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TABLE I 
EXPERIMENTAL RESULTS FROM SHLS DATA (X = 1.06 p; t = 25°C) 

Number of Independent SHLS Depolari- Calculated Effective 
Elementsa.b zation  Ratio Optical Anisotropies 

Experimental 

Cyclo- 
hexane Dd 1 2 4 0.12 f 0.04 0.001 0.04 

Benzene DBh 1 2 3 0.17 -f 0.06 0.032  0.21 
Carbon 

disulphide DasH 1 2 3 0.21 -f 0.09  0.190 0.31 

a eip-electric quadrupole  moment  tensor  element. 
b a;p' and c~~k~*"'-Iinear and  nonlinear  polarizability  tensor  elements at frequencies w and 2 0  
0 Aw2-linear optical  anisotropy  defined by sa. m a .  .u - a .  .O a .  u 

2a;;Y, a j jw  

Aw* = z, 9 I ,  % *  9 I 9  

permanent electric quadrupole  moment e 
gives ( to  within  binary  correlation) 

+ 4(c0s2 e, - 2 cos e, 

. COS ea COS e,, + COS' e,)]~,, 

( 4 4  
where e, and  are  the angles  between 
the  symmetry axes of molecules p and q 
and  the  vector rps connecting their centers. 
e,,, is  the angle between the  symmetry 
axes of molecule p and q. Equation  (4a), 
in  the simplified case of weak angular cor- 
relations,  reduces to  the m.ore accessible 
fonn 

(F')  = 3Oz{ 2 T,:'}. (4b) 

By ( l ) ,  the  depolarization  ration  is 

and  for  the isotropic scattering of (3) 
takes  the value 1/9. Generally, we have 
also an anisotropic  part of SHLS deter- 
mined  by  an effective nonlinear  optical 
anisotropy2 

Azw - 
2 - 9 Du2w - 1 

9 DsZw + 1 
c) 

In  the case of point  groups Den  and 
Dmk we have  in a good approximation 

where 

Phy. 'Rev. L h . ,  vol.  25, p. 1295,  1971. 
* S Kielich J. R. Lalanne,  and F. E. Martin, 

Equation (7)' with  the  assumption3 c11332u = 
1/6(c33332w + ~ ~ ~ 1 1 ~ ~ )  (following also from 
Bloembergen's symmetry  relation)  leads  to 
the previous form2 

The  experimental  results  are  given in 
Table I. A preliminary  test  made  on car- 
bon  tetrachloride  yielded  the  result D.7 
= 0.45 zk 0.10, in good agreement  with 
experimental  data concerning  noncentro- 
symmetric molecules.*~5 
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A.4-Anisotropic Dispersion of the  Non- 
linear  Susceptibility  in  Four-Wave  In- 
frared  Light  Mixing, C. Flytzanis, E. 
Yablonovitch, and N. Bloembergen, DG 
vision of Engineering  and Applied Phys- 
ics, Harvard University, Cambridge, 
Mass. 02158. 

The  frequency  combination 201 - wz was 
observed upon mixing laser  light  in cubic 
semiconductors  when the frequencies 01, WZ,  

and 2 ~ 1  - 0% are  in  the  transparency region 
of the crystal while w1 - W Z  is below the 
phonon resonance wT. The w i  were provided 
from  the different  lines of a COZ laser. This 
enabled  us  to  measure  the  variation of the 
third-order  susceptibility as the  infrared 
frequency w1 - 02 was approaching  the 
infrared  Raman frequency W T  from below. 
By  making  use of crystal  symmetry re- 
quirements  and  the  relationship between 
Raman effect and  the  third-order frequency 
mixing we have been able to account theo- 

retically for  the dependence of the com- 
ponents of the  third-order susceptibility on 
0 1  - w2. 

I n  cubic diatomic semiconductors 
has two  independent components xz2zz(3) 
and xzr/zu(3) and a single Raman  active  mode 
with  the corresponding  tensor  being aZIE(l) .  

Since WI - w z  is below the  Raman  frequency 
wT while w i  and 2wl - wz are  above  it,  the 
phonon  mode uT is driven by  a  force F ,  = 
q~iCLzyl( l 'EZ.(~1)Ey(~%) according to  

ii, + W T 2 U ,  + yzi, = -2- (1) 
F 
m 

This  modulates  the  linear  polarization 
Pz(wl) = x(l)E,(wl) and provides a third- 
order lattice-induced nonlinear polariza- 
tion  in  addition  to the one produced by 
the  direct coupling of the  electrons  with 
the  three waves, the  lattice  being held 
fixed. Accordingly, the third-order suscep- 
tibility in the frequency  range considered 
can be  written 

where is the  pure electronic term with- 
out dispersion in the infrared. In   the  experi- 
ment  the  ratio 6 = xzvzs(3)/xzgzy(3) was. 
measured, or 

6 = a  

b 

The experimental  results for  Ge were fitt.ed 
by a curve of the  form (3) with wT = 
300 cm-', the  Raman frequency for Ge. 
This allowed LIS to  extract  the  value of the 
ratio b = ( o ~ , ~ ~ ~ ~ ~ ) ~ / M w ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  and that 
of a = X z s ~ r / E ( ~ ) / & z z z E ( ~ )  whichis a measure 
of the  anisotropy of the electronic distribu- 
tion. 

The  same  measurements were performed 
with GaAs, which is a polar compound. This 
technique with the  latter compound allows 
one to  obtain  an  absolute  measurement of 
x(3 )  from that of X S H Q ( ~ ) ~  the second-order 
susceptibility in the transparency region 
of the crystal. The  ratio' C1 = a(l)eT*/ 
2f&fWT2XsHG(2) and2 X S H G ( ~ )  have been meas- 
ured accurately. Comparing  this  with (3). 
one obtains 

This technique  can actually be generalized 
to other  types of resonances, e.g., excitons. 
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