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A "generalized brightness theorem" is derived that describes the thermodynamic limitations of the
fluorescent planar concentrator. The maximum brightness concentration ratio allowed by thermody-
namics is exp (hAv/kl) where Av is the Stokes shift in fluorescence.

The diffuse nature of sunlight has been an obstacle to the
widespread application of solar energy conversion technolo-
gies. A means of addressing this problem is the fluorescent
planar concentrator,1 which relies on the principle of total
internal reflection to concentrate the radiant energy. This
poses an interesting thermodynamic question since the light
concentration must come at the expense of an entropy increase
somewhere else in the system.

Figure 1 shows a diagram of the fluorescent planar con-
centrator, with the incident light field I, and the concentrated
light field 12. According to statistical mechanics 2 the entropy
change associated with the loss of a photon from the incident
Bose field is

AS, -Klog (1 + rn2 v?) (1)

where n is the index of refraction, v the frequency, and B1 the
brightness of the incident field in photons per unit area, per
unit bandwidth, per unit time, and per 47r solid angle. The
entropy increase in the concentrated field 12 due to the fluo-
rescent emission of one photon is

AS 2 = Klog (1 + 8tn 2) + h(v -V2) (2)

where the additional term is due to the thermal dissipation
of the Stokes shift vP - v2 at the ambient temperature T.
According to the second law of thermodynamics, AS1 + AS 2
> 0, therefore,

Klog (1+ 87rn v~ /(+ 8wn 2v < h(v1 -v2) (3
k c2B )1 J c2B2 J T

Under typical terrestrial conditions this may be approximated
as

C B2  < 4 2 h ____-_V

- 2 exp (4)

The maximum concentration ratio C in a fluorescent planar
concentration depends sensitively on the Stokes shift.
Equations (3) and (4) may be regarded as a generalization of
the well-known "brightness theorem" of optics3 to the case
of inelastic processes, v1 # v2.

In this article we develop a theory of the fluorescent planar
concentrator based on thermodynamics. Therefore it will
automatically be consistent with Eqs. (3) and (4).

Consider an ensemble of fluorescent molecules that are
optically excited out of equilibrium with the ambient tem-
perature T. By virtue of the mean excitation, the absorption
of one additional photon will be accompanied by an increase
in free energy of

a -- AF = hp-TAS, (5)

where AS is the change in entropy of the molecule. For
equilibrium of the molecular electronic degrees of freedom
with the radiation field, the entropy change AS in Eq. (5)
should exactly balance the entropy change AS in Eq. (1):

8rn2V2  hi' - ,
Klog 1 + c2 (6)

Therefore, the brightness of a radiation field that is in equi-
librium with the electronic degrees of freedom of the molecule
is

8-irn2v2
B(v,g,T) = (e(hv-P)/KT - 71)

C2

It is implicit that there is fast thermal equilibration among
the vibrational substates of the electronically excited state.
For the situation where , = 0, i.e., no electronic excitation, Eq.
(7) reduces to the ambient temperature Planck distribution
as it should.

Consider the radiative equilibrium from the viewpoint of
an individual molecule. Its net rate of up transition should
exactly balance its rate of spontaneous emission F(v,,a,T) at
each frequency. This is the well-known principle of detailed
balance4

F(v,MT) = a(vt,T)B(v,g,T),

where c(vj,,T) is the net absorption cross section.

(8)

Now suppose that the electronic excitation is produced by
some means other than the radiation field described by Eq.
(7). For example, the electronic excitation may be produced
by a different optical spectrum or by electron impact or
chemiactivation. Provided there is fast thermal equilibration
among the vibrational substates of the electronically excited
state, there will be no memory of the excitation process and
y will be determined only by the net rate of upward electronic
transitions. Therefore, the fluorescent spectrum will be given
by Eq. (8) irrespective of the excitation mechanism.

This model of the fluorescent spectrum was first developed
by E. H. Kennard5 and has been independently rediscovered
several times in the past 60 years. For example, when applied
to semiconductors, Eq. (8) is known as the van Roosbroeck-
Schockley6 relation. We have closely followed the approach
given by Ross.7

The chemical potential p will be determined by the
steady-state balance of up and down transitions. Let the light
intensity be defined as

) =n e b fro) d

The up transitions are produced by absorption from the in-
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FIG. 1. Geometry of the fluorescent planar concentrator. Q1 and Q2 are
the solid angles of the escape cone and the totally internally reflected ray,
respectively.

cident sunlight intensity I,, as well as self-absorption of the
trapped concentrated light field I2:

S a(v)11 (v)dv+ + (V)12(v)dv

= f (oV) 8rn 2
v

2  
Q, + Q2\

J dv -+T-_
JQe(hv-)IKT - 1 c2 \4r w (9)

The rate of downward spontaneous transitions that appears
on the right-hand side of Eq. (9) is divided by the quantum
efficiency Q to give the total downward transition rate. Solid
angle 91 is the escape cone and Q2 is the totally internally re-
flected solid angle. Equation (9) should be solved to deter-
mine , in steady state. Under terrestrial conditions (hv-,u)
>> KT, in which case the 1 may be dropped from the denom-
inator and we are justified in regarding the absorption cross
section a(v) as independent of A. This is because the ex-
cited-state population will be small and the absorption will
be predominantly from the ground state.

Let us now consider the problem of the spatial growth of the
concentrated intensity I 2(v,x), where x is the position mea-
sured from one edge of the collector:

dI2(V,X) _No(v) 8rn2V2 Q2
dx = Nu W1 + e(hv-)/KT - 1 C2 4w '

(10)

where the first term on the right-hand side is the self ab-
sorption of the fluorescence, the second term is one-half the
trapped fluorescent emission (since we are considering only
propagation away from the edge of the collector), and N is the
density of fluorescent molecules. In general, Eqs. (9) and (10)
are a pair of coupled integral equations that may be solved for
,u(x) and I 2(v,x). As we will see below, however, the fluo-
rescent planar concentrator will be inefficient if self-absorp-
tion of the fluorescent emission significantly influences the
overall transition rates in Eq. (9). Dropping the self-ab-
sorption contribution to the chemical potential in Eq. (9)
decouples Eqs. (9) and (10). Then the chemical potential is
uniquely determined and is independent of position. For a
high-quantum-efficiency fluorescent molecule illuminated
at the earth's surface, ,u is usually 0.6 or 0.7 times hv at the
center of the absorption band.

For ,u independent of position, Eq. (10) is easily solved:

I 2 (VX) = 2 e(-hP)IKT 2 (1 -eNiaP)x), (1)
2c2 4wr

where we have taken the boundary condition I 2(v,0) = 0 and

we dropped the 1 from the Bose denominator. Equation (11)
gives the shape and absolute magnitude of the spectrum that
may be expected at the output of the fluorescent planar con-
centrator in the presence of mild self-absorption. Notice that,
as the concentrator becomes optically thick, I2(v) clamps at
a maximum possible value which falls as e-hv/KT. This is
required in order to be consistent with the "generalized
brightness theorem," inequality (4). In practice, Eq. (11) is
a more stringent limit than Eq. (4).

It is instructive to rewrite Eq. (11) as follows:

I 2 (vX) = (8rn2 V2 
e(u-h0)/KT 2 No(v)x)

2c2 4w7

X [1 -e-Na(Vx] (12)

The quantity in round brackets in Eq. (12) is simply the total
fluorescence spectrum integrated over the path length and the
square bracket is a type of efficiency factor. For efficient
operation most of the fluorescence spectrum should lie to the
red of the wavelength where the molecular absorption be-
comes optically thick. Stated another way, x must be chosen
small enough so that the square bracket is close to unity over
most of the fluorescence spectrum.

The implications of these thermodynamic ideas to the de-
sign of fluorescent planar concentrators are quite strict. For
a given Stokes shift of a fluorescent molecule, the geometrical
concentration ratio must be designed within the constraints
of inequality (4). In practice, efficient operation requires the
concentration ratio to be far below the constraints of in-
equality (4). It is also clear from Eq. (11) that the problem
cannot be solved simply by finding a molecule where the
emission and absorption bands do not overlap. The two are
inextricably linked by Eq. (8) in such a way that the thermo-
dynamic limit cannot be exceeded. For very high concen-
tration ratios, materials with very large Stokes shifts must be
found.
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