PHOTONIC BAND STRUCTURE
E. Yablonovitch

We employ the concepts of band theory to describe the behavior of electromagnetic
waves in three dimensionally periodic face—centered—cubic (fec) dielectric
structures. This can produce a "photonic band gap" in which optical modes,
spontaneous emission, and zero point fluctuations are all absent. In the course of a
broad ezperimental survey, we have found that most fec dielectric structures have
"semi-metallic" band structure. Nevertheless, we have identified one particular
dielectric "crystal" which actually has a "photonic band gap". This dielectric
structure, consisting of 86% empty space, requires a refractive indez contrast
greater than 3 to 1, which happens to be readily obtainable in semiconductor
materials.

1. INTRODUCTION

By analogy to electron waves in a crystal, li%ht waves in a three dimensionally
periodic dielectric structure should be described by band theory. Recently, the idea
of photonic band structure [1,2] has been introduced. This means that the concepts
of reciprocal space, Brillouin zones, dispersion relations, Bloch wave functions, van
Hove singularities, etc., must now be applied to electromagnetic waves. If the
depth of refractive index modulation is sufficient, then a "photonic band gap"
could open up. This is an energy band in which optical modes, spontaneous
emission, and zero point fluctuations are all absent.

It is interesting that the most natural real space structure for the optical
medium is face—centered—cubic (fcc), which also happens to be the most famous
atomic arrangement in crystals. The contrasts between electronic and photonic
band structure are striking:

(1) The underlying dispersion relation for electrons is parabolic, while that
for photons is linear.
(ii) The angular momentum of electrons is 1/2, but the scalar wave

approximation is frequently made; in contrast, photons have spin 1 and
the vector wave character plays a major role in the band structure.

(iii) Band theory of electrons is only an approximation due to
electron—electron repulsion, while photonic band theory is essentially
exact since photon interactions are negligible.

The possible applications of such a "photonic band gap" are quite tantalizing.

In addition to quantum electronic applications, such as spontaneous emission

inhibition [1], there have also been proposals [2,3] to study mobility edges and

Anderson localization within such a forbidden gap. Furthermore, Kurizki et al. [4]

have shown that atomic and molecular physics is profoundly modified in a volume
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of space in which "vacuum fluctuations" are absent. In particular, the interatomic
potential of homonuclear diatomic molecules, as well as many other atomic
physical properties are severely modified in such a spatial region.

Since we are only at the threshold of such research, we have elected to do our
initial experimental work at microwave frequencies, where the periodic dielectric
structures can be fabricated by conventional machine tools. Furthermore, this has
enabled us to use sophisticated microwave homodyne detection techniques to
measure the phase and amplitude of the electromagnetic Bloch wave functions
propagating through the "photonic crystal".

Earlier work [1,2] had indicated that it was desirable for the Brillouin Zone in
reciprocal space to be as near to spherical as possible. Among possible
3—dimensional periodic structures, this had suggested that face—centered—ubic
(fcc) dielectric geometry would be optimal for achieving a "photonic band gap".
The lowest order Brillouin Zone for the fcc structure happens to be nearer to
spherical than the Brillouin Zone of any other common crystal structure. In the
absence of any further theoretical guidance, we adopted an empirical, Edisonian
approach. Literally, we used the cut-and-try method. Dozens of
face—centered—cubic structures were painstakingly machined out of low—loss
dielectric materials. These structures, which might be called "crystals", were
roughly cube-shaped and contained up to ~ 8000 "atoms". In some cases the
"atoms" were dielectric spheres, in other cases the "atoms" were spherical cavities
filled with air ("spherical air-atoms"), the interstitial space consisting of dielectric
material. The atomic volume filling fraction was varied from 11% to 86%.
Refractive index contrast was varied between 1.6 to 1 and 3.5 to 1. The
propagation of electromagnetic waves through these structures was then carefully
investigated. This tedious cut—and-try approach was very time consuming, but it
helped to ensure that no possibilities were overlooked.

The main conclusion of this paper is that a photonic band gap can indeed be
achieved in 3—dimensional dielectric structures, but it requires an index contrast
nearly 3.5 to 1. The early predictions had been much more optimistic, anticipating
a gap opening up at index contrast 1.21 to 1 in one case [1] and 1.46 to 1 in the
other [2]. In the experiments, all the test structures except one turned out to be
"semi-metals" and only one particular geometry having index contrast 3.5 to 1
gave rise to a "semiconductor" with a true photonic band gap. In semi-metals, the
valence band in one section of the Brillouin Zone has an energy overlap with the
conduction band in a different section of the Brillouin Zone. A true bandgap, as in
a semiconductor, requires a forbidden band of energies irrespective of the
propagation direction in reciprocal space.

Fortunately, crystalline Silicon and other semiconductors, are excellent infrared
optical materials, providing refractive indices ~3.5. Therefore the optimal structure
we have found in the microwave experiments can be scaled down in size to provide
a photonic band gap in the near infrared.

2. EXPERIMENT

The investigations employed the experimental arrangement shown in Fig.1. A
monopole antenna (a 6 mm pin above a ground plane) launches a spherical wave
down a long anechoic chamber built of microwave absorbing pads. The wave—front
becomes approximately planar by the time it reaches the fcc dielectric structure at
the opposite end of the chamber. (Henceforth the fcc dielectric structure will be
called the "crystal"). Only the plane wave passing directly through the crystal can
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A sweep oscillator feeds a 10dB splitter. Part of the signal is modulated
$MOD) and then propagated as a plane wave through a
ace—centered—cubic dielectric crystal. The other part of the signal is
used as local oscillator for the mixer (MXR) to measure the amplitude
change and phase shift in the crystal. Between the mixer and the
X-Y-recorder is a lock-in amplifier (not shown)
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The interference pattern produced when a microwave signal being
transmitted between antennas interferes with a local oscillator wave.
The heavy line is a reference fringe pattern for the case of transmission
through an empty space. The envelope fluctuations are due to variations
in antenna efficiency. The lighter line is for transmission through 9
polystyrene plates spaced at one—quarter wavelength. A bandgap opens
up between 5.5 GHz and 7.5 GHz. Furthermore, on either side of the
bandgap there is ~ 180° phase shift.
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be seen by the receiving monopole. A microwave oscillator feeds the homodyne
detection system with a frequency sweep from 1 to 20 GHz. This home-built
system resembles an optical Mach—Zender interferometer. (Alternatively, an
HP-8510 Network Analyzer, was also used to perform the amplitude and phase
measurements.) The X-Y recorder plots the interference pattern as a function of
microwave frequency.

An example of such a series of interference fringes is shown in Fig.2 for the
transmission of microwaves through a quarter-wavelength stack of 9 polystyrene
plates (index 1.6, thickness 6 mm) spaced by quarter-wavelength air layers. In
such a simple one—dimensional layered structure, a very pronounced stop-band or
1-dimensional bandgap occurs around 6.5 GHz. Two curves are present in Fig.2.
The heavy curve is a reference interference fringe pattern showing the antenna
transmission function when the stack of plates is removed. Variations in the wave
envelope as a function of frequency are simply due to variations in the antenna
efficiency. The lighter curve represents the experimental signal, the interference
fringe pattern observed when the quarter wavelength stack of plates is inserted
into the path of the microwave beam. Over a 2GHz band, centered on 6.5 GHz, the
transmitted beam is severely attenuated. This is the stop—band.

Notice also the phase shift with respect to the reference beam in Fig.2. At 4.5
GHz and at 9 GHz, on either side of the stop-band, the signal fringes and the

Fig.3 A photograph of the 3—dimensional periodic structure which had a
"photonic band gap". This face—centered—cubic crystal consisted of
spherical air-atoms which were larger than close—packed. The resulting
overlap of the air-atoms allows us to see visible light transmitted all the
way through along the <111> direction. The spherical air-atoms occupy
86% of the volume. The interstices between the atoms are filled with
dielectric material of refractive index 3.5. The overall structure is 86%
air and only 14% solid material.
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reference fringes are essentially in phase. The opposite effect occurs at the band
edges. Due to group velocity dispersion, the signal beam is shifted roughly 180°
compared to the reference beam at the upper and lower band—edge frequencies, 5.5
GHz and 7.5 GHz respectively. The relative phase shift is linearly proportional to
wave—vector k. In principle,with an apparatus of this type, it is possible to map ou
the full dispersion relation, i.e. frequency versus wave—vector or w vs k. Similarly,
commercial equipment such as the HP-8510 Network Analyzer, can read out
directly in terms of group velocity versus frequency.

Our most interesting crystal, exhibited in Fig.3, is the one which has a
photonic band gap. Its structure is most unusual. The spherical atoms consist of
air, while the space between the atoms is filled with a dielectric material. This
commercial low-loss dielectric material, Emerson & Cumming Stycast-12, has a
microwave refractive index = 3.5. The volume fraction occupied by the spherical
air-atoms is 86%. In fcc close—packed structures, the atomic volume is only 74%.
Therefore the atomic spheres in Fig.3 are actually "closer than close—packed", i.e.
they overlap slightly. Due to the overlapping atoms, it is possible to see all the
way through the crystal along certain directions. The bright spots of light
emerging on the top surface of the crystal in Fig.3 are being channeled from below
along the <111> direction.

Crystals consisting of spherical air-atoms are relatively easy to fabricate. A
series of hemispheres are drilled on one face of a dielectric plate by a numerically
controlled machine tool. On the opposite face of the plate an offset series of

Fig.4 A photograph of a 3—-dimensional face—centered—cubic crystal consisting
of Al,04 spheres of refractive index 3.06. These dielectric spheres are
supported in place by the blue foam material, refractive index 1.01.
These spherical dielectric atom structures failed to show a "photonic
band gap" at any volume fraction.
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hemispheres are drilled. Then many of these plates are simply stacked up so that
the hemispheres face one another, forming spherical air-atoms. The volume
fraction is varied changing the hemisphere diameter.

The beauty of spherical air-atom crystals is that they are self-supporting. The
more obvious fcc structure consisting of dielectric spheres is self-supporting only
for the case of close—packing. For any smaller volume packing fraction, the
dielectric spheres must be supported in position. The dielectric spheres consisted of
polycrystalline Al,O3, 6 mm in diameter with a microwave refractive index = 3.06.
The volume fraction was varied by changing the sphere spacing. The dielectric
spheres were supported by thermal compression molded dielectric foam of
refractive index ~ 1.01. Precision molds were built of Aluminum jig plates having 6
mm diameter steel ball bearings embedded in them. Dielectric foam pads were
molded at 95°C, with the molds released at 40°C. The hemispherical depressions in
the molded foam were then filled with the Al,04 spheres and the structure built up
into many layers. Fig.4 is a photograph of such a crystal consisting of dielectric
spheres supported by the blue dielectric foam.

The philosophy behind our experiments is to map out the frequency versus
wave vector dispersion relations for a whole series of 3—dimensional fcc crystals.
For each crystal it becomes necessary to explore all the different angles in
reciprocal space. The interference fringe pattern in Fig. 5 is an example of such a
measurement on the 86% spherical air-atom crystal of Fig.3. These fringes are
produced in the homodyne detection system by an electromagnetic wave
propagating toward the L-U line of the hexagonal L—plane in reciprocal space.
This wave was predominantly s—polarized, i.e. it was polarized parallel to the
X-plane. Two important items emerge from Fig.5. The lower gap edge frequency
and the upper gap edge frequency. The lower edge was defined by the sudden drop
in microwave transmission relative to a reference scan with the crystal absent. The
upper edge is defined by the frequency at which the transmitted signal recovers.

These two frequencies define band edges, but these band edges do not
necessarily fall at exactly the same point on the surface of the Brillouin Zone. The
reciprocal space position of these frequency edges is determined by momentum
conservation between the external and internal electromagnetic waves. In our
experiments, the incoming plane wave was generally incident on the <100> face of
the crystal. (The <100> face is by definition perpendicular to the <100>
momentum direction.) Upon transmission through the crystal surface, only the
component of wave vector momentum parallel to the surface plane is conserved.
This is very similar to the principle which leads to Snel’s Law. In our geometry it
means that component of wave vector momentum perpendicular to the <100>
direction, <0,ky,k,> is conserved upon entering the crystal. The position of the
frequency edge’in reciprocal space is the point on the Brillouin Zone surface having
those identical momentum components k, and k,. In our experiments, the external
angle of incidence is held fixed as the frequency is swept. Therefore the upper and
lower gap edge frequencies will have different ky,k, and different Brillouin Zone
positions.

Due to the limitations on the external wave vector <0,ky,k,> which could be
attained in air, some parts of the internal Brillouin Zone sometimes had to be
accessed by transmission through a pair of giant microwave prisms on either side of
the crystal. The prisms, over 15 cm square, were made of polymethylmethacrylate
(microwave refractive index 1.6) to increase the available external wave vector.

Step by step, the angle of incidence is varied, and the frequency of the first and
second band edges is mapped out on the surface of the Brillouin Zone. Our
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Fig.5 The forbidden gap observed on the crystal displayed in Fig.3 measured
along the L-U line of the L-plane. The electromagnetic wave is
polarized parallel to the X-plane (s—polarization).

measurements concentrated on the high symmetry planes X-U-L and X-W-K,
though lower symmetry points were also occasionally investigated. (See Fig.6 for .
description of the Brillouin Zone point labels). Unfortunately, with this method it
is not possible to learn much about the higher frequency bands above the two
lowest band edges. At higher frequencies, a superposition of allowed
electromagnetic modes can become excited by an incident plane wave. This makes
it very difficult to disentangle any higher band edges. Accordingly, we determine
only the first gap edge where transmission is cut off and the second where
transmission cuts on again. In keeping with the electron band structure analogy,
the first gap edge may be called the valence band and the second gap edge may be
called the conduction band.

The result of these measurements on our 86% spherical air-atom fcc dielectric
structure (photographed in Fig.3) is plotted in Fig.6. For electromagnetic waves,
two band structures must be shown, allowing for the two different polarization
states of electromagnetic waves. The forbidden bandgap in Fig.6 is filled in by
slanted lines. The lines that are slanted to the right gll in the bandgap for linear
polarization parallel to the X—plane, (mostly s—polarized). The left slanted lines
fill in the bandgap for the orthogonal linear polarization with a partial component
perpendicular to the X—plane, (mostly p—polarized). On the high symmetry plane:
X-U-L and X-W-K, the two linear polarizations are not expected to mix, and
therefore the linearly polarized antenna excites electromagnetic eigenstates of the
crystal. Off the high symmetry planes, the polarization eigenstates are no doubt
complex, and some type of elliptical polarization should be expected. No absolute
frequency units are given on Fig.6, since the frequencies should all scale with the
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Fig.6 The experimentally observed photonic band structure in reciprocal space
of the face—centered—cubic "spherical air-atoms" surrounded by the
dielectric configuration of Fig.3. The right sloping lines represent
polarization parallel to the X—plane, while the left sloping lines
represent the orthogonal polarization which has a partial component out
of the X—plane. The cross hatched region where both polarizations are
forbidden in all directions in k-space is the "photonic band gap".

reciprocal linear size of the crystal spacing. On the actual crystal, the fcc unit cube
length "a" was equal to 12.7 mm and the forbidden gap was ~ 1 GHz wide,
centered at 15 GHz.

The band structure in Fig.6 plots frequency versus real wave vector. At
frequencies within the forbidden gap, the wave vector is pure imaginary, and it
measures the attenuation length within the crystal. Attenuation was generally very
strong within the bandgap, consistent with a 1/e attenuation length of only one or
two crystal unit cells. At points where the bandgap was very narrow, however,
particularly for p-polarized waves at the point U, the attenuation length was much
longer, ~ 10 or 20 unit cells.

All the other crystal structures that were fabricated and tested in our
experiments produced "semi-metals" rather than "photonic band gaps". Most
frequently, the conduction band at the point L in the Brillouin Zone generally
tended to overlap in energy with the valence band at the points W and U. An
example of such a band structure is shown in Fig.7 for the case of 50% volume
fraction spherical air-atoms embedded in polystyrene of refractive index 1.6. In our
experiments we found that it was essential to start out with large forbidden gaps
at the points X and L at centers of the square and hexagonal facets of the Brillouin
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Fig.7 An example of a photonic band structure similar to that of a
semi—metal. The fcc structure was 50% volume fraction air-atoms but
was made of polystyrene, refractive index only 1.6. The conduction ban
at the L—point overlaps the valence band at the U and W points. In
order to get a bandgap, both the volume fraction of atoms must be
increased and the index contrast must be increased.

Zone. Invariably if bandgaps at the X and L points were inadequate, band overlag
would become established at peripheral points between facets, such as U, W, or K
In our experimental survey, a semi-metallic band structure occurred in all cases
but one.

Let us now analyze more of the band structure properties as a function of
volume fraction and structure type. Fig.8 gives the index of refraction of the
different crystal structures as a function of volume filling fraction. The effective
refractive index is defined as ¢/avy, in terms of the center frequency, vy, of the
X-point gap. We found that the X-point center frequency was a good
extrapolation of the low frequency dispersion out to the X—point. Therefore c/avy
is a good surrogate representation of the long wavelength refractive index of the
composite structure represented by these fcc crystals. For both the spherical
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Fig.8 The effective long wavelength refractive index, c/avy, measured on two
basic crystal structures of various volume fractions where c is the speed
of light in vacuum, a is the length of the unit cube, and vy is the center
frequency of the X—gap. Spherical dielectric atoms are represented by
(o)-points and spherical air-atoms are represented by (0)-points. Fcc
close-packing occurs at 74% volume fraction. Of all these structures,
only the one marked "photonic bandgap" had a forbidden frequency
band at all directions in reciprocal space.

air—atoms and the dielectric sphere atoms, a simple linear interpolation of
refractive index with volume fraction seems to describe the experimental indices in
Fig. 8. Neither of the effective medium theories, not Maxwell-Garnett nor
Bruggeman were any more accurate in modelling Fig.8. Only the one structure
marked "photonic bandgap" on Fig.8 had a forbidden gap all the way around the
Brillouin Zone. All the others were semi—metals as mentioned earlier.

In view of the importance of having large gap widths at the L-point and at the
X-point, we present those results in Fig.9. The measured gap width normalized to
vx is plotted against spherical air-atom volume fraction. All the results in Fig.9
were taken on Emerson & Cumming Stycast—12, a material with index contrast 3.5
to 1 relative to air. It is clear from Fig.9 why the 86% volume fraction spherical
air-atom structure has an overall photonic bandgap. Its gap widths are far larger
than any of the others. Notice the unusual behavior of the X—gap as a function of
spherical air-atom volume fraction. At around 68% volume fraction, the X-gap
width becomes undetectable while at the higher volume fraction of 86% it rises
again to a very large value. While our measurements can only assign a positive
number to the gap width, we have elected to plot this last data point as a negative
quantity. As shown in Ref. 2, the gap width on any plane in reciprocal space is
proportional to the corresponding Fourier component of the dielectric constant. We
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Fig.9 The forbidden gap width normalized to vy observed at the L—point (e),
and at the X—point (o) for a series of spherical air-atom fcc crystals of
varying atomic volume fraction. The dielectric material between
air-atoms had a refractive index of 3.5. We have elected to plot the 86
X-point gap width as a negative number since the <200> Fourier
component has opposite sign on either side of the null point at 68%
volume fraction.

believe that the zero gap at 68% volume fraction is a node at which the Fourier
component of dielectric modulation changes sign.

For the X-plane Fourier component of the dielectric constant to change sign a
a volume fraction around close packing is not entirely surprising. Fig.10 is a
perspective view of the fcc close-packed structure. Remember that the spheres are
air and the spaces between the spheres are filled with dielectric material. At the
lower edge of the bandgap, the Bloch electric wave function tends to be
concentrated in the high dielectric constant layers, while the upper edge electric
field function tends to concentrate in the low dielectric constant layers. For the
sake of definiteness let us concentrate on lower edge or valence band electric field
function near the X—plane. The electric field will seek out those layers parallel to
the cube faces in Fig.10 which have the highest dielectric constant. If the spherica
air-atoms are much smaller than close-packed, the electric field will weave
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Fig.10 A close—packed face—centered—cubic structure. If the atoms are airfilled
and smaller than close—packed, the electric field lines of the valence
band edge X-gap mode will tend to weave between atomic layers. If the
air-atoms are larger than close—packed, or if they are filled with
dielectric material, the electric field lines of the valence band edge
X-gap mode will tend to concentrate within the planes of atoms.

between the layers of atoms and avoid the atomic layers themselves. For spherical
air-atoms larger than close-packed, as can be seen from Figs.10 and 3, there is
little dielectric material left between the atomic layers and most of the remaining
material is in the cusp shaped volumes in the planes of atoms. In that case the
electric field tends to concentrate in the atomic layers themselves.

The plane containing the most dielectric material shifts from the inter-atomic
layers to the atomic layers as the spherical air-atom volume fraction goes up. As a
consequence, the amplitude of the Fourier component of the dielectric constant
goes through zero and changes sign. This explains the peculiar behavior of the
X-gap width in Fig.9, and justifies plotting the 86% data point as a negative
quantity. In that last case the valence band Bloch electric wave function tends to
concentrate in the planes of atoms along the cube faces.

By inspection of Figs.3 and 10, it is clear that there is no tendency for the
L-plane dielectric Fourier component to change sign. The electric field tends to
concentrate between the layers of atoms and there is no indication of a node in the
data. Therefore the L-gaps were all plotted as positive quantities.

The gap widths for spherical dielectric Al;0, atoms are displayed in Fig.11.
The gap widths are all rather feeble, explaining why no overall photonic band gap
was observed for dielectric spheres. The L-plane gap was particularly weak. It
exhibited a polarization dependence even at the center of the hexagonal L—plane,
where s and p polarization are degenerate. The X-plane gap was stronger. There
were some indications that the 74% volume fraction X-gap data point should have
been plotted as a negative quantity as before. That data point was unusually
sensitive to tiny changes in packing geometry, possibly indicating that it was near
a node. In the absence of any additional information, we simply left the 74%
X-gap width as a positive number in Fig.11. The index contrast in this case was
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The forbidden gap width normalized to vy observed at the L—point (e),
and at the X—point (o) for a series of fcc crystals made of Al,0,
spherical dielectric atoms, (refractive index 3.06). The atomic volume
fraction was varied by changing the size of the unit cube. Overall, the
L-point gap width was too feeble for the existence of a "photonic band
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3.03 to 1, somewhat less than the spherical air-atom case. But that is not the
reason for the absence of a photonic band gap for the Al;0, dielectric spheres.
Instead the absence must be attributed to the smallness of the L—plane gap at all
tested volume fractions.

3. THEORY

A starting point for the behavior of light waves in 3—dimensionally periodic
dielectric structures is derived from Maxwell’s equations

VE+V(V-E) = () 4 E, (1)

where E is the optical electric field, ¢ the speed of light, w is the optical frequency,
which plays the role of an eigenvalue, and the geometry of the dielectric structure
is contained in the spatial dependence of dielectric constant ¢(z). The dielectric
constant is related to the refractive index by e=n? Eq. (1) resembles Schrodinger’s
equation if €(z)w?/c? is identified with the kinetic energy term 2m[E — V(z)]/h?,
where m is the electron mass, h is Planck’s constant divided by 27, E is the total
energy eigenvalue and V(z) is the potential energy.

In optics we are generally restricting ourselves to positive dielectric constant
materials. Metals, which have negative dielectric constants, invariably have
significant dissipation as well, i.e. an imaginary component to ¢(z). Among the
high quality optical materials, particularly semiconductors, a high positive
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dielectric constant in the transparent region is accompanied b’y virtually no
dissipation. This means that the kinetic energy term e(z)w?/c? must always be
positive in non—dissipative dielectric structures. If potential barriers are allowed, in
which the kinetic energy is negative, it would be much easier to confine the wave
functions, to produce localization, and to produce forbidden bandgaps. In optics
with positive dielectric constant, it is very challenging to create a photonic band
gap. For electrons, in a tight binding model for example, a forbidden bandgap
occurs right from the outset. This is the main reason why only one dielectric
crystal, out of the many we tested, had a photonic band gap.

As shown in Ref.2, the vector character of (1) also contributes to the
difficulties of creating a photonic band gap. Waves which are p—polarized relative
to the local Brillouin Zone surface interact more weakly. Vector wave equations
are extremely difficult to solve [5]. This is a pity, since for solid state band
theorists, our dielectric structures represent the classic muffin-tin—potential. In the
scalar wave case, this famous potential would be soluble. The various methods for
solving wave equations in 3-D periodic media are reviewed in Chapter 9-11 of
Ashcroft & Mermin [6]. In view of the relatively small gap widths we have found
experimentally, and the difficulty of adapting some of the more sophisticated band
theory methods to vector waves, we will analyze our data in terms of the "nearly
free photon model". This is analogous to the well-known "nearly free electron
model", and is appropriate so long as the wave functions are weakly perturbed
plane waves. The widest relative gap width, which measures the strength of
perturbation, occurred at the L—point in the 86% spherical air-atom crystal and
was only ~ 1/4. All other gap widths in all the crystals were at least a factor 2
smaller, lending reasonable credence to the "nearly free photon model".

The "nearly free photon model" predicts a splitting of bands at the Brillouin
Zone surfaces

Wy = W, [11%"‘:], (2)

where w, are the angular frequencies of the upper and lower band edges and w, is
the center frequency at that point on the Brillouin Zone surface, ng is the Fourier
component of the refractive index corresponding to the reciprocal lattice vector G
defining that face of the Brillouin Zone and 7, is the mean refractive index. For
the case of a layered structure with refractive index contrast An between layers,
the corresponding ng = An/. In three-dimensional structures, the refractive index
contrast is not organized into simple layers, and the plane wave Fourier
components ng tend to be much weaker than 1/7 times the index contrast An.
Eq.(2), as written, applies only to s—polarized electromagnetic waves with
respect to the Bragg reflection planes on the Brillouin Zone surface. For
p—polarized waves, the scattering efficiency is diminished by the projection of the
polarization vector onto the new scattered direction. Accordingly, ng is diminished
by cos(2t9gl = 2 cos?0 — 1, where 0 is the angle of incidence onto the Bragg plane
forming the Brillouin Zone surface. The largest angle in the fcc structure is 0 =
39°, subtended by the points L and W. In Yeh (7] the forbidden gap width is
increased by a further angle dependent factor, 1/cos20. The reason for this
additional factor is that they are considering the stop—band for a fixed angle of
incidence. As explained earlier in the experimental section of this paper, the
component of photon momentum parallel to the entry plane is conserved.
Therefore the upper and lower band edge frequencies observed experimentally,
appear at different points along the Brillouin Zone surface. The apparent gap
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width becomes larger by 1/cos2d. By contrast, (2) gives the band edge frequencies
and gap width at a single point on the Brillouin Zone surface.

The quantity ng /n, plays the role of a dimensionless pseudo—potential in the
"nearly free photon model" and we will give it the label Vg. For example, the
pseudopotential corresponding to the G = <111> on the hexagonal L—plane of the
Brillouin Zone can be defined V; = n(<111>)/n,. The dimensionless
pseudo—potential corresponding to the G = <200> on the square X—plane of the
Brillouin Zone can be defined V, = n(<200>)/n,. In general these
pseudo—potentials can also be expected to depend on polarization angles as
explained above.

The "nearly free photon model" becomes particularly interesting at points of
degeneracy on the Brillouin Zone surface. For example, at the point W, four
different plane waves are degenerate and they mix to produce eigenmodes which
break the degeneracy. Similarly at the point U, three different plane waves mix to
produce a superposition of plane waves. As shown in Ref.6, the solution requires
the diagonalization of the following matrix

‘AU/(J)W |4 Vl V2
Vy | —Bw)ug V. Vi |, )
Vy V, —Aw?ww Vv =
V2 Vl Vl —Aw}ww

where wy is the center frequency at point W in the Brillouin Zone and Aw =
(w-wy) where w are the new eigenfrequencies. The solutions to (3) are as follows

Awfwy ==V, (twice), (4a)
Awfwy = Vy+ 2V, (4b)

Of these four solutions, the two in (4a) are degenerate. This degeneracy is no
accident, nor is it specific to the "nearly free photon model". It is quite general an
arises directly from the group—theoretical properties of the W—point in the fcc
structure. In the character tables given by Callaway [8], the W, representation is
doubly degenerate. If solution (4a§ were to be the lowest lying frequency at the
point W, then a photonic band gap would be impossible, since valence and
conduction bands would touch. This can be prevented in two ways: (i) V; can be
larger than V,. (ii) As shown in Fig.9, V, can be negative. Either case will ensure
that at least one of the two solutions (4b3 is below solution (4a).

The difference between the wave functions for solutions (4a) and (4b) can be
visualized from Fig.10. The mixing of the plane waves along the cubic X-axis
results in standing waves which peak either within the plane of atoms on the cubic
face or between the planes of atoms. Depending upon whether the atoms are made
up of air or dielectric spheres, one of these standing waves will be bonding (lower
in frequency) and the other will be anti-bonding (higher in frequency). The <200>
standing wave peaking on the cubic face will, at the W—point, interact strongly
with other standing waves in the <111> directions, leading to solution (4b). For
the other <200> standing wave, having nodes on the fcc cube faces, the interaction
with <111> plane waves cancels out, leading to (4a).

Similarly, the matrix equation for the point U is
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['A“V,“” Sl U ||=0, (5)
vy Vi | -Aw)ug

where wy is the center frequency at point U in the Brillouin Zone and Aw =
(w-wy). The solutions to (5) are as follows

Awfwy == V3f2, (6a)
Awfwy = Vy/2 2 [(V2/2)* + 2(V))V2. (6b)

For solution (6a), as before, the effect of the <111> pseudo—potential cancels out.

We are now 1in a position to test (4) and (6) against the observed band
structure at the points W and U in Fig.6. It is necessary to take polarization into
account. Fortunately, as discussed earlier, in the high symmetry planes X-U-L and
X-W-K, there exist two orthogonal linear polarization which are not expected to
mix. At the U-point these divide neatly into s—polarized parallel to the X—plane
and p—polarized parallel to the X-U-L plane. At the W—point the two
polarizations are not purely s or p, but they are orthogonal nevertheless. One
polarization is parallel to the X-W-K plane and the other is parallel to the
X-plane. Each orthogonal polarization leads to its own matrix equation, (3) or (5),
with its own values of V; and V, which must be adjusted by polarization angle
dependent factors. For p—polarization at the U-point, V, is multiplied by
cos(26) = 7/9 and V, is multiplied by cos(26) = 1/3. Substituting into (6), the
calculations are in reasonable agreement with experiment for both polarization
components of the measured band structure at the point U in Fig.6.

A similar calculation (requiring more trigonometry) at the W point leads to
gap widths that are significantly larger than observed in Fig.6. We do not know
the reason. Evidently, we may possibly have reached the limits of the "nearly free
photon model" at the W point.

4. CONCLUSIONS

We have found that the idea of a "photonic band gap" can be experimentally
realized in 3—dimensionally modulated dielectric structures. It required a refractive
index contrast approaching 3.5 to 1 and the optimal structure consisted of 86%
spherical air-atoms and only 14% dielectric material. All the other structures that
we tested were "semi-metals" with the conduction band minimum at the L—point
overlapping with the valence band maximum at the W or U point. In particular,
this included all the tested structures consisting of spherical dielectric atoms.

The main reason for the difficulty in producing a photonic band gap was that
the Fourier components of the index modulation in a 3—dimensional structure tend
to be much weaker than in a simple 1-dimensional layered structure. In the
spherical dielectric atom case the <111> Fourier components tended to be
particularly weak. It should be possible to scale the optimal structure from
microwave wavelengths down to the near—infrared by microfabrication in
semiconductors like Silicon and GaAs which do possess the required refractive
index.

We would like to thank Prof. S. John for numerous discussions and Prof. Gene
Mele for advice regarding the group theory.



PHOTONIC BAND STRUCTURE

REFERENCES

o0 ~ O O O N =

E. Yablonovitch, Phys. Rev. Lett. 58 (1987) 2059.

S. John, Phys. Rev. Lett. 58 (1987) 2486.

S. John, Comm. Cond. Matt. Phys. 14 (1988) 193.

G. Kurizki and A.Z. Genack, Phys. Rev. Lett. 61 (1988) 2269.

S. John and R. Rangarajan, Phys. Rev. B38 (1988) 10101.

N.W. Ashcroft and N.D. Mermin, Solid State Physics (W.B. Saunders,
Philadelphia, 1976).

P. Yeh, Optical Waves in Layered Media (Wiley, N.Y., 1988) 36.

J. Callaway, Quantum Theory of the Solid State, Part A (Academic Press,
New York, 1974) Appendix C.

E. Yablonovitch is with Bell Communications Research, Navesink Research Cent
Red Bank, N.J. 07701-7040, USA.



