TABLE I Experimental Results from SHLS Data ($\lambda = 1.06 \,\mu; t = 25^{\circ}\text{C}$)

Liquid	Point Group	Number of Independent Elements ^{a,b}			Experimental SHLS Depolari- zation Ratio	Calculated Effective Optical Anisotropies	
		Θ_{ij}	a_{ij}^{ω}	$c_{ijkl^{2\omega}}$	$D_{v}^{2\omega}$	$_{\Delta\omega^2}^{ m Linear^e}$	$Nonlinear \Delta_{2\omega^2}$
Cyclo- hexane Benzene Carbon disulphide	$D_3d \ D_{6h}$	1	$\frac{2}{2}$	4 3	$0.12 \pm 0.04 \\ 0.17 \pm 0.06$	0.001 0.032	0.04 0.21
	$D_{\infty H}$	1	2	3	0.21 ± 0.09	0.190	0.31

^a θ_{ij} —electric quadrupole moment tensor element. ^b a_{ij}^{ω} and $c_{ijk}^{2\omega}$ —linear and nonlinear polarizability tensor elements at frequencies ω and 2ω . ^c Δ_{ω} ²—linear optical anisotropy defined by

$$\Delta_{\omega}^{2} = \frac{3a_{ij}^{\omega}, a_{ij}^{\omega} - a_{i}^{\omega}, a_{jj}^{\omega}}{2a_{i}^{\omega}, a_{jj}^{\omega}}$$

permanent electric quadrupole moment 0 gives (to within binary correlation)

$$\langle F^2 \rangle = \frac{9}{8} \Theta^2 \left\{ \sum_{q \neq p}^{N} \left[5(\cos^2 \theta_p - \cos^2 \theta_q)^2 + 4(\cos^2 \theta_p - 2 \cos \theta_p + \cos^2 \theta_q) \right] r_{pq}^{-8} \right\}$$

$$\cdot \cos \theta_q \cos \theta_{pq} + \cos^2 \theta_q) \left[r_{pq}^{-8} \right]$$
(4a)

where θ_p and θ_q are the angles between the symmetry axes of molecules p and qand the vector r_{p_q} connecting their centers. θ_{pq} is the angle between the symmetry axes of molecule p and q. Equation (4a), in the simplified case of weak angular correlations, reduces to the more accessible

$$\langle F^2 \rangle = 3\Theta^2 \left\{ \sum_{q \neq p}^{N} r_{pq}^{-8} \right\}$$
 (4b)

By (1), the depolarization ration is

$$D_{v}^{2\omega} = \frac{H_{v}^{2\omega}}{V_{*}^{2\omega}} = \frac{F_{2\omega}}{F_{2\omega} + G_{2\omega}}$$
 (5)

and for the isotropic scattering of (3) takes the value 1/9. Generally, we have also an anisotropic part of SHLS determined by an effective nonlinear optical

$$\Delta_{2\omega}^{2} = \frac{9 D_{v}^{2\omega} - 1}{9 D_{v}^{2\omega} + 1}$$

$$= 1 - \frac{2}{9 D_{v}^{2\omega} + 1}.$$
 (6)

In the case of point groups $D_{\mathtt{GR}}$ and D_{xh} we have in a good approximation

$$\Delta_{2\omega}^{2} = \frac{51\gamma_{2\omega}^{2} + 360 \delta_{2\omega}^{2}}{1575c_{2\omega}^{2}}$$
 (7)

$$\gamma_{2\omega}^{2} = \frac{2}{7} (3c_{3333}^{2\omega} - 4c_{1111}^{2\omega} + 3c_{1133}^{2\omega})$$

² S. Kielich, J. R. Lalanne, and F. B. Martin, Phy. Rev. Lett., vol. 25, p. 1295, 1971.

$$\delta_{2\omega}^{2} = (c_{3333}^{2\omega} - 6c_{1133}^{2\omega} + c_{1111}^{2\omega}) \cdot (c_{3333}^{2\omega} - 9c_{1133}^{2\omega} + 2c_{1111}^{2\omega}).$$

Equation (7), with the assumption $c_{1133}^{2\omega} =$ $1/6(c_{3333}^{2\omega} + c_{1111}^{2\omega})$ (following also from Bloembergen's symmetry relation) leads to the previous form²

$$\Delta_{2\omega}^{2} = \frac{51}{175} \left(\frac{c_{3333}^{2\omega} - c_{1111}^{2\omega}}{c_{3333}^{2\omega} + 2c_{1111}^{2\omega}} \right)^{2}$$
 (8)

The experimental results are given in Table I. A preliminary test made on carbon tetrachloride yielded the result D_{v^2} = 0.45 \pm 0.10, in good agreement with experimental data concerning noncentrosymmetric molecules.4,5

⁸ S. Kielich, Chem. Phys. Lett., vol. 2, p. 569, 1968; also in Opto-Electron., vol. 2, p. 5, 1970. ⁴ R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev. Lett., vol. 14, p. 681, 1965. ⁵ P. D. Maker, Phys. Rev. (A), vol. 1, p. 923, 1970.

A.4-Anisotropic Dispersion of the Nonlinear Susceptibility in Four-Wave Infrared Light Mixing, C. Flytzanis, E. Yablonovitch, and N. Bloembergen, Division of Engineering and Applied Physics, Harvard University, Cambridge,

The frequency combination $2\omega_1 - \omega_2$ was observed upon mixing laser light in cubic semiconductors when the frequencies ω_1 , ω_2 , and $2\omega_1 - \omega_2$ are in the transparency region of the crystal while $\omega_1 - \omega_2$ is below the phonon resonance ω_T . The ω_i were provided from the different lines of a CO2 laser. This enabled us to measure the variation of the third-order susceptibility as the infrared frequency $\omega_1 - \omega_2$ was approaching the infrared Raman frequency ω_T from below. By making use of crystal symmetry requirements and the relationship between Raman effect and the third-order frequency mixing we have been able to account theoretically for the dependence of the components of the third-order susceptibility on

 $\omega_1 - \omega_2$.
In cubic diatomic semiconductors $\chi^{(3)}$ has two independent components $\chi_{xxxx}^{(3)}$ and χ_{xyxy} ⁽³⁾ and a single Raman active mode with the corresponding tensor being $\alpha_{xyz}^{(1)}$. Since $\omega_1 - \omega_2$ is below the Raman frequency ω_T while ω_i and $2\omega_1 - \omega_2$ are above it, the phonon mode \mathbf{u}_T is driven by a force $\mathbf{F}_z =$ $\frac{1}{2}N\alpha_{xyz}^{(1)}E_x(\omega_1)E_y(\omega_2)$ according to

$$\ddot{u}_z + \omega_T^2 u_z + \gamma \dot{u}_z = \frac{F_z}{m}. \tag{1}$$

This modulates the linear polarization $P_x(\omega_1) = \chi^{(1)} E_x(\omega_1)$ and provides a thirdorder lattice-induced nonlinear polarization in addition to the one produced by the direct coupling of the electrons with the three waves, the lattice being held fixed. Accordingly, the third-order susceptibility in the frequency range considered can be written

$$\chi_{xxxx}^{(3)} = \chi_{xxxxE}^{(3)}$$

$$\chi_{xyxy}^{(3)} = \chi_{xyxyE}^{(3)} + N$$

$$\cdot \frac{(\alpha_{xyx}^{(1)})^2}{M(\omega_T^2 - (\omega_1 - \omega_2)^2 - i(\omega_1 - \omega_2)\gamma)}$$
(2b)

where $\chi_E^{(3)}$ is the pure electronic term without dispersion in the infrared. In the experiment the ratio $\delta = \chi_{xyxy}^{(3)}/\chi_{xyxy}^{(3)}$ was measured, or

 $\delta = a$

$$+\frac{b}{1-\left(\frac{\omega_{1}-\omega_{2}}{\omega_{T}}\right)^{2}+i\frac{\omega_{1}-\omega_{2}}{\omega_{T}^{2}}\Gamma}.$$
(3)

The experimental results for Ge were fitted by a curve of the form (3) with ω_T 300 cm⁻¹, the Raman frequency for Ge. This allowed us to extract the value of the ratio $b = (\alpha_{xyz}^{(1)})^2/M\omega_T^2\chi_{xxxxz}^{(3)}$ and that of $a = \chi_{xyzyz}^{(3)}/\chi_{xxxzz}^{(3)}$ which is a measure of the anisotropy of the electronic distribu-

The same measurements were performed with GaAs, which is a polar compound. This technique with the latter compound allows one to obtain an absolute measurement of $\chi^{(3)}$ from that of $\chi_{SHG}^{(2)}$, the second-order susceptibility in the transparency region of the crystal. The ratio $C_1 = \alpha^{(1)} e_T^* /$ $2M\omega_T^2\chi_{SHG}^{(2)}$ and $\chi_{SHG}^{(2)}$ have been measured accurately. Comparing this with (3) one obtains

$$b\chi_{xxxx}^{(3)} = 4C_1^2 \{\chi_{SHG}^{(2)}\}^2/(\epsilon_0 - \epsilon_\alpha).$$
 (4)

This technique can actually be generalized to other types of resonances, e.g., excitons.

W. R. Faust and C. Henry, Phys. Rev. Lett., vol. 17, p. 1265, 1966.
 J. J. Wynne and N. Bloembergen, Phys. Rev., vol. 188, p. 1211, 1969.