. Unfortunately, the absolute strength of the band-tail
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absorption in GaAs below'® 75 K appears not to be avail-
able in the literature.

The plethora of photoconductive signals can still be
distinguished from one another, even when they are of
similar strength. The ordinary photoconductivity pro-
duces a Hertzian source term that is always positive, but
the virtual source term is a second derivative with two
zero crossings. These added zero crossings will show up
in the coherently'® detected microwaves.

It is interesting to analyze whether there is any pros-
pect of detecting virtual photoconductivity at room tem-
perature. The slope of the Urbach edge is much less
steep at room temperature. A detuning of at least 50
meV is needed, dashing any hopes of reaching the n=1
saturated regime. From Ref. 2, the virtual photoconduc-
tivity is proportional to ~A ™3, and the signal will be
weaker by 5°=125 compared to the 10-meV detuning we
analyzed above. Since the two-photon contribution does
not fall off away from the band edge, the peak power will
have to be reduced by a factor 125 to keep pace. There-
fore the optimal optical intensity for detecting the virtual
photoconductivity at room temperature would be only
~1 MW/cm? It is impossible to reach the saturation
limit of Figs. 2 and 3 at room temperature.

At low intensity the only competing process is ordinary
linear photoconductivity. Since Urbach tails fall away
exponentially with detuning A from the band edge, and
virtual photoconductivity falls away as the reciprocal
cube of the detuning, the virtual photoconductivity will
always dominate ordinary photoconductivity at
sufficiently large detuning as required at room tempera-
ture. But then the effect is considerably weakened in
comparison to the saturated condition. At a 5 times
greater detuning, and 125 times less power as specified in
the preceding paragraph, the change in dielectric con-
stant is weaker by ~10°. But the volume integrated
Hertzian source term is not necessarily that much smaller
since it is not confined to the optical skin depth. We con-
clude that virtual photoconductivity at room temperature
is within the signal-to-noise capabilities of current laser-
microwave photoconductivity experiments.

One more parasitic electro-optic effect needs to be
dispensed with, and that is optical rectification. It is the
inverse of the linear electro-optic effect. In optical
rectification, the passage of an optical beam through an
inversion nonsymmetric semiconductor sets up a static
polarization. It is nonresonant at the band edge, so at
small detuning the virtual photoconductivity will always
win. In GaAs the linear electro-optic coefficient!® is
Frp =4.8X 107 % esu. At some finite static bias field, vir-
tual photoconductivity will become competitive with the
static polarization of the optical rectification effect. We
find that this would require a static field E (0) > 10* V/cm
at a detuning A=50 meV. One has the option of apply-
ing a bias field stronger than this to overwhelm the opti-
cal rectification effect. Alternatively, taking advantage of
the xyz symmetry of the optical rectification coefficient, it
is eliminated when the optical polarization is along one of
the cubic axes.

We are now in a position to answer why virtual photo-
conductivity has not yet been experimentally observed in
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subpicosecond spectroscopy. At the large detunings re-
quired at room temperature, the effect is rather weak,
though still detectable by microwave or millimeter wave
generation. In fact it is the dominant photoconductivity
at detunings > 50 meV. Direct detection by current flow
in a photodiode is inadvisable since there is no way to
discriminate against the long-lived real current flows of
ordinary photoconductivity. At low temperatures, =<4
K, the effect can be much larger, almost saturated, but it
requires extremely good material quality. Then the op-
timal laser tuning would be just on the red edge of the
bulk exciton absorption tail. The outlook is promising
for virtual photoconductivity to be observed experimen-
tally.

VIII. CONCLUSIONS

We have analyzed the saturation of virtual photocon-
ductivity as a function of optical intensity. The satura-
tion requires an intensity sufficient to make the optical
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transition matrix element equal to the detuning energy.
The change in dielectric constant saturates at a change of
(K )max=0.5. To achieve such a large change in dielec-
tric constant, and to minimize competing effects, requires
a very cold semiconductor crystal of the highest possible
quality. The laser pulse should be tuned as close to the
red edge of the bulk exciton as permitted by the laser
pulse bandwidth and the absorption tail.

A multiple-quantum-well structure (MQWS) would
have only a marginally stronger virtual photoconductivi-
ty than bulk material. A static bias field parallel to the
plane of the quantum wells is preferable to perpendicular.
The advantages of the MQWS would probably be
outweighed by the limited volume filling fraction, and by
the better quality of bulk material. Furthermore, the Ur-
bach tail of the bulk exciton is likely to be sharper since it
is not subject to quantum-well thickness fluctuations. In
addition, bulk excitation would give a bigger signal since
a larger volume of material would be likely to be excited
and to radiate a microwave signal.
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