
September 1977 / Vol. 1, No. 3 / OPTICSLETTERS 87

Laser-pulse requirements for coherent and
mode-selective excitation in the

quasicontinuum of polyatomic molecules

Eli Yablonovitch

Pierce Hall, Harvard University, Cambridge, Massachusetts 02138
Received May 27,1977

We show that the theory of nuclear magnetic relaxation applies with equal validity to intramolecular relaxation in
the quasicontinuum of polyatomic molecules. This theory permits an analysis of the laser-pulse requirements for
vibrational-mode selectivity and coherent multiphoton excitation. The laser Rabi precession frequency, ps/6h,
should exceed 1IT1 or 1/T2, the intramolecular relaxation rates in the quasicontinuum. In practice this requires
either an ultra-fast optical-pulse risetime or a slower pulse that is tuned far to the red side of the transition.

Multiphoton-induced unimolecular reactions, such
as dissociation' and isomerization,2 have been produced
by pulsed high-power infrared lasers. Although iso-
topic selectivity3 provoked the initial interest in this
process, attention is now directed to the more-general
possibilities of multiphoton-induced chemistry.

Within a few thousand wavenumbers of the ground
state, theidiscrete vibrationalllevels merge into a quasl-
continuum4 which plays a key role in multiphoton-
induced chemistry. 5' 6 Consider the following approach:
Divide the internal molecular degrees of freedom into
two groups, the system and the heat bath. Let the
driven infrared-active vibrational mode be regarded as
the system with Hamiltonian H8 (x). Let the other n
vibrational modes in the molecule be the heat bath with
Hamiltonian H(yi ... Yn). The system and the heat
bath are coupled by anharmonic terms in the molecular
potential described by V(x,yl ... Yn). The total vi-
brational Hamiltonian is

H = H8 (x) + V(x,yl . .. n) + H(y. ... Yn), (1)

where x and yi represent the phase space coordinates
of the system and the heat bath, respectively. The heat
bath damping problem described by Hamiltonian Eq.
(1) has been thoroughly studied in connection with
nuclear magnetic relaxation.7 We will find that many
of those results carry over to the domain of intramo-
lecular relaxation. For simplicity, we will use a semi-
classical approach-a quantum description of the sys-
tem, but a classical description of the heat bath. A fully
quantum-mechanical approach, while more correct,
gives similar results. 7' 8

The equation of motion for the system density matrix
Pss' is solved to first and second order in the anharmonic
potential V(x,yl ... Yn). The first-order solution
merely renormalizes the energy levels of the system:

AE8 = (sI V(t)ls), (2)

where V(t) depends on time through the classical heat
bath coordinates, V(t) - V[xyl(t), . .Yn(t)],

and represents statistical averaging over the
phase space of the heat bath.

The second-order solution leads to the usual T1 and
T2 damping terms in the density-matrix equation of
motion. Transitions induced by the heat bath between

the states s and s' are given8 by: (TI)

X (SI V(t) Is') (s' IV(t - Tr)s) exp(-iw,55r)dr. (3)
The adiabatic contribution to the damping of the off-
diagonal matrix element Pss' is given by:

(1 \ ad ru
,) ad= JO 86wss(t)06wss(t - r)dT,

(4)

where hbo88'(t) (sI V(t)Is) - (s V(t)Is').
Equations (3) and (4) are carried over directly from

the theory of nuclear magnetic relaxation.7 The im-
portant question is whether intramolecular relaxation
fulfills the validity requirements for the approximations
leading to Eqs. (3) and (4). The most important re-
striction is that the autocorrelation time -r, of the heat
bath should be very short in relation to the strength of
the anharmonic potential V:

V 2 T, 2/h 2 << 1. (5)

This can be confirmed as follows: The anharmonic
potential V(x,y, ... yn) at t = 0 is, in general, a function
of the vector of heat bath coordinates [ys (0)] =

[Yi(O),.. *,y (O)]J After a time X of the order of one
vibrational period, the heat bath coordinates will have
changed to [y(r)]. Assuming that the heat bath vi-
brational modes are not completely degenerate, the
vector [yi(Xr)] will be uncorrelated with [yi(O)].
Therefore, the autocorrelation time is the reciprocal of
the frequency spread of heat bath vibrational modes,
or typically about a vibrational period, -rc - 11wo.

In real molecules the anharmonic potential tends to
be much smaller than the vibrational quantum ( V2)1/2
<< hc0 , even when there is substantial thermal energy
in the bath. 9 Therefore, the restriction of Eq. (5) is
fulfilled and, in addition, the damping rates -V2r,/}Ih2
are much slower than oo.

In the full quantum theory of damping,7 there is a
second important requirement that must be satisfied:

h (dN/dE) >> h2/V2 rc, (6)

where dN/dE is the heat bath density of states and
h2/V2rc is a typical damping time constant. In a
polyatomic molecule, the density of states rises rapidly
with increasing energy, so that Eq. (6) may already be
satisfied with only -3000 cm-' in the heat bath. [It can
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Fig. 1. The absorption spectrum as a function of tempera-
ture in the V3 band of SF6. Notice the shift to longer wave-
lengths as temperature is raised. The linewidth remains fairly
narrow at 1000 K, even though the molecule is thermally ex-
cited -9000 cm-1 up into the quasicontinuum.

be shown that the inequalities in Eqs. (5) and (6) are
equivalent to the two that are needed in deriving Fer-
mi's Golden Rule.10]

As an example of the validity of these concepts in a
real molecule, Fig. 1 shows the V3 absorption band of SF6
for three different temperatures as heated in a shock
tube.9 At 1000 K, the spectrum is anharmonically
downshifted about 20 cm-1 and broadened to a width
Aw - 20 cm-1. The heat bath contains about 9000 cm'
of thermal energy at 1000 K, guaranteeing that Eq. (6)
is satisfied, i.e., that the molecule is in the quasicon-
tinuum of levels.

The finite linewidth Aw is caused by a number of
contributing mechanisms. In addition to the intra-
molecular damping rates lIT, and l/T2, the rotational
structure makes a contribution that we have been ig-
noring. Also, there is a special type of inhomogeneous
broadening associated with the differences in thermal
energy of different members of the canonical ensemble.
These energy fluctuations, (AU)2 = n(kT) 2 , are sig-
nificant because of the very small size of the intramo-
lecular heat bath. Molecules with different thermal
energies have different mean anharmonic shifts AE8,
as given by Eq. (2), thus leading to inhomogeneous
broadening.'

The important point is that the finite linewidth Aw
places an upper limit on the damping rates lIT, and
1/T2 . Therefore, 1/T2 < AW C 0.02wo and the in-
equality of Eq. (5) is easily satisfied. Since Eqs. (5) and
(6) are both fulfilled, we have established that heat bath
damping theory describes intramolecular relaxation in
polyatomic molecules.

We will now employ these concepts to address the
question of coherence and mode selectivity in multi-
photon excitation. The system equation of motion has
been reduced 7 to:

dp = -- (Hsp) + damping terms. (7)
dt h

To this must be added the light-wave-induced inter-
action,

ss+i = Vs+tT1& exp(icot), (8)

where s is the vibrational quantum number of the sys-
tem, ,g is the dipole moment12 of the transition, 6 is the
peak electric field of the light wave, and w is its fre-
quency. The limit of coherentl3 multiple-photon ex-
citation is specified by

,/s A\/, 1 + (Co - Wo)2 .(9
h I T 2 2 +(wO(9)

In the opposite limit, the off-diagonal elements of the
density matrix are <<1, and Eqs. (7) and (8) reduce to
a set of diagonal rate equations. The up-transition rate
is 2-r(s + 1)WR 

2 g(co), whereas the down-transition rate
is 2IrswR 2g(w), where OR = g6/h, the Rabi precession
frequency, and 7rg(w) = T2 /[1 + (C - Co) 2T2

2], the
standard Lorentzian line shape.

There has been great interest among chemists in vi-
brational mode selectivity,15 namely, the excitation of
the system degree of freedom to a high energy with a
minimum of thermalization to the heat bath. It is re-
quired that the rate of heating significantly exceed the
rate of energy relaxation:

2lrSWR2g(w) >> lIT1. (10)

Since T2 is always < T1 , vibrational-mode selectivity
is a less stringent condition than fully coherent excita-
tion. In spite of this, neither condition is easy to
achieve. Both depend on a large Rabi precession fre-
quency to overcome not only the damping rates 1IT1
and l/T2 , but also the frequency mismatch (w - wo) that
develops as a result of anharmonicity. A superficial way
to accomplish this is to focus the laser beam more
tightly, raising ,46. The following reasoning shows why
this approach fails:

Consider the laser-pulse intensity I as a function of
time, as graphed in Fig. 2. The peak intensity is chosen
to satisfy the condition of Eq. (10). During the rising
portion of the laser pulse, before it has reached its peak
intensity, Eq. (10) is not satisfied, and efficient ther-
malization is taking place. The energy absorbed by the
molecule during the initial cross-hatched portion of the
pulse is statistically distributed among all vibrational
modes. If a reaction temperature To is reached during
the pulse risetime tr, then a statistical reaction 5"15 will
occur before the conditions for vibrational-mode se-
lectivity have been achieved. It is necessary to reduce
the area of the cross-hatched region in Fig. 2 to ensure
a minimum of absorbed thermal energy nKT before the

Fig. 2. A schematic graph of intensity I versus time for a laser
pulse. The area of the cross-hatched portion of the pulse
represents an energy fluence (J/cm2 ). The molecular tem-
perature rise depends only on fluence, as specified by Eq. (11).
It should be kept as small as possible to prevent premature
nonselective chemical reaction.
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Fig. 3. An illustration of the technique for achieving vibra-
tional-mode selectivity. Ordinary statistical heating shifts
the transition into resonance with the laser frequency co. On
resonance, Eq. (10) is satisfied and the heating becomes mode
selective until the additional anharmonic shift once again
exceeds cR, the Rabi precession frequency.

laser peak:

T = 1 ftrIadt << To, (11)
nK o

where a is the absorption cross section per molecule and
n the number of normal modes.

Vibrational-mode selectivity requires that both Eqs.
(10) and (11) be satisfied. The peak intensity I must
be high enough for Eq. (10), but the product I X tr must
be low enough for Eq. (11). The crucial constraint is
that the rise time be very short. Obviously, a rise time
as short as T2 itself would be quite sufficient. Tech-
nologically, this is difficult to achieve, since T2 is cer-
tainly in the picosecond range.

The following technique would help permit the use
of a slower pulse while still satisfying Eqs. (10) and (11).
The laser could be tuned far to the red side of the
transition. The off-resonant absorption16"17 would be
very weak, helping to satisfy Eq. (11). Furthermore,
as the molecule heats up, the anharmonic shift would
tend to reduce the frequency mismatch coo - co to zero
just at the moment when the laser pulse is near its peak.
This, in turn, would help to satisfy Eq. (10). A sche-
matic illustration of the process is shown in Fig. 3.

A numerical example would be helpful. Suppose it
were desired to achieve a dipole matrix element in SF6
of g6- 15 cm-1 while keeping the random thermal
heating below T = 1000 K. This dipole matrix ele-
ment12 requires a peak intensity of I - 1010 W/cm2.
Assuming that the laser pulse is a linear ramp, the
maximum permissible rise time is

tr = (2nKT)1Ia' (12)

where we have made the rough assumption that a is
constant. For large detuning, coo - co 40 cm-, the
absorption cross section'7 is small, a(- 10-19 cm2 .
Under these conditions, tr ' 300 psec would be fast
enough to fulfill the conditions of Eqs. (10) and (11) for
vibrational-mode selectivity. Such fast-rising pulses
can be generated by optical free induction decay.18

As the molecule heats up, it is shifted into resonance
with the laser, bringing it into the regime where Eq. (10)
is satisfied. Further energy deposition is of a vibra-
tionally mode-selective character or possibly even of a
coherent nature. Nevertheless, the extent of additional
mode-selective heating is severely limited by the an-

harmonicity associated with it. The resonance con-
tinues to shift to longer wavelengths until the additional
anharmonicity overwhelms Eq. (10).

The anharmonic shift is, to a good approximation,
proportional to the total energy in the molecule.19 Let
A be the constant of proportionality. As the resonance
shifts from oo to a, the energy deposited is nKT = (Xo
- w)IA, going primarily into heat bath modes. Then
there is mode-selective energy deposition U, until the
additional anharmonic shift becomes comparable to the
Rabi precession frequency WR. Thus the maximum
selectively deposited energy is U = wRIA. Clearly, the
magnitudes of coo - and WR determine the tempera-
ture, the energy in the reaction coordinate, and whether
a mode-selective chemical reaction will occur.

I would like to thank S. Mukamel for communication
of his manuscript2 0 before publication.
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