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We employ the concepts of band theory to describe the behavior of electromagnetic waves in three-dimensionally
periodic face-centered-cubic (fcc) dielectric structures. This can produce a “photonic band gap” in which optical
modes, spontaneous emission, and zero point fluctuations are all absent. In the course of a broad experimental
survey, we have found that most fcc dielectric structures have “semimetallic” band structure. Nevertheless, we
have identified one particular dielectric “crystal” that actually has a “photonic band gap.” This dielectric structure
consisting of 86% empty space, requires a refractive-index contrast of greater than 3:1, which happens to be readily

obtainable in semiconductor materials.

INTRODUCTION

By analogy to electron waves in a crystal, light waves in a
three-dimensionally periodic dielectric structure should be
described by band theory. Recently, the idea of photonic
band structure!2 has been introduced. This means that the
concepts of reciprocal space, Brillouin zones, dispersion rela-
tions, Bloch wave functions, van Hove singularities, etc.,
must now be applied to electromagnetic waves. If the depth
of refractive-index modulation is sufficient, then a so-called
photonic band gap could open up. This is an energy band in
which optical modes, spontaneous emission, and zero point
fluctuations are all absent.

It is interesting that the most natural real-space structure
for the optical medium is face centered cubic (fec), which
also happens to be the most famous atomic arrangement in
crystals. The contrasts between electronic and photonic
band structures are striking:

(i) The underlying dispersion relation for electrons is
parabolic, while that for photons is linear.

(ii) The angular momentum of electrons is 1/2, but the
scalar wave approximation is frequently made; in contrast,
photons have spin 1 and the vector wave character plays a
major role in the band structure.

(iili) Band theory of electrons is only an approximation
due to electron—electron repulsion, while photonic band the-
ory is essentially exact since photon interactions are negligi-
ble.

The possible applications of such a “photonic band gap”
are quite tantalizing. In addition to quantum-electronic
applications, such as spontaneous emission inhibition,!
there have also been proposals?? for studying mobility edges
and Anderson localization within such a forbidden gap.
Furthermore, Kurizki and Genack? have shown that atomic
and molecular physics is profoundly modified in a volume of
space in which zero-point electromagnetic fluctuations are
absent. In particular, the resonant interatomic potential of
homonuclear diatomic molecules, as well as many other
atomic physical properties, are severely modified in such a
spatial region.
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Since we are only at the threshold of such research, we
have elected to do our initial experimental research at micro-
wave frequencies, for which the periodic dielectric structures
can be fabricated by conventional machine tools. Further-
more, this has enabled us to use sophisticated microwave
homodyne detection techniques for measuring the phase
and amplitude of the electromagnetic Bloch wave functions
propagating through the photonic crystal.

Earlier research!? had indicated that it was desirable for
the Brillouin zone in reciprocal space to be as near to spheri-
cal as possible. Among possible three-dimensional periodic
structures, this had suggested that face-centered-cubic (fcc)
dielectric geometry would be optimal for achieving a photon-
ic band gap. The lowest-order Brillouin zone for the fcc
structure happens to be closer to spherical than the Brillouin
zone of any other common crystal structure. In the absence
of any further theoretical guidance, we adopted an empiri-

‘cal, Edisonian approach. Literally, we used the cut-and-try

method. Dozens of fce structures were painstakingly ma-
chined out of low-loss dielectric materials. These struc-
tures, which might be called crystals, were roughly cube
shaped and contained up to ~8000 atoms. Insome cases the
atoms were dielectric spheres, in other cases the atoms were
spherical cavities filled with air (spherical air atoms), the
interstitial space consisting of dielectric material. The
atomic-volume filling fraction was varied from 11 to 86%.
Refractive-index contrast was varied between 1.6:1 and
3.5:1. The propagation of electromagnetic waves through
these structures was then carefully investigated. This te-
dious cut-and-try approach was time consuming, but it
helped to ensure that no possibilities were overlooked.

The main conclusion of this paper is that a photonic band
gap can indeed be achieved in three-dimensional dielectric
structures, but it requires an index contrast of nearly 3.5:1.
The early predictions had been much more optimistic, an-
ticipating a gap opening up at an index contrast of 1.21:1 in
one case! and 1.46:1 in the other.2 In our experiments all the
test structures except one turned out to be “semimetals,”
and only one particular geometry having an index contrast of
3.5:1 gave rige to a “semiconductor” with a true photonie
band gap. Insemimetals, the valence band in one section of
the Brillouin zone has an energy overlap with the conduction
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Fig.1. Sweep oscillator feeds a 10-dB splitter. Part of the signal is
modulated (MOD) and then propagated as a plane wave through a
fee dielectric crystal. The other part of the signal is used as a local
oscillator for the mixer (MXR) for measuring the amplitude change
and phase shift in the crystal. Between the mixer and the X-Y
recorder is a lock-in amplifier (not shown).

band in a different section of the Brillouin zone. A true
band gap, as in a “semiconductor,” requires a forbidden
band of energies irrespective of the propagation direction in
reciprocal space.

Fortunately, crystalline silicon and other semiconductors
are excellent infrared optical materials, providing refractive
indices of ~3.5. Therefore the optimal structure that we
have found in the microwave experiments can be scaled
down in size in order to provide a photonic band gap in the
near infrared.

EXPERIMENT

These investigations employed the experimental arrange-
ment that is shown in Fig. 1. A monopole antenna (a 6-mm
pin over a ground plane) launches a spherical wave down a
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long anechoic chamber built of microwave-absorbing pads.
The wave front becomes approximately planar by the time it
reaches the fec dielectric structure at the opposite end of the
chamber. (Henceforth the fce dielectric structure will be
called the crystal.) Only the plane wave passing directly
through the crystal can be seen by the receiving monopole.
A microwave oscillator feeds the homodyne detection sys-
tem with a frequency sweep from 1 to 20 GHz. This home-
built system resembles an optical Mach-Zehnder interfer-
ometer. (Alternatively, a Hewlett-Packard 8510 Network
Analyzer was also used to perform the amplitude and phase
measurements.) The X-Y recorder plots the interference
pattern as a function of microwave frequency.

An example of such a series of interference fringes is
shown in Fig. 2 for the transmission of microwaves through a
quarter-wavelength stack of nine polystyrene plates (index
1.6, thickness 6 mm) spaced by quarter-wavelength air lay-
ers. In such a simple one-dimensional layered structure, a
pronounced stop band or one-dimensional band gap occurs
around 6.5 GHz. Two curves are present in Fig. 2. The
heavy curve is a reference interference fringe pattern show-
ing the antenna transmission function if the stack of plates is
removed. Variations in the wave envelope as a function of
frequency are simply due to variations in the antenna effi-
ciency. The lighter curve represents the experimental sig-
nal, the interference fringe pattern observed if the quarter-
wavelength stack of plates is inserted into the path of the
microwave beam. Over a 2-GHz band, centered on 6.5 GHz,
the transmitted beam is severely attenuated. This is the
stop band.

Notice also the phase shift with respect to the reference
beam in Fig. 2. At 4.5 and at 9 GHz, on either side of the
stop band, the signal fringes and the reference fringes are
essentially in phase. At the band edges, the behavior is
quite different. Owing to group-velocity dispersion, the sig-
nal beam is shifted roughly 180 deg compared to the refer-
ence beam at the upper-band-edge and lower-band-edge
frequencies, 5.5 and 7.5 GHz, respectively. The relative
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Fig. 2. Interference pattern produced when a microwave signal being transmitted between antennas interferes with a local oscillator wave.
The heavy curve is a reference fringe pattern for the case of transmission through an empty space. The envelope fluctuations are due to
variations in antenna efficiency. The lighter curve is for transmission through nine polystyrene plates spaced at one-quarter wavelength. A
band gap opens up between 5.5 and 7.5 GHz. Furthermore, on either side of the band gap there is an ~180-deg phase shift.
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Fig.3. Three-dimensional periodic structure that had a photonic band gap. This fcc crystal consisted of spherical air atoms that were larger
than close packed. The resulting overlap of the air atoms permits us to see visible light transmitted all the way through the structure along the
(111) direction. The interstices between the atoms are filled with dielectric material of a refractive index of 3.5. The overall structure is 86%

air and only 14% solid material.

Fig.4. Three-dimensional fcc crystal consisting of Al;O; spheres of a refractive index of 3.06. These dielectric spheres are supported in place
by the blue foam material, of refractive index 1.01. These spherical dielectric atom structures failed to show a photonic band gap at any volume
fraction.
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phase shift is linearly proportional to wave vector k. In
principle, with an apparatus of this type, it is possible to map
out the full dispersion relation, i.e., frequency versus wave
vector or w versus k. Similarly, such commercial equipment
as the Hewlett-Packard 8510 Network Analyzer can read out
directly in terms of group velocity versus frequency.

Our most interesting crystal, exhibited in Fig. 3, is the one
that has a photonic band gap. Its structure is most unusual.
The spherical atoms consist of air, while the space between
the atoms is filled with a dielectric material. This commer-
cial low-loss dielectric material, Emerson and Cumming Sty-
cast-12, has a microwave refractive index of 3.5. The vol-
ume fraction occupied by the spherical air atoms is 86%. In
fce close-packed structures, the atomic volume is only 74%.
Therefore the atomic spheres in Fig. 3 are actually closer
than close packed, i.e., they overlap slightly. Owing to the
overlapping atoms, it is possible to see all the way through
the crystal along certain directions. The bright spots of
light emerging on the top surface of the crystal in Fig. 3 are
being channeled from below along the (111) direction.

Crystals consisting of spherical air atoms are relatively
easy to fabricate. A series of hemispheres are drilled on one
face of a dielectric plate by a numerically controlled machine
tool. On the opposite face of the plate an offset series of
hemispheres are drilled. Then many of these plates are
simply stacked up so that the hemispheres face one another,
forming spherical air atoms. The volume fraction is varied
by changing the hemisphere diameter.

The beauty of spherical air-atom crystals is that they are
self-supporting. The more obvious fec structure consisting
of dielectric spheres is self-supporting only for the case of
close packing. For any smaller volume packing fraction, the

WW
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dielectric spheres must be supported in position. The di-
electric spheres consisted of polycrystalline Al,03, 6 mm in
diameter with a microwave refractive index of 3.06. The
volume fraction was varied by changing the sphere spacing.
The dielectric spheres were supported by thermal compres-
sion molded dielectric foam of a refractive index of ~1.01.
Precision molds were built of aluminum jig plates having 6-
mm-diameter steel ball bearings embedded in them. Di-
electric foam pads were molded at 95°C, with the molds
released at 40°C. The hemispherical depressions in the
molded foam were then filled with the Al,O3 spheres and the
structure built up into many layers. Figure 4 is a photo-
graph of such a crystal consisting of dielectric spheres sup-
ported by the blue dielectric foam.

The philosophy behind our experiments is to map out the
frequency versus wave-vector dispersion relations for a
whole series of three-dimensional fcc crystals. For each
crystal it becomes necessary to explore all the different an-
gles in reciprocal space. The interference fringe pattern in
Fig. 5 is an example of such a measurement on the 86%
spherical air-atom crystal of Fig. 3. These fringes are pro-
duced in the homodyne detection system by an electromag-
netic wave propagating toward the L-U line of the hexagonal
L plane in reciprocal space. This wave was predominantly
s-polarized; i.e., it was polarized parallel to the X plane.
Two important items emerge from Fig. 5: the lower-gap-
edge frequency and the upper-gap-edge frequency. The
lower edge is defined by the sudden drop in microwave
transmission relative to a reference scan with the crystal
absent. The upper edge is defined by the frequency at
which the transmitted signal recovers.

These two frequencies define band edges, but these band
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Fig.5. Forbidden gap observed on the crystal displayed in Fig. 3 and measured along the L-Uline of the L plane. The electromagnetic wave is

polarized parallel to the X plane (s polarization).
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edges do not necessarily fall at exactly the same point on the
surface of the Brillouin zone. The reciprocal space position
of these frequency edges is determined by momentum con-
servation between the external and internal electromagnetic
waves. In our experiments, the incoming plane wave was
generally incident on the {100) face of the crystal. (The
{100) face is, by definition, perpendicular to the (100) mo-
mentum direction.) On transmission through the crystal
surface, only the component of wave-vector momentum that
is parallel to the surface plane is conserved. This is similar
to the principle that leads to Snell’s law. In our geometry it
means that the component of wave-vector momentum that
is perpendicular to the (100) direction, (0, ky, k.), is con-
served on entering the crystal. The position of the frequen-
cy edge in reciprocal space is the point on the Brillouin zone
surface having those identical momentum components &,
and k.. In our experiments, the external angle of incidence
is held fixed as the frequency is swept. Therefore the upper-
gap-edge and lower-gap-edge frequencies will have different
ky and k. and different Brillouin zone positions.

Owing to the limitations on the external wave vector (0,
ky, k.) that could be attained in air, some parts of the inter-
nal Brillouin zone sometimes had to be accessed by trans-
mission through a pair of giant microwave prisms on either
side of the crystal. The prisms, over 15-cm square, were
made of polymethyl methacrylate (microwave refractive in-
dex of 1.6) in order to increase the available external wave
vector.

Step by step, the angle of incidence is varied, and the
frequency of the first and second band edges is mapped out
on the surface of the Brillouin zone. Our measurements
concentrated on the high-symmetry planes X-U-L and
X-W-K, though lower symmetry points were also occasion-
ally investigated. (See Fig. 6 for a description of the Bril-
louin zone point labels.) Unfortunately, with this method it
is not possible to learn much about the higher-frequency
bands above the two lowest band edges. At higher frequen-
cies, a superposition of allowed electromagnetic modes can
become excited by an incident plane wave. This makes it
difficult to disentangle any higher band edges. Accordingly,
we determine only the first gap edge where transmission is
cut off and the second gap edge where transmission cuts on
again. In keeping with the electron-band-structure analo-
gy, the first gap edge may be called the valence band and the
second gap edge may be called the conduction band.

The result of these measurements on our 86% spherical
air-atom fcc dielectric structure (Fig. 3) is plotted in Fig. 6.
For electromagnetic waves, two band structures must be
shown, thus allowing for the two different polarization states
of electromagnetic waves. The forbidden band gap in Fig. 6
is filled in by slanted lines. The lines that are slanted up to
the right fill in the band gap for linear polarization that is

‘parallel to the X plane (mostly s polarized). The lines
slanted up to the left fill in the band gap for the orthogonal
linear polarization with a partial component perpendicular
to the X plane (mostly p polarized). On the high-symmetry
planes, X-U-L and X-W-K, the two linear polarizations are
not expected to mix, and therefore the linearly polarized
antenna excites electromagnetic eigenstates of the crystal.
Off the high-symmetry planes, the polarization eigenstates
are no doubt complex, and some type of elliptical polariza-
tion should be expected. No absolute frequency units are
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Fig.6. Experimentally observed photonic band structure in recip-
rocal space of the fcc spherical air atoms surrounded by dielectric
configuration of Fig. 3. The lines sloping up to the right represent
predominantly s polarization relative to the Brillouin zone, while
the lines sloping up to the left represent predominantly p polariza-
tion. The cross-hatched region for which both polarizations are
forbidden in all directions in & space is the photonic band gap.

given on F'ig. 6, since the frequencies should all scale with the
reciprocal linear size of the crystal spacing. On the actual
crystal, the fcc unit cube length a was equal to 12.7 mm and
the forbidden gap was ~1 GHz wide, centered at 15 GHz.

The band structure in Fig. 6 plots frequency versus real
wave vector. At frequencies within the forbidden gap, the
wave vector is pure imaginary, and it measures the attenua-
tion length within the crystal. Attenuation was generally
strong within the band gap, consistent with a 1/e attenuation
length of only one or two crystal unit cells. At points where
the band gap was narrow, however, particularly for p-polar-
ized waves at the point U, the attenuation length was much
longer, approximately 10-20 unit cells.

All the other crystal structures that were fabricated and
tested in our experiments produced semimetals rather than
photonic band gaps. Most frequently, the conduction band
at the point L in the Brillouin zone generally tended to
overlap in energy with the valence band at the points W and
U. An example of such a band structure is shown in Fig. 7
for the case of 50% volume fraction spherical air atoms em-
bedded in polystyrene of a refractive index of 1.6. In our
experiments we found that it was essential to start out with
large forbidden gaps at the points X and L at centers of the
square and hexagonal facets of the Brillouin zone. Invari-
ably if band gaps at the X and the L points were inadequate,
band overlap would become established at peripheral points
between facets, such as U, W, or K. In our experimental
survey, a semimetallic band structure occurred in all cases
but one.

Let us now analyze more of the band structure properties
as a function of volume fraction and structure type. Figure
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Fig. 7. Example of a photonic band structure similar to that of a
semimetal. The fcc structure was 50% volume fraction air atoms
but was made of polystyrene, with a refractive index of only 1.6.
The conduction band at the L point overlaps the valence band at the
U and W points. In order to get a band gap, both the volume
fraction of atoms must be increased and the index contrast must be
increased.
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Fig. 8. Effective long-wavelength refractive index ¢/avx measured
on two basic crystal structures of various volume fractions, where ¢
is the speed of light in vacuum, a is the length of the unit cube, and
vx is the center frequency of the X gap. Fcc close packing occurs at
74% volume fraction. Spherical dielectric atoms and spherical air
atoms are the two basic types. Of all these structures, only the one
marked photonic band gap had a forbidden frequency band at all
directions in reciprocal space.
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8 gives the refractive index of the different crystal structures
as a function of volume filling fraction. The effective refrac-
tive index is defined as ¢/avy, in terms of the center frequen-
cy, vy, of the X-point gap. We found that the X-point
center frequency was a good extrapolation of the low-fre-
quency dispersion out to the X point. Therefore c/avy is a
good surrogate representation of the long-wavelength re-
fractive index of the composite structure represented by
these fce crystals. For both the spherical air atoms and the
dielectric sphere atoms, a simple linear interpolation of re-
fractive index with volume fraction seems to describe the
experimental indices in Fig. 8. Neither of the effective me-
dium theories, not Maxwell-Garnett nor Bruggeman were
any more accurate in modeling Fig. 8. Only the one struc-
ture marked photonic band gap on Fig. 8 had a forbidden
gap all the way around the Brillouin zone. All the others
were semimetals as mentioned earlier.

In view of the importance of having large gap widths at the
L point and at the X point, we present those results in Fig. 9.
The measured gap width normalized to vy is plotted against
spherical air-atom volume fraction. All the results in Fig. 9
were taken on Emerson and Cumming Stycast-12, a material
with an index contrast of 3.5:1 relative to air. Itis clear from
Fig. 9 why the 86% volume fraction spherical air-atom struc-
ture has an overall photonic band gap. Itsgap widths are far
larger than any of the others.
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Fig.9. Forbidden gap width normalized to vx and observed at the
L point and at the X point for a series of spherical air-atom fcc
crystals of varying atomic volume fraction. The dielectric material
between air atoms had a refractive index of 3.5. We have elected to
plot the 86% X-point gap width as a negative number since the (200)
Fourier component has the opposite sign on either side of the null
point at 68% volume fraction.
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Notice the unusual behavior of the X gap as a function of
spherical air-atom volume fraction. At approximately 68%
volume fraction the X-gap width becomes undetectable,
while at the higher-volume fraction of 86% it rises again to a
large value. While our measurements can assign only an
absolute magnitude to the gap width, we have elected to plot
this last data point as a negative quantity. As is shown in
Ref. 2, the gap width on any plane in reciprocal space is
proportional to the corresponding Fourier component of the
dielectric constant. We believe that the zero gap at 68%
volume fraction is a node at which the Fourier component of
dielectric modulation changes sign.

It is not entirely surprising for the X-plane Fourier com-
ponent of the dielectric constant to change sign at a volume
fraction near close packing. Figure 10 is a perspective view
of the fcc close-packed structure. Remember that the
spheres are air and the spaces between the spheres are filled
with dielectric material. At the lower edge of the band gap,
the Bloch electric-wave function tends to be concentrated in
the high-dielectric-constant layers, while the upper-edge
electric-field function tends to concentrate in the low-dielec-
tric-constant layers. For the sake of definiteness let us
concentrate on lower-edge or valence-band electric-field
function near the X plane. The electric field will seek out
those layers that are parallel to the cube faces in Fig. 10 that
have the highest dielectric constant. If the spherical air
atoms are much smaller than close packed, the electric field
will weave between the layers of atoms and avoid the atomic
layers themselves. For spherical air atoms larger than close
packed, as can be seen in Figs. 3 and 10, there is little
dielectric material left between the atomic layers and most
of the remaining material is in the cusp-shaped volumes in
the planes of atoms. In that case the electric field tends to
concentrate in the atomic layers themselves.

The plane containing the most dielectric material shifts

Fig. 10. Close-packed fcc structure. If the atoms are air filled and
smaller than close packed, the electric field lines of the valence band
edge X-gap mode will tend to weave between atomic layers. If the
air atoms are larger than close packed or if they are filled with
dielectric material, the electric field lines of the valence band edge
X-gap mode will tend to concentrate within the planes of atoms.
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Fig.11. Forbidden gap width normalized to »x and observed at the
L point and at the X point for a series of fec crystals made of Al,O3
spherical dielectric atoms (refractive index of 3.06). The atomic
volume fraction was varied by changing the size of the unit cube.
Overall, the L-point gap width was too feeble for the existence of a
photonic band gap.

from the interatomic layers to the atomic layers as the spher-
ical air-atom volume fraction increases. As a consequence,
the amplitude of the Fourier component of the dielectric
constant goes through zero and changes sign. This explains
the peculiar behavior of the X-gap width in Fig. 9 and justi-
fies plotting the 86% data point as a negative quantity. In
that case the valence-band Bloch electric-wave function
tends to concentrate in the planes of atoms along the cube
faces.

By inspection of Figs. 3 and 10, it is clear that there is no
tendency for the L-plane dielectric Fourier component to
changesign. The electric field tends to concentrate between
the layers of atoms, and there is no indication of anode in the
data. Therefore the L gaps were all plotted as positive
quantities.

The gap widths for spherical dielectric Al;0, atoms are
displayed in Fig. 11. The gap widths are all rather feeble,
which explains why no overall photonic band gap was ob-
served for dielectric spheres. The L-plane gap was particu-
larly weak. It exhibited a polarization dependence even at
the center of the hexagonal L plane, where s and p polariza-
tion are degenerate. The X-plane gap was stronger. There
were some indications that the 74% volume fraction X-gap
data point should have been plotted as a negative quantity
as above. That data point was unusually sensitive to tiny
changes in packing geometry, possibly indicating that it was
near a node. It the absence of any additional information,
we simply left the 74% X-gap width as a positive number in
Fig. 11. The index contrast in this case was 3.03:1, some-
what less than the spherical air-atom case. But that is not
the reason for the absence of a photonic band gap for the
Al30, dielectric spheres. Instead the absence must be at-
tributed to the smallness of the L-plane gap at all tested
volume fractions.

THEORY

A starting point for the behavior of light waves in three-
dimensional periodic dielectric structures is derived from
Mazwell’s equations:
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2
—VE+ V(V-E) = ¢(x) % E, (1)

where E is the optical electric field, ¢ the speed of light, w is
the optical frequency (which plays the role of an eigenvalue),
and the geometry of the dielectric structure is contained in
the spatial dependence of dielectric constant e(x). The di-
electric constant is related to the refractive index by e = n2
Equation (1) resembles Schrédinger’s equation if e(x)w?/c? is
identified with the kinetic energy term 2m[E — V(x)]/h2,
where m is the electron mass, # is Planck’s constant divided
by 2w, E is the total energy eigenvalue, and V(x) is the
potential energy.

In optics we generally restrict ourselves to positive dielec-
tric constant materials. Metals, which have negative dielec-
tric constants, invariably have significant dissipation as well,
i.e., an imaginary component to e(x). Among the high-qual-
ity optical materials, particularly semiconductors, a high
positive dielectric constant in the transparent region is ac-
companied by almost no dissipation. This means that the
kinetic energy term e(x)w?/c2 must always be positive in
nondissipative dielectric structures. If potential barriers
are permitted, in which the kinetic energy is negative, it
would be much easier to confine the wave functions, to pro-
duce localization, and to produce forbidden band gaps. In
optics with positive dielectric constants, it is challenging to
create a photonic band gap. For electrons, in a tight binding
model for example, a forbidden band gap occurs right from
the outset. The positive kinetic energy for waves in dielec-
trics is the main reason why only one dielectric crystal, out of
the many that we tested, had a photonic band gap.

As is shown in Ref. 2, the vector character of Eq. (1) also
contributes to the difficulties of creating a photonic band
gap. Waves that are p polarized relative to the local Bril-
louin zone surface interact more weakly. Vector wave equa-
tions are extremely difficult to solve.5 This is a pity, since
for solid-state-band theorists, our dielectric structures rep-
resent the classic muffin-tin potential. In the scalar wave
case, this famous potential would be solvable. The various
methods for solving wave equations in three-dimensionally
periodic media are reviewed in Chaps. 9-11 of Ashcroft and
Mermin.? In view of the relatively small gap widths that we
have found experimentally and the difficulty of adapting
some of the more sophisticated band theory methods to
vector waves, we will analyze our data in terms of the so-
called nearly free photon model. Our analysis is analogous
to the well-known nearly free electron model and is appro-
priate as long as the wave functions are weakly perturbed
plane waves. The widest relative gap width, which mea-
sures the strength of perturbation, occurred at the L point in
the 86% spherical air-atom crystal and was only ~1/4. All
other gap widths in all the crystals were at least a factor of 2
smaller, which lends reasonable credence to the nearly free
photon model.

The nearly free photon model predicts a splitting of bands
at the Brillouin zone surfaces:

Wy = w, (1 * E), 2)

n,

where w,. are the angular frequencies of the upper and lower
band edges and wy is the center frequency at that point on
the Brillouin zone surface, ng is the Fourier component of
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the refractive index corresponding to the reciprocal lattice
vector G defining that face of the Brillouin zone, and ny is
the mean refractive index. For the case of a layered struc-
ture with refractive-index contrast An between layers, the
corresponding ng = An/w. Inthree-dimensional structures,
the refractive-index contrast is not organized into simple
layers, and the plane-wave Fourier components ng tend to
be much weaker than 1/7 times the index contrast An.

Equation (2), as written, applies only to s-polarized elec-
tromagnetic waves with respect to the Bragg reflection
planes on the Brillouin zone surface. For p-polarized waves,
the scattering efficiency is diminished by the projection of
the polarization vector onto the new scattered direction.
Accordingly, n¢ is diminished by cos(20) = 2 cos? § — 1,
where 6 is the angle of incidence onto the Bragg plane form-
ing the Brillouin zone surface. The largest scattering angle
on a single facet of the fcc Brillouin zone is § = 39°, subtend-
ed by the points L and W. In Yeh? the forbidden gap width
is increased by a further angle-dependent factor 1/cos? 6.
The reason for this additional factor is that they are consid-
ering the stop band for a fixed angle of incidence. As ex-
plained earlier in the experimental section of this paper, the
component of photon momentum that is parallel to the entry
plane is conserved. Therefore the upper-band-edge and
lower-band-edge frequencies observed experimentally ap-
pear at different points along the Brillouin zone surface.
The apparent gap width becomes larger by 1/cos? . By
contrast, Eq. (2) gives the band-edge frequencies and gap
width at a single point on the Brillouin zone surface.

The quantity ng/no plays the role of a dimensionless pseu-
dopotential in the nearly free photon model, and we will give
it the label V. For example, the pseudopotential corre-
sponding to G = (111) on the hexagonal L plane of the
Brillouin zone can be defined by V; = n111y/ng. The dimen-
sionless pseudopotential corresponding to G = (200) on the
square X plane of the Brillouin zone can be defined V, =
n(g00y/no. In general these pseudopotentials can also be
expected to depend on polarization angles as explained
above.

The nearly free photon model becomes particularly inter-
esting at points of degeneracy on the Brillouin zone surface.
For example, at the point W, four different plane waves are
degenerate and they mix to produce eigenmodes that break
the degeneracy. Similarly at the point U, three different
plane waves mix to produce a superposition of plane waves.
As is shown in Ashcroft and Mermin, the solution requires
the diagonalization of the following matrix:

—Aw/wy |4 Vi V,
v —Aw/ V. V.
1 w/ Wy 2 1 =0, 3)
Vi Va —Aw/wy Vi
Vs Vi Vi —Aw/wy

where wy is the center frequency at point W in the Brillouin
zone and Aw = (w — ww), where v are the new eigenfrequen-
cies. The solutions to Eq. (3) are as follows:

Avfwy = =V, (twice), (4a)
Avfoy =V, £ 2V, (4b)

Of these four solutions, the two in Eq. (4a) are degenerate.
This degeneracy is no accident, nor is it specific to the nearly
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free photon model. It is quite general and arises directly

from the group-theoretical properties of the W point in the
fce structure. In the character tables given by Callaway,?
the W3 representation is doubly degenerate. If Eq. (4a)
were to be the lowest-lying frequency at the point W, then a
photonic band gap would be impossible, since valence and
conduction bands would touch. This can be prevented in
two ways: (i) Vi can be larger than V5; (ii) Vs can be nega-
tive, as is shown in Fig. 9. Either case will ensure that at
least one of the two solutions of Eq. (4b) is less than the
solutions of Eq. (4a).

The difference between the wave functions for the solu-
tions to Eqs. (4a) and (4b) can be visualized from Fig. 10.
The mixing of the plane waves along the cubic X axis results
in standing waves that peak either within the plane of atoms
on the cubic face or between the planes of atoms. Depend-
ing on whether the atoms are made up of air or dielectric
spheres, one of these standing waves will be bonding (lower
in frequency) and the other will be antibonding (higher in
frequency). The (200) standing wave peaking on the cubic
face will, at the W point, interact strongly with other stand-
ing waves in the (111) directions, leading to the solution of
Egq. (4b). For the other (200) standing wave, having nodes
on the fec faces, the interaction with (111) plane waves
cancels out, leading to Eq. (4a).

Similarly, the matrix equation for the point U is

_Aw/ Wy Vl Vz
Vl —Aw/wu Vl = 0, (5)
V, A —Aw/wy

where wy is the center frequency at point U in the Brillouin
zone and Aw = (v — wy). The solutions to Eq. (5) are as
follows:

Awfwy = =V,/2, (6a)
Awlwy = Vyf2  [(Vy/2)% + 2(V)H 2. (6b)

For the solution of Eq. (6a), as in Eq. (4a), the effect of the
{111) pseudopotential cancels out.

. We are now in a position to test Egs. (4) and (6) against the
observed band structure at the points W and U in Fig. 6. It
is necessary to take polarization into account. Fortunately,
as discussed earlier, in the high-symmetry planes X-U-L
and X-W-K, there exist two orthogonal linear polarizations
that are not expected to mix. At the U point these divide
neatly into s polarizations that are parallel to the X plane
and p polarizations that are parallel to the X-U-L plane.
At the W point the two polarizations are not purely s or p,
but they are orthogonal nevertheless. One polarization is
parallel to the X~W-K plane and the other is parallel to the
X plane. Each orthogonal polarization leads to its own
matrix equation [Eq. (8) or (5)] with its own values of Vi and
V, that must be adjusted by polarization-angle-dependent
factors. For p polarization at the U point, V5 is multiplied
by cos(20) = 7/9 and V; is multiplied by cos(20) = 1/8.
Substituting into Eq. (6), we find that the calculations are in
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reasonable agreement with experiment for both polarization
components of the measured band structure at the point U
in Fig. 6.

A similar calculation (requiring more trigonometry) at the
W point leads to gap widths that are significantly larger than
observed in Fig. 6. We do not know the reason. Evidently,
we may possibly have reached the limits of the nearly free
photon model at the W point.

CONCLUSIONS

We have found that the idea of a photonic band gap can be
experimentally realized in three-dimensionally modulated
dielectric structures. It required a refractive-index contrast
approaching 3.5:1, and the optimal structure consisted of
86% spherical air-atoms and only 14% dielectric material.
All the other structures that we tested were semimetals with
the conduction band minimum at the L point overlapping
with the valence band maximum at the W or U point. In
particular, this included all the tested structures consisting
of spherical dielectric atoms.

The mean reason for the difficulty in producing a photonic
band gap was that the Fourier components of the index
modulation in a three-dimensional structure tend to be
much weaker than in a simple one-dimensional layered
structure. In the spherical dielectric atom case the (111)
Fourier components tended to be particularly weak.

It should be possible to scale the optimal structure from
microwave wavelengths down to near-infrared wavelengths
by microfabrication in semiconductors like silicon and GaAs
that do possess the required refractive index.
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