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Abstract of the Dissertation

Quantum Information with

Semiconductor Electron Spins

by

Thomas Szkopek

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2006

Professor Eli Yablonovitch, Chair

The study of quantum information science has brought a wealth of open questions

into the view of the scientific community: it is the aim of this work to address

three of these questions.

The first question is: can quantum algorithms be extended for efficient sim-

ulation of “classical” physics, such as electromagnetics simulations? Existing

quantum algorithms, particularly Shor’s number factorization and Lloyd’s quan-

tum many-body emulator, make use of efficient eigenvalue estimation. We show

that a quantum algorithm can be extended to eigenvalue estimation of linear,

partial differential operators. It is found that scaling better than existing clas-

sical algorithms can be achieved only for problems defined over domains of high

dimensionality (>4 for second order differentials). The answer is thus negative for

electromagnetics; the fundamental reason is the unitarity of quantum mechanics

and hence the inability to “erase” errors during convergence.

The second question is: what are the tolerable error rates for a quantum com-

puter constructed from qubits that only exhibit nearest neighbour interactions?

xx



In many solid state qubit proposals, including electron spins in semiconductor

quantum dots, the communication scheme may very well be limited to nearest

neighbour interactions. We find that in the worst case scenario - with regards to

communication - of a linear stripe of qubits of negligible width, the impact on the

error correction threshold for the concatenated [[7,1,3]] Calderbank-Shor-Steane

code is merely one order of magnitude in the amplitude or timing of control

signals compared to idealized error-free communication models. The overhead

associated with error correction itself is substantial enough to limit the impact

of additional nearest-neighbour communication operations.

The third and final question is: is it experimentally feasible to implement

long distance communication with semiconductor electron spin qubits. A critical

component for long distance communication of qubits is a spin coherent photode-

tector that maps the arbitrary spin state of an incident photon to the spin state

of a photoelectron in a fully quantum coherent fashion. The trapping and storage

of single photoelectrons is reported here, a significant step towards realizing spin

coherent photodetection.

xxi



CHAPTER 1

Motivation

Interest in quantum information arose from several theoretical developments, but

that which garnered the most attention was Shor’s discovery of a quantum algo-

rithm for factoring large numbers [1] more efficiently than the best known classical

algorithm - the number field sieve [2] - although it remains to be proved that a

more efficient classical algorithm does not exist. The technological significance

of Shor’s algorithm arises from its potential to allow the breaking of the widely

used Rivest-Shamir-Adelmann (RSA) cryptosystem whose security relies upon

our current inability to factor large numbers efficiently, as detailed in reviews on

the subject [3, 4, 5]. The asymptotic complexity of various implementations of

Shor’s algorithm are summarized in Table 1.1 for factoring an N digit number.

The O[poly(N)] scaling of Shor’s algorithm is clearly advantageous compared

with the O[exp( 3
√

N)] scaling of the classical number field sieve. The desire to

construct specialized hardware to implement Shor’s algorithm is the prime moti-

vating factor for applied research in quantum information science, including the

work presented here.

1.1 “The” Quantum Algorithm

All quantum algorithms discovered thus far, including Shor’s and Lloyd’s [9, 10,

11] as well as those of purely theoretical interest (including Grover’s [12] and

1



Table 1.1: Asymptotic scaling of complexity of various implementations of Shor’s

algorithm for factoring an N digit number under non-local communication. Each

is asymptotically superior to the classical number field sieve number, which re-

quires O[exp( 3
√

N)] gate operations. The Cleve & Watrous implementation re-

quires O(N) classical operations for pre and post processing.

Reference Qubits Operations Depth

Vedral et al. [6] O(N) O(N3) O(N3)

Gossett [7] O(N2) O(N3) O(N log N)

Cleve & Watrous [8] O(N3) O(N3) O[(log N)2]

Deutsch-Jozsa’s [13]) can be viewed as different instances of a single algorithm.

Cleve et al. [14] demonstrated that quantum algorithms can all be cast in the

form of a multiple-particle interferometer for estimating the eigenvalues of unitary

operators. The core of the quantum algorithm is illustrated in Figure 1.1, after

[14]. It is in the choice of unitary operator that one specifies the problem that

one wishes to solve, which may require great ingenuity.

The estimation of eigenvalues is of course of great practical importance in

engineering practice, including the determination of resonance frequencies in

continuum mechanics and electromagnetism. It is natural to ask whether the

quantum algorithm can be applied to any advantage to these common engi-

neering problems. This question is investigated in Chapter 2 of this disserta-

tion, where the quantum algorithm is applied to eigenvalue estimation of lin-

ear partial differential equations. It was found that for differential equations of

order 2S with eigenfunctions ψ(x1, x2, . . . , xD) of D arguments, the computa-

tional cost required to estimate a low order eigenvalue to accuracy Θ(1/N2) is

Θ((2(S +1)(1+1/ν)+D) log N) qubits and O(N2(S+1)(1+1/ν) logc ND) gate oper-

2



|ψ〉

|0 +〉 |1〉
|0 +〉 |1〉
|0 +〉 |1〉

|0 +〉 |1〉

U U
2

1

U
2

2

U
2

m-1
|ψ〉

|0 +〉 |1〉e
i 2

2ϕ

|0 +〉 |1〉e
i 2

1ϕ

|0 +〉 e
i

|1〉ϕ

|0 +〉 |1〉e
i 2

m-1ϕ

Figure 1.1: The heart of the quantum algorithm is the accumulation of phase

increments ϕ from a unitary operator U acting upon some initially prepared

eigenstate |ψ〉 of U . A computational problem (such as Shor’s factorization) is

solved by a selection of U and/or |ψ〉 such that a useful computational result is

given by ϕ. Index register qubits prepared in superposition states |0〉 + |1〉 are

used to pick up phase differences through conditional applications of U , which

can finally be measured by Fourier analysis.

3



ations, where N is the number of points to which each argument is discretized, ν

and c are implementation dependent constants of O(1). Optimal classical meth-

ods require Θ(ND) bits and Ω(ND) gate operations, implying that a quantum

algorithm can give improved convergence if the simulation domain has sufficiently

large dimension D > 2(S + 1)(1 + 1/ν).

In the of case second-order differential equations,2S = 2, appropriate to reso-

nance problems in electromagnetics and classical continuum mechanics, a quan-

tum algorithm improvement over existing classical methods requires a domain

of dimension D > 4. Of course, the domain of electromagnetics and continuum

mechanics problems is 3+1 (space+time) dimensions, ruling out an advantage

over existing classical computational techniques. Thus, to date, Shor’s algorithm

remains the prime motivating factor for the development of hardware for quan-

tum information processing. Concomitantly, the search for new applications of

the quantum algorithm, and more generally new applications of quantum infor-

mation, remains an open problem.

1.2 Quantum Computer Architecture

In order to develop hardware for quantum information processing, one must cope

with the inevitable noise and decoherence arising from interaction with the envi-

ronment [15]. The means to achieve reliable computation is through fault-tolerant

architecture [16] wherein errors induced by noise and decoherence are corrected,

and the probability of a logical error is bounded by a constant. This is completely

analogous to the bounded error in digital computation where the probability of

error is bounded by a constant rather than growing with successive operations

as in analogue computation. Unlike classical digital computation, it is unknown

how to use inherent physical redundancy (such as the multiple electrons in a
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transistor circuit) to create reliable quantum circuits (with the possible excep-

tion of recently discovered topological quantum computation [17]). Rather, the

most studied approach to fault-tolerant quantum computation is through the use

of error correcting codes, an important class being the Calderbank-Shor-Steane

(CSS) family of codes [18, 19]. Logical qubits are encoded with multiple physi-

cal qubits in such a manner that errors can be detected and corrected without

destruction of the quantum coherence of the logical qubit necessary for quantum

computation.

An important theoretical finding for fault-tolerant quantum computation is

the discovery that an error threshold exists [20]. If the probability of a physical

error during a gate operation, during storage, or during communication of a qubit

is below some threshold value, then fault-tolerant computation with any constant

error probability is possible by using a sufficiently redundant concatenated en-

coding (where concatenation is simply the recursive encoding of qubits).

Unlike classical computation, where the reliable communication of informa-

tion across an integrated circuit is taken for granted, reliable communication of

quantum information is much more difficult due to the need to preserve quantum

coherence. Generally, the probability of a communication error increases with dis-

tance. In the case of solid state quantum computing proposals, such as electron

or nuclear spins in semiconductors [21, 22, 23], the only means for communica-

tion of quantum information is via nearest-neighbour interactions (pending the

development of new hardware such as a quantum bus [24]). It was shown by

Gottesman [25] that even in the presence of communication error that linearly

increases with distance, an error threshold still exists, although the value of the

error threshold was not determined.

In Chapter 3, the dependence of the error threshold on communication error is
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investigated for the situation of a narrow stripe of qubits (the stripe width being

no greater than the logarithm of the stripe length). The error thresholds are

numerically estimated for concatenation of the [[7,1,3]] CSS code (ie. a code of 7

qubits representing 1 logical qubit with a minimum of 3 qubit errors required for

logical error), under assumptions of error-free communication, communication

via teleportation, and communication by nearest neighbour swapping. It was

found that the error threshold of 2.1× 10−5 without any communication error is

reduced to 1.2×10−7 with nearest neighbour communication errors. This ∼ 175X

penalty in error probability threshold translates to an ∼ 13X penalty in qubit in

timing and amplitude accuracy of qubit control pulses. It is found therefore that

nearest-neighbour communication only has a “moderate” effect upon the error

threshold. This finding has been corroborated by independent investigations

[26, 27] of error scaling in two dimensional arrays of qubits restricted to nearest

neighbour communication.

1.3 Semiconductor Spin Qubits

The spins of electrons confined to semiconductor quantum dots have been pro-

posed as quantum hardware [21, 22, 23]. Despite the variation in details between

proposals, the common idea is to use the spin-1/2 degree of freedom of localized

electrons as qubits. The appeal of a semiconductor solution is founded on the

hope that the historically successful scaling of semiconductor transistor technol-

ogy for classical computing, embodied by Moore’s Law [28], would apply to the

scaling of a quantum computer as well.

The criteria that any qubit technology must satisfy were outlined by DiVin-

cenzo [29]:
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• scalable physical system with well defined qubits

• ability to initialize to a fiducial state

• decoherence times long compared to gate operations

• universal set of quantum gates

• measurement capability of specific qubits

• ability to interconvert “stationary” and “flying” qubits

• ability to transmit “flying” qubits faithfully

These are of course bare minimum requirements, and other practical issues must

be considered, such as the absolute speed of gate operations for example. General

questions regarding the suitability of electron spins in semiconductors as qubits

are beyond the scope of this dissertation [30, 31].

A number of important experimental advances have been made towards real-

izing a logical qubit from electron spins in semiconductors: single-shot measure-

ment of an electron spin state [32], averaged measurement of single electron spin

resonance [33], and averaged measurement of Heisenberg exchange interaction be-

tween neighbouring electron spins [34]. Another area of active research is that of

quantum communication, namely the interconversion of “flying” qubits (photon

spins) to “stationary” qubits (electron spins). Research in this area is motivated

by anticipated communication needs for distributed quantum computation [35]

as well as long distance quantum cryptography [36].

One of the key processes required for long distance quantum communication is

the ability to transfer information from photon spins to electron spins. It was pro-

posed [37] that semiconductor optoelectronics could be used to transfer quantum
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information from the spin (polarization) of a single photon to the spin of a single

localized electron in a fully quantum coherent manner (meaning without spin

measurement taking place at any point in the process). Specifically, the desired

transformation is one that leaves photoelectron and photohole unentangled,

α|σ+〉+ β|σ−〉 → (α|+〉+ β|−〉)e |arb〉h (1.1)

where α and β are probability amplitudes of the incident photon in a circular

basis {|σ+〉, |σ−〉}, while the electron spin basis is {|+〉, |−〉} and the hole state

|arb〉 is arbitrary.

The energy states and associated selection rules allowing such a transfer to

take place are illustrated in Figure 1.2, based on the work of Vrijen & Yablonovitch

[37]. Preliminary studies indicate that it is theoretically possible to obtain the

desired energy states and selection rules in a strained quantum well heterostruc-

ture with the InGaAsP family of materials [38]. One might equally well consider

the transfer of quantum information from photon spin to photoholes, but it is

expected that the spin coherence lifetime of electrons exceeds that of holes [31]

on account of the lesser spin-orbit coupling in the s-orbital like conduction band

compared to the p-orbital like valence band.

In Chapters 4 and 5 we report experimental work towards realizing spin co-

herent photodetection. In particular, we describe the experimental observation

of the trapping, storage and detection of single photoelectrons in gate electrode

defined quantum dots [39]. Recent work towards demonstration of spin transfer

on a single shot basis is described in Chapter 5. Concluding remarks on future

research directions for quantum information in semiconductor spins are collected

in Chapter 6.
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Figure 1.2: The selection rules for band edge transitions in a direct gap semi-

conductor that will allow spin coherent photodetection. (a) The bulk band edge

states and the optical transitions permitted for optical excitation with wavevec-

tor k. (b) By the application of strain along the axis z colinear with optical axis

k, the heavy hole states can be shifted and the light hole states can be spectro-

scopically selected. (c) The application of a large magnetic field B normal to the

strain axis / optical axis will mix the light hole states. Selecting semiconductors

with zero electron Landé g-factor and as large a hole Landé g-factor will allow

both electron spin states to be accessed from a single.
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CHAPTER 2

Eigenvalue Estimation of Differential Operators

with a Quantum Algorithm

We demonstrate how linear differential operators could be emulated by a quantum

processor, should one ever be built, using the Abrams-Lloyd algorithm. Given

a linear differential operator of order 2S, acting on functions ψ(x1, x2, . . . , xD)

with D arguments, the computational cost required to estimate a low order

eigenvalue to accuracy Θ(1/N2) is Θ((2(S + 1)(1 + 1/ν) + D) log N) qubits and

O(N2(S+1)(1+1/ν) logc ND) gate operations, where N is the number of points to

which each argument is discretized, ν and c are implementation dependent con-

stants of O(1). Optimal classical methods require Θ(ND) bits and Ω(ND) gate

operations to perform the same eigenvalue estimation. The Abrams-Lloyd al-

gorithm thereby leads to exponential reduction in memory and polynomial re-

duction in gate operations, provided the domain has sufficiently large dimension

D > 2(S + 1)(1 + 1/ν). In the case of Schrödinger’s equation, ground state en-

ergy estimation of two or more particles can in principle be performed with fewer

quantum mechanical gates than classical gates.
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2.1 Introduction

An early motivation for research in quantum information processing has been

the simulation of quantum mechanical systems [40]. The Abrams-Lloyd algo-

rithm [9, 10, 11] is an instance of quantum mechanical simulation (followed by

variations [41], [42], [43]). We describe in this paper the application of the

Abrams-Lloyd algorithm to estimating low order eigenvalues of linear partial

differential equations with homogeneous boundary conditions (more precisely,

Hermitian boundary value problems). The significance of our analysis is two

fold. First, we generalize the Abrams-Lloyd algorithm to boundary value prob-

lems other than Schrödinger’s equation, which may find application to classical

problems. Secondly, we quantify computational cost and determine under what

conditions we may expect the Abrams-Lloyd algorithm to give a reduction in

computational work compared to optimal classical techniques in order to achieve

the same eigenvalue accuracy.

Very briefly, the Abrams-Lloyd algorithm as originally envisaged for the many-

body Schrödinger equation is structured as follows. An initial estimate |ψ(0)〉 of

the target eigenstate is loaded into a multiple qubit register. Controlled applica-

tion of a unitary operation, chosen to correspond to the time evolution operator

exp(−iHτ) of the many-body Hamiltonian H under study for time step τ , allows

one to generate a sequence of time evolved states originating from the initial

guess, {|ψ(0)〉, |ψ(τ)〉, |ψ(2τ)〉, . . .}. A spectral analysis of the sequence of time

evolved states recovers the frequency (energy) of the target eigenstate (provided

the initial guess was “close enough”). The Abrams-Lloyd algorithm is akin to

a stroboscope for quantum states evolving under a many-body Hamiltonian. If

the total time of evolution is sufficiently long, while the individual time steps are

sufficiently small, a high frequency (energy) resolution can be achieved. Follow-
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ing the determination of the eigenvalue, the corresponding eigenstate remains in

the qubit register. Although the full amplitude description of an eigenstate is

inaccessible, some information about the state can be extracted to a precision

ultimately limited by the number of qubits used to represent the eigenstate (so

for instance, one can test symmetries of the eigenstate).

The algorithm can be extended to more general partial differential equa-

tions rather easily. So long as the boundary value problem is Hermitian, we

can map our mathematical problem to a fictional quantum system and apply

the algorithm without change. The partial differential operator, L, will corre-

spond to a (possibly) fictional Hamiltonian H, and an initial guess ψ(0) will

correspond to an initial wavefunction |ψ(0)〉. In other words, quantum me-

chanical amplitudes represent function values. Less obviously, the sequence of

time evolved states, {|ψ(0)〉, |ψ(τ)〉, |ψ(2τ)〉, . . .} has a mathematical analogue of

great use in classical matrix eigenvalue analysis, known as the Krylov subspace:

span{ψ(0), exp(−iLτ)ψ(0), exp(−i2Lτ)ψ(0), . . .}. The subspace is generated by

repeated application of exp(−iLτ), although in classical techniques one more

typically uses rational functions of L. Here, τ no longer has the physical meaning

of time. Rather, τ sets the scale for how much phase is applied per application

of exp(−iLτ). As in the quantum simulation, a large total phase applied one

small phase step at a time allows a high resolution estimate of eigenvalues. We

quantify these notions now.

The computational cost of the Abrams-Lloyd algorithm for a specified eigen-

value accuracy is limited as a consequence of three sources of error, expressed

here in the language of quantum mechanical simulation:

I truncation error : Discretization is necessary for a computational model

based on qubits. However, discretization of the continuous problem to N
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points per coordinate results in Θ(1/N2) relative error in low order energy

eigenvalues due to truncation of high spatial frequency contributions. The

choice of N must be made appropriate to the accuracy that is desired.

II splitting error : The full many-body evolution exp(−iHτ) over time step

τ can be implemented with universal gates by splitting the full evolution

into a sequence of efficiently implementable unitaries exp(−iHkτ), where

H =
∑

kHk. The approximation results in an absolute eigenvalue error

O(‖H‖ν+1
2 τ ν), where ‖H‖2 is the maximum eigenvalue of the discretized

Hamiltonian H and ν is a constant of O(1) determined by the precise se-

quence of local operators chosen. Splitting error requires us to use small

time steps τ .

III frequency resolution: A quantum Fourier transform, like any discrete Fourier

transform, can resolve absolute phase to accuracy at best ±π. For a se-

quence of M samples, the relative error in an energy eigenvalue E will be

±π/(MEτ). Frequency resolution requires us to simulate over a large total

time Mτ .

The optimal way to balance these errors is as follows. Since we are interested in

the continuous problem, we first choose a discretization of N points per sample

so that the discrete problem eigenvalue approximates the continuous eigenvalue

problem to some desired accuracy Θ(1/N2). We wish to solve the discretized

problem to an accuracy determined by the truncation error limit; solving the dis-

crete problem to greater accuracy leads to wasted effort since we are interested

in the continuous problem, while solving the discrete problem to lesser accuracy
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implies we have wasted effort by choosing too many discrete points N per coor-

dinate. We can thereby determine the maximum time step τ to keep splitting

error no greater than truncation error. Next, we can determine the number of

time steps M required to resolve eigenvalues with the quantum Fourier transform

at the truncation error limit. In the case of Hermitian boundary value problems,

We show in this paper that the resulting computational cost is Θ(D log N) qubits

and O(N2(S+1)(1+1/ν) logc N) gate operations, where 2S is the differential order

of L and c is a constant O(1). This can be compared with the optimal classical

cost of Θ(ND) bits and Ω(ND) gate operations. Near optimal classical methods

approaching these costs do in fact exist 1.

We emphasize that in our analysis, we take a constructive approach wherein

we account for all the logical operations required to implement the algorithm

without recourse to oracles that may or may not have physically efficient imple-

mentations. This is in contrast to previous work including the simulation of spin

glass physics [47], and Sturm-Liouville problems ([48] and references therin). As

stated, our motivation is to compare the computational cost of eigenvalue esti-

mation by the Abrams-Lloyd algorithm and optimal classical methods.

Our paper is organized as follows. In section 2.2, we introduce the one di-

mensional eigenvalue problem, which will serve as a useful example with which

the principles of the algorithm can be illustrated. We derive the truncation error

for low order eigenvalues in a way suitable for extension to higher dimensional

problems. The algorithm itself is described in section 2.3, followed by an analysis

of computational cost as it is applied to the one dimensional problem in section

2.4. A circuit suitable for a 2nd order differential equation is given as a con-

1A near optimal classical method can be constructed using a combination of Krylov subspace
iteration, matrix preconditioning and multigrid solutions, as in [44]. See [45],[46] for a sampling
of the vast array of classical numerical techniques available
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crete example. Generalization of the algorithm to higher dimensional problems is

given in section 2.5 along with an analysis of computational cost, where we show

a reduction in computational work polynomial in N over classical techniques.

Concluding remarks about the computational efficiency of the Abrams-Lloyd al-

gorithm are given in section 2.6.

2.2 One-Dimensional Problem

To illustrate the essential features of eigenvalue estimation of differential opera-

tors, it’s instructive to consider a Hermitian one-dimensional problem, which we

introduce here in some detail. The primary result of this section is a derivation

of truncation error in low order eigenvalues as a function of discretization. Much

of the notation used throughout this paper are defined in this section. We be-

gin with a linear, 2S-order differential operator D that maps a complex valued

function ψ(x), x ∈ [0, 1] to a new function according to the rule,

Dψ(x) =
S∑

s=0

∂s

∂xs

(
as(x)

∂sψ(x)

∂xs

)

= a0(x)ψ(x) +
∂

∂x

(
a1(x)

∂ψ(x)

∂x

)
+ . . .

+
∂S

∂xS

(
aS

∂Sψ(x)

∂xS

)
, (2.1)

where we assume ψ(x) has finite derivatives up to order 2S. The coefficients

as(x), s = 0, 1, 2, . . . , S are finite, real valued functions on the domain x ∈ [0, 1]

with finite derivatives to order s and satisfy periodic boundary conditions,

∂tas

∂xt
(0) =

∂tas

∂xt
(1) t = 0, 1, . . . , s (2.2)
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The minimal smoothness assumed of a0(x) is continuity on x ∈ [0, 1]. For con-

creteness, we impose periodic boundary conditions upon ψ(x) itself,

∂tψ

∂xt
(0) =

∂tψ

∂xt
(1) t = 0, 1, . . . , 2S (2.3)

although more general homogeneous boundary conditions could be insisted upon.

Given the above definitions, a set of eigenfunctions φf (x) with corresponding real

eigenvalues λf is defined through,

Dφf (x) = λfφf (x), (2.4)

and we order the eigenvalues λf , f = 1, 2, 3, . . . in ascending order λ1 ≤ λ2 ≤
λ2 ≤ . . .. The definition and boundary conditions in Eqs. 2.1-2.3 guarantee a

Hermitian D, meaning
∫ 1

0
dx(φfDφf ′−φf ′Dφf ) = 0 for any pair of eigenfunctions

φf , φf ′ . All the usual eigenvalue/eigenfunction properties of Hermitian operators

follow. Our task is to estimate a low order (f = O(1)) eigenvalue λf .

The most useful expression of the eigenvalue is the Rayleigh quotient,

λf =

∫ 1

0

dxφ∗f (x)Dφf (x) =

∫ 1

0

dxφ∗f (x)Lφf (x) (2.5)

where we impose unity L2 norm on the eigenfunctions,

‖φf‖L2 =

(∫ 1

0

dxφ∗f (x)φf (x)

)1/2

(2.6)

in anticipation of the quantum algorithm and the operator L, derived from D
by simple integration by parts, is a more convenient (bilinear) operator to work

with due to its symmetric form,

ϕ∗(x)Lψ(x) =
S∑

s=0

∂sϕ∗(x)

∂xs
as(x)

∂sψ(x)

∂xs
(2.7)

for any two functions ϕ(x) and ψ(x).
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It is useful to work not only in the “space” domain x ∈ [0, 1], but also in the

“reciprocal space” domain of integers, k ∈ Z. The connection between the two

representations is defined by the Fourier transforms,

ψ̃k =

∫ 1

0

dx exp (−2πikx)ψ(x),

ψ(x) =
∞∑

k=−∞
exp (2πikx)ψ̃k, (2.8)

where tilde will indicate a reciprocal space representation throughout the paper.

Our eigenvalue Eq. 2.4 is Fourier transformed to

∞∑

k′=−∞
L̃k,k′φ̃f,k′ = λf φ̃f,k, (2.9)

where,

L̃k,k′ =
S∑

s=0

(2πik)sãs,k−k′(2πik′)s (2.10)

is the reciprocal space matrix representation of the operator L (and D). The

Rayleigh quotient of Eq. 2.5 is Fourier transformed to,

λf =
∞∑

k,k′=−∞
φ̃f,kL̃k,k′φ̃f,k′ , (2.11)

where we now have the Euclidean normalization,

∥∥∥φ̃f

∥∥∥
2

=

( ∞∑

k=−∞
φ̃∗f,kφ̃f,k

)1/2

= 1, (2.12)

consistent with ‖φf‖L2 = 1 and our Fourier transform definition.

In a classical digital computer, discretization of the domain x ∈ [0, 1] is re-

quired so that values x can be represented with a finite number of bits. For the

quantum algorithm we’ll be discussing, discretization of the domain will also be

required so that values x can be identified with a finite number of qubits. We can

then sample the spatial domain at the points x = 0, 1/N, 2/N, . . . , (N − 1)/N ,
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where N = 2n requires n qubits. It will be more convenient to work with the

integers x = Nx = 0, 1, 2, . . . , N − 1. The discrete spatial domain of N points

allows us to approximate a function ψ(x) by a vector,

ψ(N) =
(
ψ

(N)
0 , ψ

(N)
1 , . . . , ψ

(N)
N−1

)
(2.13)

for computational purposes, where we shall impose Euclidean norm ‖ψ(N)‖2 = 1.

In particular, we wish to generate discretized approximations φ
(N)
f that approach

the continuous problem eigenvector φf (x) such that taking an ever greater num-

ber of discretization points N gives us the limit limN→∞
√

Nφ
(N)
f,x = φf (x), the

factor
√

N accounting for Euclidean normalization of the vector φ
(N)
f and L2

normalization of the function φf (x). We discuss how we generate φ
(N)
f and how

quantify the quality of our discrete approximations as a function of N further

below.

In addition to having a discrete approximation to functions ψ(x), we shall

require discrete approximations of the differential operator L of Eq. 2.7 in the

form of an N ×N matrix L(N) acting on vectors ψ(N). Hence, we’ll need N ×N

finite difference matrices, which we shall denote ∆
(N)
(s) , to approximate derivatives

∂s/∂xs. There is freedom in choosing finite differences to approximate derivatives,

here we (arbitrarily) choose the forward difference for a concrete example,

(
∆

(N)
(1) ψ(N)

)
x

= N
(
ψ

(N)
x+1 − ψ

(N)
x

)
, (2.14)

and higher order finite differences can be generated by ∆
(N)
(s) =

(
∆

(N)
(1)

)s

for integer

s. From the very definition of derivatives, we have limN→∞
√

N(∆
(N)
(s) ψ(N))x =

∂sψ(x)/∂xs if limN→∞
√

Nψ
(N)
x = ψ(x), the factor

√
N again accounting for

Euclidean normalization of the vector ψ(N) and L2 normalization of the function

ψ(x). The subscript arithmetic x±1 in the definition of finite differences is to be

performed modulo-N , consistent with the boundary conditions of Eqs. 2.2,2.3.
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The resulting matrix operator L(N) is,

L(N) =
S∑

s=0

(
∆

(N)
(s)

)T

·Diag(a(N)
s ) ·∆(N)

(s) . (2.15)

where (·)T indicates matrix transpose and Diag(·) indicates a diagonal matrix

with the vector argument along the diagonal. With the above construction for

L(N), we can now pose a Hermitian matrix eigenvalue problem,

N−1∑

x′=0

L(N)

x,x′φ
(N)

f,x′ = λ
(N)
f φ

(N)
f,x (2.16)

whose solutions will have the desired properties limN→∞
√

Nφ
(N)
f,x = φf (x) and

limN→∞ λ
(N)
f = λf , with the obvious restriction f ≤ N . A reciprocal space

description is useful, for which we introduce the discrete Fourier transforms,

ψ̃
(N)
k =

1√
N

N−1∑
x=0

ω−kxψ
(N)
x ,

ψ
(N)
x =

1√
N

N/2−1∑

k=−N/2

ωkxψ̃
(N)
k , (2.17)

where ω = exp(2πi/N) and reciprocal space has been truncated to the set N =

{k ∈ Z : −N/2 ≤ k ≤ N/2 + 1}. The eigenvectors are assigned unit Euclidean

norm in both x and k space representations,

∥∥∥φ
(N)
f

∥∥∥
2

=

(
N−1∑
x=0

φ
∗(N)
f,x φ

(N)
f,x

)1/2

=

(∑

k∈N
φ
∗(N)
f,k φ

(N)
f,k

)1/2

= 1, (2.18)

so that the discrete analogs of Eqs. 2.5, 2.11 are

λ
(N)
f =

N−1∑

x,x′=0

φ
∗(N)

f,x′ L(N)

x′,xφ
(N)
f,x

=
∑

k,k′∈N
φ̃
∗(N)
f,k′ L̃(N)

k′,kφ̃
(N)
f,k (2.19)
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which we shall find useful below.

We shall call |λ(N)
f −λf | the truncation error, alluding to the fact that we wish

to approximate λf with λ
(N)
f while truncating reciprocal space from all integers

Z to the subset N . We now proceed to show the well known fact that replacing

derivatives by finite differences ultimately limits the convergence of λ
(N)
f to λf

as the number of sampling points N increases. Straightforward application of

previously stated definitions gives,

(
˜

∆
(N)
(1) ψ(N)

)

k

= N (exp (2πik/N)− 1) ψ̃
(N)
k

= 2πikψ̃
(N)
k

(
1 + Θ

(
k2

N2

))
(2.20)

where we have made use of series expansions and the fact that |k| ≤ N/2 to arrive

at the contribution Θ(k2/N2). The result holds for higher order derivatives.

An important parameter in characterizing truncation error is a reciprocal

space cut-off k(φf ), which can be defined for every φf . There will always exist

a number k(φf ) such that |φ̃f,k|2 = O(k−(4S+1+ε)) for all |k| > k(φf ) and some

infinitesimal ε. This follows simply because φf must be differentiable up to or-

der 2S, and therefore the series
∑

k(2πk)4S|φ̃f,k|2 giving the norm of the 2Sth

derivative of φf must converge. The eigenvalue spectrum of the continuous do-

main operator L is unbounded, and it can be shown that sup{k(φf )} does not

exist. However, since we restrict ourselves to f = O(1), we can specify a finite

k(φf ) independent of N . For N/2 > k(φf ), a reciprocal space cut-off k(φ
(N)
f )

must also exist since limN→∞ φ̃N
f,k = φ̃f,k. From here on, we shall not distinguish

between k(φ
(N)
f ) and k(φf ) as the precise value of the reciprocal space cut-off is

not needed, but simply its existence. We thus define another subset of reciprocal

space M = {k ∈ Z : |k| < k(φf )}.

We have now collected enough ingredients to find the truncation error |λ(N)
f −
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λf |. We assume that N/2 > k(φf ), so that a “reasonable” representation of φf

can be made on the discretized domain. By “reasonable”, we mean the eigenvalue

λf can be estimated using Eq. 2.11 and the truncated reciprocal space N to give,

λf =
∑

k,k′∈N
φ̃∗f,k′L̃k′,kφ̃f,k + O

(
N−(2S+ε)

)
(2.21)

where the above result arises from the least convergent (highest order derivative)

contribution to λf in the region k, k′ /∈ N ,

∑

k,k′ /∈N
φ̃∗f,k′(2πik)S ãS,k−k′(2πik′)Sφ̃f,k

=
∑

k,k′ /∈N
O

(
k′−(S+1/2+ε)k−(S+1/2+ε)

)

= O
(
N−(2S+ε)

)
(2.22)

where we have made use of |φ̃f,k| = O(k−(2S+1/2+ε)) for k > k(φf ). Thus,

for N/2 > k(φf ), truncation of the reciprocal space sum in Eq. 2.11 gives

O(N−(2S+ε)) error.

Using the finite difference error of Eq. 2.20, the reciprocal space matrix L̃(N)

can be written,

L̃(N)
k,k′ =

S∑
s=0

[
(2πik)sãs,k−k′(2πik′)s

(
1 + Θ

(
k2 + k′2

N2

))]
, (2.23)

where we have used the fact that there is some freedom in approximating as(x)

by a
(N)
s,x . We choose to match spectral components ã

(N)
s,k = ãs,k, and accept that

a
(N)
s,x may exhibit oscillation artifacts (Gibb’s phenomenon) due to discarding the

contributions ãs,k for k ∈ Z − N . Note that the smoothness of as(x), meaning

continuity and finite s order derivatives for x ∈ [0, 1], implies the existence of

reciprocal space cut-offs k(as). We use Eq. 2.19 to decompose,

λ
(N)
f =

∑

k,k′∈M
φ̃
∗(N)
f,k′ L̃k′,kφ̃

(N)
f,k

(
1 + Θ

(
k(φf )

2

N2

))
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+
∑

k,k′∈(N−M)

φ̃
∗(N)
f,k′ L̃k′,kφ̃

(N)
f,k

(
1 + Θ

(
k2 + k′2

N2

))
(2.24)

where the error summed over N −M is of order,

∑

k,k′∈(N−M)

Θ

(
1

N2

)
O

(
k2 + k′2

k′S+1/2+εkS+1/2+ε

)

= Θ

(
1

N2

)
O

(
1

k(φf )2S−3

)
(2.25)

The diminishing contribution of the region N − M to λ
(N)
f ensures that the

relative finite difference error Θ(k2/N2) does not approach unity but remains

Θ(1/N2). Collecting the results of Eqs. 2.21, 2.24, 2.25, we can express λ
(N)
f −λf

as,

λ
(N)
f − λf =

∑

k,k′∈N
φ̃
∗(N)
f,k′ L̃k′,kφ̃

(N)
f,k

(
1 + Θ

(
1

N2

))
−

∑

k,k′∈N
φ̃∗f,k′L̃k′,kφ̃f,k (2.26)

where we have dropped the dependence upon k(φf ) as it shall be of no further

use. We note that L̃(N) − L̃ = Θ(1/N2) in the reciprocal space M, so we can

consider 1/N2 a parameter of expansion in perturbation theory. The lowest order

perturbation gives ‖δφ̃(N)
f ‖2 = ‖φ̃(N)

f − φ̃f‖2 = O(1/N2) for a non-degenerate φf .

Degenerate eigenvectors might be perturbed substantially, but this is merely the

result of there being no preferred basis for the span of the degenerate eigenvectors.

The same bounds on truncation error can be shown to apply to the degenerate

case. Noting that Eq. 2.26 is second order in eigenvector and δφ̃f is orthogonal to

φ̃f , the contribution of δφ̃
(N)
f to the eigenvalue error is O(1/N4) and can therefore

be ignored. The relative truncation error is,
∣∣∣∣∣
λ

(N)
f − λf

λf

∣∣∣∣∣ = Θ

(
1

N2

)
(2.27)

which is the final result of this section. We emphasize that truncation error arises

solely from the uniform discretization of the domain x ∈ [0, 1].
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2.3 Quantum Algorithm - One Dimension

We present now the quantum algorithm as it applies to the Hermitian, one-

dimensional boundary value problem discussed in the previous section. We will

show the various computational steps, and the rationale behind them.

First, we set forth some preliminaries. We will represent a vector ψ(N) with a

quantum state composed of n = log2 N qubits whose probability amplitudes are

encoded as follows,

|ψ(N)〉 =
1√
N

N−1∑
x=0

ψ
(N)
x |x〉, (2.28)

where |x〉 is an n qubit state storing the binary representation of x. Similarly,

the finite difference matrix L(N) is mapped to an operator,

Λ(N) =
N−1∑

x,x′=0

|x〉L(N)

x,x′〈x′|. (2.29)

and we define the unitary exponential,

U = exp(iΛ(N)τ) =
∞∑

q=0

(iΛ(N)τ)q

q!
. (2.30)

where τ is a dimensionless constant whose value is chosen in advance of the

simulation and where the unitarity of U follows from the Hermitian nature of

Λ(N). The constant τ must be carefully chosen to arrive at a desired accuracy

in eigenvalue λ
(N)
f without an unnecessarily large number of operations. The

prescription for choosing τ is described further below in section 2.4. Note that

τ is now an abstract scaling parameter rather than the time step of a quantum

simulation.

We shall call the register of n = log2 N qubits the accumulator register. In

addition, a register of m = log2 M qubits will be required to count phase steps,

which we shall call the index register. Several ancilla qubits will be required, their
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number depending on the desired precision for the coefficients a
(N)
s that specify

Λ. The first steps are to load an initial state ψ(N)〉 into the accumulator and to

form an equal superposition of all index qubit states, giving a complete state,

|Ψ〉 =
1√
M

M−1∑
j=0

|ψ(N)〉|j〉, (2.31)

The state |ψ(N)〉 is an initial estimate of the field eigenvector of interest. To

determine the required computational work to arrive at a suitable initial estimate

|ψ(N)〉, it is useful to decompose the accumulator state in terms of the initially

unknown eigenstates |φ(N)
f 〉,

|Ψ〉 =
1√
M

M−1∑
j=0

N−1∑
x=0

αf |φ(N)
f 〉|j〉 =

N−1∑

f=0

αf |Ψf〉, (2.32)

where αf = 〈φ(N)
f |ψ(N)〉. As will be shown, the probability the Abrams-Lloyd

algorithm will give an estimate of eigenvalue λf in a single iteration is |αf |2.
To obtain an estimate of λf with probability approaching unity, approximately

1/|αf |2 iterations will be required. It is thus necessary for |ψ(N)〉 to have a large

overlap with |φ(N)
f 〉 in order to avoid numerous iterations of the algorithm. The

best technique proposed thus far is that of Jaksch and Papageorgiou [49], where

a more coarsely defined φ
(N0)
f is determined first (ie. N0 < N). According to the

analysis of the previous section, a coarse approximation limited by truncation

error will allow one to achieve,

|αf |2 ≤
∥∥∥φ̃f − φ̃

(N0)
f

∥∥∥
2

2
=

∥∥∥δφ̃
(N0)
f

∥∥∥
2

2
= 1−O(1/N2

0 ) (2.33)

for f = O(1). Thus, one might solve for a desired φ
(N0)
f classically (with cost that

we will discuss later), and load the state |φ(N0)〉 into the accumulator with Θ(N0)

operations.

We shall now follow the linear portion of the algorithm as it operates on a

particular component |Ψf〉, reintroducing the full superposition over all f in the
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final (nonlinear) measurement step. The next stage of the algorithm is to apply

the unitary U to the accumulator conditional upon the index to produce the

superposition,

|Ψ′
f〉 =

1√
M

M−1∑
j=0

U j|φ(N)
f 〉|j〉

=
1√
M

M−1∑
j=0

exp(ijλ
(N)
f τ)|φ(N)

f 〉|j〉. (2.34)

Only M conditional applications of U are in fact required to form |Ψ′
f〉 from |Ψf〉.

One applies U conditional on j > 1, then one applies U conditional on j > 2 and

so forth until the (M − 1)th conditional U is applied for j = M − 1. The condi-

tional applications of U can be performed with a single additional ancilla qubit

as follows. With at most log M logical operations, one can entangle the index

register with an ancilla to form the state
∑

j |j〉|Cj,j′〉 where the ancilla Cj,j′ = 1

for j ≥ j′ and Cj,j′ = 0 otherwise. The j′th application of U can be implemented

as a U conditional on the ancilla Cj,j′ . The ancilla is then disentangled from the

quantum register by running the initial entangling operation once again.

The operator U acts in the full n qubit Hilbert space of |ψ(N)〉, which will in

general be prohibitively large, but it is nevertheless possible to efficiently gener-

ate an approximation to U using operations in a few qubit Hilbert space. The

structure of Λ(N) is a band diagonal matrix resulting from local operations, and

thus it has a block diagonal representation in the qubit basis of the accumulator.

To illustrate explicitly some of the key features of the algorithm at work,

it’s useful to consider the simple example where D = ∂/∂x{a(x)(∂/ ∂x)}. The
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following decomposition is appropriate,

Λ(N) = N2




d0

d1

d2

d3

. . .




−N2




0 a1

a1 0

0 a3

a3 0

. . .




−N2




0 a0

0 a2

a2 0

0 a4

a4 0

a0
. . .




where dx = ax + ax+1. The operators Λ(N,p) can be written more compactly,

Λ(N,1) = N2
∑

x

dx|x〉〈x|

Λ(N,2) = −N2
∑

x even

ax+1 {|x〉〈x + 1|+ |x + 1〉〈x|}

Λ(N,3) = −N2
∑

x odd

ax+1 {|x〉〈x + 1|+ |x + 1〉〈x|} ,

where Λ(N,1) is diagonal, and Λ(N,2),Λ(N,3) act in one qubit subspaces (conditional

upon bx/2c) in lieu of the full Hilbert space of Λ(N).

The unitary U can be approximated to take advantage of the above decom-

position in several ways. For a general decomposition,

Λ(N) =
R∑

p=1

Λ(N,p), (2.35)

where for our simple example R = 3, the Baker-Campbell-Hausdorff formulae
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can be used to show,

UΠ =
R∏

p=1

exp
(
iΛ(N,p)τ/2

) 1∏
p=R

exp
(
iΛ(N,p)τ/2

)

= exp

(
iΛ(N)τ − i

3!

R∑
p,q=1

[
Λ(N,p),

[
Λ(N,q), Λ(N,R)

]]
τ 3 + O

(∥∥Λ(N)
∥∥4

2
τ 4

))

(2.36)

where terms bilinear in Λ(N,p)τ are suppressed by the symmetry of the product

formula shown. One may approximate U by UΠ to take advantage of the efficient

implementation of exp(iΛ(N,p)τ) at the cost of introducing error.

The quantum circuit for implementing UΠ for our simple example

D = ∂/∂x{a(x)(∂/ ∂x)} is shown in Fig. 2.1 for the particular case of an accu-

mulator with N = 24. The ancillae initialized to state |0〉 are used to store the

coefficients dx or ax+1, to three bit precision with resolution δ: dx = (dx,22
2 +

dx,12
1 + dx,02

0)× δ with dx,j ∈ {0, 1}, and a similar binary description for ax+1.

The circuit “dx” maps |x〉|anc〉 → |x〉|dx ⊕ anc〉, while “ax+1(even/odd)” maps

|x〉|anc〉 → |x〉|ax+1 ⊕ anc〉 for even/odd x. Single qubit rotations R′
p = |0〉〈0|+

exp(i(N2δτ/2)2p)|1〉〈1| give the desired diagonal phase shifts for exp(iΛ(N,1)τ/2).

Single qubit rotations X ′
p = exp(i(−N2δτ/2)2pσx), where σx = |0〉〈1|+ |1〉〈0|, to

implement the desired off diagonal couplings of exp(iΛ(N,2)τ/2) and exp(iΛ(N,3)τ/2).

The values of τ and δ can be inferred from the restriction that the operator split-

ting error is comparable to truncation error, described in section 2.4. The parity

shift operators, defined D±|x〉 = |x ± 1〉, are required to shift the block struc-

ture of Λ(N,3) so that only operations on the least significant qubit x0 need be

performed. The D± can be implemented using quantum Fourier transforms (at

cost of O(log2 N) operations) and single qubit rotations. Final disentanglement

of ancillae is achieved by a second application of “dx” or “ax+1”.

The reason for the ease of implementing UΠ is apparent in Fig. 2.1, one
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Figure 2.1: The quantum circuits for applying: (a) exp(iΛ(N,1)τ/2), (b)

exp(iΛ(N,2)τ), and (c) exp(iΛ(N,3)τ/2), to the accumulator qubits |x〉 = |x3x2x1x0〉
for the decomposition of Eq. (2.35) with N = 24.

28



applies single qubit unitaries conditional upon the evaluation of ax. The Solovay-

Kitaev theorem guarantees that the single qubit unitaries can be implemented

to an accuracy Θ(1/N2) with Θ(logc N) universal quantum gates [50]. We also

assume that evaluation of ax requires O(log N) operations. Roughly speaking,

the differentiability of a(x) rules out pathological functions that have greater

complexity.

Approximating U by UΠ implies that the algorithm will give an estimate of

the eigenvalue λ
(N)
f,Π of the operator,

Λ
(N)
Π = Λ(N) + O

(∥∥Λ(N)
∥∥3

2
τ 2

)
(2.37)

instead of the desired eigenvalue λ
(N)
f . We call the error introduced by using

UΠ the splitting error, which has value O
(∥∥Λ(N)

∥∥3

2
τ 2

)
provided ‖Λ(N)‖2τ < 1.

The splitting error will be shown in the next section to limit the computational

efficiency of estimating eigenvalues.

Applying UΠ rather than U , Eq. (2.34) takes the form

|Ψ′
f,Π〉 =

1√
M

M−1∑
j=0

exp(ijλ
(N)
f,Πτ)|φ(N)

f,Π 〉|j〉. (2.38)

The eigenvalue is encoded in the phase periodicity of |φf,Π〉|j〉, and can be deter-

mined to at most the ±π/M precision allowed by a log2 M bit representation of

a full 2π radians. We briefly review the procedure for retrieving the phase [14],

beginning with the application of the quantum Fourier transform,

QFT =
1√
M

M−1∑

l=0

M−1∑
m=0

exp (−2πilm/M) |l〉〈m|, (2.39)

to the index qubits. The resulting state is,

QFT|Ψ′
f,Π〉 =

M−1∑

l=0

bl,f |φ(N)
f,Π 〉|l〉. (2.40)
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with the coefficients,

bl,f =
1

M

M−1∑
j=0

exp
(
ij

(
λ

(N)
f,Πτ − 2πl/M

))
, (2.41)

which have square modulus,

|bl,f |2 =
sin2

[
M

(
2πl/M − λ

(N)
f,Πτ

)
/2

]

M2 sin2
[(

2πl/M − λ
(N)
f,Πτ

)
/2

] . (2.42)

A projective measurement of the index produces |l′〉 where |λ(N)
f,Πτ/2π − l′/M | <

1/2M with a probability |bl′,f |2 ≥ (M2 sin2(π/2M))−1. All eigenvalues will satisfy

|λ(N)
f,Π | < π/τ since we will impose ‖Λ(N)‖2τ ¿ 1 (to be made precise in the next

section), so identification of l′ will determine an eigenvalue λ
(N)
f,Π uniquely to a

precision ±π/Mτ .

Since we began not with the desired state alone, but with a superposition

|Ψ〉 =
∑N−1

k=0 αf |Ψf〉, measurement of the index will determine a particular λ
(N)
f,Π

with relative probability |αf |2. It is the initial trial wavefunction |ψ(N0)〉 that

determines the probability |αf |2 of the eigenvalue/eigenvector pair being selected

by a projective measurement.

Upon completion of the eigenvalue readout (via index bits l′), the accumulator

is left in the eigenstate |φ(N)
f 〉. This is useful since it allows further information to

be extracted. For instance, one can efficiently test whether |φ(N)
f 〉 has a particular

symmetry, such as inversion symmetry about a particular point x in the domain.

This can serve as a partial check as to whether the desired |φ(N)
f 〉 was indeed

selected by the projective measurement.
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2.4 Computational Cost - One Dimension

We now analyze the computational cost for implementing the Abrams-Lloyd al-

gorithm for the one dimensional Hermitian problem described in the preceding

sections. As pointed out, there are three sources of error that must be considered

to determine the required number of operations for a given accuracy in eigenvalue

estimation.

First, uniform discretization of the continuous problem to N = 2n points on

the spatial domain introduces a truncation error,
∣∣∣∣∣
λ

(N)
f − λf

λf

∣∣∣∣∣ = Θ

(
1

N2

)
(2.43)

The truncation error quantifies the accuracy with which the discrete problem

represents the continuous problem for low order (ie. f = O(1)) eigenfunctions φf .

To compare algorithms, classical or quantum, we may ask how many operations

are required to achieve the Θ(1/N2) accuracy in the solution of the discrete

eigenvalue problem.

Second, splitting Λ(N) into parts so as to approximate U with a product UΠ

of local operators results in what we have termed splitting error. From Eq. 2.37

the eigenvalue λ
(N)
f,Π of UΠ is,

λ
(N)
f,Π = λ

(N)
f + O

(∥∥Λ(N)
∥∥3

2
τ 2

)
(2.44)

where we choose τ such that ‖Λ(N)‖2τ = ‖L(N)‖2τ < 1. However, from the the

finite difference formula Eq. 2.14 and the form of L(N) in Eq. 2.15, the spectral

radius ‖L(N)‖2 = Θ(N2S). Hence, the splitting error is,

λ
(N)
f,Π = λ

(N)
f + O

(
N6Sτ 2

)
(2.45)

which, unlike truncation error, increases polynomially with an increase in the

number of discretization points N . The splitting error results from the fact that
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the product UΠ creates deviations from the true advancement in phase at high

spatial frequencies. For example, in the system described in Eq. 2.35, it is the

non-commuting nature of advancing even pairings of points and odd pairings of

points that generates an error with spatial frequency N/2.

Third, the measurement of phase λ
(N)
f,Πτ via the quantum Fourier transform

is limited by the uniform discretization of 2π radians into M = 2m intervals.

The limited phase resolution allows us to specify λ
(N)
f,Π upon completion of the

algorithm to a precision 2π/Mτ .

The three sources of error allow us to determine the optimal number of index

bits m = log2 M , the value of the constant τ , and thus the complexity of the

algorithm. Obviously, there is nothing gained in solving the discretized problem

to an accuracy greater than the truncation error Θ(1/N2) if the goal is to study

the continuous problem. We can thus allow the splitting error O(N6Sτ 2) to be of

the same order as the truncation error,

Θ

(
1

N2

)
≥ O

(
N6Sτ 2

) → τ ≤ Ω

(
1

N3S+1

)
(2.46)

Since λ
(N)
f,Π = O(1) for our low order eigenvalue with f = O(1), the phase advance-

ment λ
(N)
f,Πτ ≤ Ω(1/N3S+1) for the low order eigenfunction becomes exceedingly

small. In order to resolve this phase so that our final eigenvalue uncertainty does

not exceed the truncation error, we require

2π

Mτ
≤ Θ

(
1

N2

)
→ M ≥ O

(
N3(S+1)

)
(2.47)

thus prescribing the number m = log2 M of index register qubits.

The complexity of the eigenvalue estimation can now be stated. The determi-

nation of a suitable initial guess eigenstate φ
(N0)
f requires the determination of an

eigenvector of an N0 ×N0 problem. This can be done classically in Ω(N0) steps,

since each of N0 points in the spatial domain description of L(N0) must contribute
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to the eigenvalue. Near optimal classical methods are in fact known. In the case

of a tridiagonal L(N0), bisection gives an eigenvalue to Θ(1/N2
0 ) precision with

Θ(N0 log N0) operations [45]. Low order eigenvalues of wider bandwidth L(N0)

matrices can be determined to the same precision with the same order of opera-

tions using more complex classical techniques 1. Only a modest N0 is required for

the probability of a successful iteration of the quantum algorithm, 1−O(1/N2
0 ),

to be comparable to unity. Following the construction of an initial eigenstate es-

timate, this estimate must be loaded into the accumulator register, which can be

done in Θ(N0) steps. We suppose that N will exceed N0 by a substantial factor,

so that the initial state preparation is a negligible cost compared to the remain-

der of the algorithm. The majority of the computational steps in the quantum

algorithm are accounted for by the M ≥ O
(
N3(S+1)

)
applications of UΠ, each

of which requires O(logc N) gate operations for some constant c = O(1). The

final quantum Fourier transform requires Θ(log2 M) gate operations, a negligible

log(N) contribution compared to the M applications of UΠ.

Thus, to achieve Θ(1/N2) accuracy in the final eigenvalue, at least

O(N3(S+1) logc N) operations and Θ(D log N) qubits are required. In contrast,

an eigenvalue can be found using classical techniques to Θ(1/N2) accuracy using

Θ(N log N) operations. The quantum algorithm requires significantly more work

than classical algorithms for the one dimensional problem. Nonetheless, we show

in the next section that the quantum algorithm is easily extended to higher

dimensional problems where increased efficiency over classical techniques is indeed

possible.
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2.5 Higher Dimensional Problems

Here we will generalize the results of the one dimensional problem to the mul-

tidimensional problem. Many of the arguments presented in the earlier sections

are not specific to the single dimension domain, and in many cases we can simply

replace scalars with vectors. The continuous problem we wish to solve involves an

operator D mapping functions ψ(x), defined over a D-dimensional cubic domain

x ∈ S = [0, 1]⊗D, to functions Dψ(x). Rather than explicitly writing out the

general form of a multidimensional Hermitian operator D analagous to the single

dimensional operator of Eq. 2.1, we simply state that D must satisfy,

∫ 1

0

dx1 · · ·
∫ 1

0

dxD

(
φ∗fDφf ′ − φ∗f ′Dφf

)
= 0 (2.48)

for any eigenfunctions φf satisfying Dφf = λfφf . We can then define an “equiv-

alent” bilinear operator L that maps any two vector functions ψ∗(x) and ϕ(x) to

a scalar function ψ∗Lϕ. This can be done by using the higher dimensional forms

of integration by parts, which in one dimension allowed us to relate D to L. We

exclude “trivial” problems that are readily expressed as a tensor product of single

dimensional problems, L = L1 ⊗ L2 ⊗ . . . ⊗ LD. We are therefore considering

problems whose structure is instead a sum of tensor product terms,

L =
B∑

β=1

Lβ,1 ⊗ Lβ,2 ⊗ . . .⊗ Lβ,D (2.49)

for some constant B > 1, and where the differential order of each one dimensional

Lβ,α is 2Sβ,α. The differential order of L is then 2S = maxβ{
∑

α 2Sβ,α}. Of

course, we retain the Hermitian property

∫ 1

0

dx1 · · ·
∫ 1

0

dxD

(
φ∗fLφf ′ − φ∗f ′Lφf

)
= 0 (2.50)
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and the associated eigenvalue/eigenvector properties. Normalizing the eigenfunc-

tions allows us to write,

λf =

∫ 1

0

dx1 · · ·
∫ 1

0

dxDφ∗fLφf (2.51)

which is simply the Rayleigh quotient.

Discretization proceeds as in the single dimensional case, with each domain

coordinate xi ∈ [0, 1] discretized to N points. Functions ψ(x) are represented by

rank D tensors ψ
(N)
x , ie. for D = 2 dimensions ψ

(N)
x is a matrix of numbers, for

D = 3 dimensions ψ
(N)
x is a “cube” of numbers and so forth. Partial derivatives

are converted to finite differences as in the one dimensional case. The opera-

tor L is can thus be discretized to a tensor L(N)

x,x′ . The truncation error in the

multidimensional problem is,

∣∣∣∣∣
λ

(N)
f − λf

λf

∣∣∣∣∣ = Θ

(
1

N2

)
(2.52)

which is identical to the one dimensional case because the relative finite difference

errors on each coordinate are Θ(1/N2).

The implementation of the Abrams-Lloyd algorithm for the multidimensional

problem proceeds in a completely analagous fashion to the one dimensional case,

with the number of accumulator qubits D log2 N = Dn so as to represent a vol-

ume V = ND. As before, an initial estimate of the desired eigenvector φ
(N)
f is

required. A coarse classical simulation can produce an eigenvector φ
(N0)
f with

N0 < N . Since truncation error scales as Θ(1/N2), the required value of N0 is

such that the probability of a successful iteration of the algorithm, 1−O(1/N2
0 ),

approaches unity. The computational cost is Θ(ND
0 log N0) classical gate opera-

tions for generating the initial eigenstate and Θ(ND
0 ) gate operations to load the

state into the accumulator.
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The heart of the algorithm is the controlled application of the unitary U =

exp(iΛ(N)τ) where Λ(N) =
∑ |x〉L(N)

x,x′〈x′|. As before, U acts within a large Hilbert

space, so an approximating operator UΠ is applied instead. The operator UΠ is

a sequence of operations acting conditionally upon a much smaller Hilbert space

than the full D log2 N qubits. We quantify the size of this Hilbert space now.

The multidimensional Λ(N) is no longer represented by a band diagonal matrix,

but has the structure of a sum of tensor products as in Eq. 2.49,

Λ(N) =
B∑

β=1

Λ
(N)
β,1 ⊗ Λ

(N)
β,2 ⊗ . . .⊗ Λ

(N)
β,D (2.53)

The local nature of Λ(N) is quantified by the maximum number of states |x′〉 for

which 〈x′|Λ(N)|x〉 is not zero (maximizing over all possible |x〉). This volume, v,

is the maximum product of matrix bandwidths,

v = max
β
{(2Sβ,1 + 1)(2Sβ,2 + 1) . . . (2Sβ,D + 1)}

≤
(

1 +
2S

D

)D

(2.54)

where we have used the restriction 2S = maxβ

∑
α{2Sβ,α} to arrive at the bound

on v. It follows that we can split Λ(N) =
∑R

p=1 Λ(N,p) where the Λ(N,p) act con-

ditionally upon a Hilbert space of r = dlog2 ve qubits. The size of this reduced

Hilbert space is independent of domain size ND, so that exp(iΛ(N,p)τ) can be ap-

plied to the requisite accuracy (polynomial in 1/N) with only Θ(logc N) universal

gates for some constant c. As before, we assume that the function evaluations re-

quired for conditional action upon the r-qubit subspace entails at most O(log N)

universal gates. The total number of the split up operators Λ(N,p) is bounded

R ≤ v = (1 + 2S/D)D independently of the domain size ND. Thus, UΠ can be

applied with O(logc N) work for some c = O(1).

The approximation UΠ can be composed by using a symmetric product as in
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Eq. 2.36 so that the splitting error is,

λ
(N)
f,Π = λ

(N)
f + O

(∥∥Λ(N)
∥∥3

2
τ 2

)
(2.55)

More generally, an approximation of U correct to higher order in ‖Λ(N)‖2τ can

be implemented [51, 52], [53]. For the sake of generality, we assume we have a

product operator UΠ correct to order ‖Λ(N)‖ν
2τ

ν , and set ν = 2 to recover the

simple symmetric product results. In practice, one can not take ν arbitrarily

large since the number of terms in UΠ grows exponentially in ν. The optimal

choice of ν is that which minimizes the overall computational cost.

Using the fact that 2S is the differential order of L, the splitting error becomes,

λ
(N)
f,Π = λ

(N)
f + O

(
N2S(ν+1)τ ν

)
(2.56)

The final phase measurement through a quantum Fourier transform proceeds as

in the one dimensional case, with the same precision of ±π/(Mτ) in determining

λ
(N)
f,Π , where m = log2 M is the number of index qubits. Requiring that the final

eigenvalue be determined to the truncation error limit as in the one dimensional

case, the same line of reasoning as in the previous section leads to,

τ ≤ Ω

(
1

N2(S(1+1/ν)+1/ν)

)

M ≥ O
(
N2(S+1)(1+1/ν)

)
(2.57)

The computational cost of the algorithm is dominated by the M applications

of UΠ, each application of UΠ requiring O(logc N) number of operations. The

computational cost for the quantum algorithm is,

ℵQ = O(M logc N) = O(N2(S+1)(1+1/ν) logc N) (2.58)

in addition to the cost for finding and loading an eigenstate with coarse discretiza-

tion N0 along each axis. We assume O(N0). The number of qubits required by

the quantum algorithm is Θ(log N).
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We now consider classical costs associated with the multidimensional eigen-

value equation. Discretization and reduction of the continuous problem to a

matrix equation results in a sparse ND × ND matrix with a number of bands

depending on the spatial derivatives and dimensions in the continuous problem.

The most efficient and near optimal classical method requires

ℵC = O(ND log N) (2.59)

operations in order to attain a low order eigenvalue with truncation error accuracy

Θ(1/N2). The method is near optimal in the classical case since the computa-

tional cost per each of V = ND points in the domain is merely O(log N). Any

classical method must “visit” each point in the simulation domain in order for

that point to influence the outcome of the classical calculation, hence the classical

computation cost is Ω(ND). Of course, the number of bits required is Θ(ND).

The maximum improvement in computational efficiency provided by the quan-

tum algorithm presented is,

max

{ℵC

ℵQ

}
= O

(
ND−2(S+1)(1+1/ν)

logc−1 N

)
(2.60)

with respect to the best known (near optimal) classical algorithm. From the

above, we see that the domain dimension must satisfy D > 2(S + 1)(1 + 1/ν) in

order to see any improvement using the Abrams-Lloyd algorithm. In particular,

we have S = 1 for Schrödinger’s equation and we can identify D/3 as the number

of particles in space (3 degrees of freedom per particle, neglecting spin). A many-

body eigenvalue calculation is more efficient than classical simulation for particle

number D/3 > (4/3)(1 + 1/ν). For the case where UΠ is a simple symmetric

product, ν = 2 and we require D/3 > 2 in order to see improved computa-

tional efficiency. Higher order approximations, ν > 2 will result in two (spinless)

particle calculations already being done more efficiently using the Abrams-Lloyd

algorithm.
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We now discuss the generality of the results for domains other than the simple

hypercube S = [0, 1]⊗D discretized to V = ND points. A more complex domain

S ′ can be had by deleting regions from S along planes defined by the uniform

discretization scheme. The computational cost incurred is that required to ensure

the probability amplitudes in |ψ〉 do not “spill” into the deleted regions S − S ′.
This is easily done by circuits such as those in Fig. 2.1, wherein quantum gates

can be used to determine the conditional application of a few-qubit operator

through out the simulation domain. The computational cost is therefore propor-

tional to the classical cost of determining whether a point x is in or out of the

specified domain S ′ subtended by the hypercube S. As an explicit example, the

subcircuit ax+1 of Fig. 2.1 for applying exp(iΛ(N,2)τ) of Eq. 2.35 can be made

to compute |x〉|anc〉 → |x〉|anc〉 for x ∈ S − S ′ and |x〉|anc〉 → |x〉|ax+1 ⊕ anc〉
for x ∈ S ′. The effect of this operation is to conditionally apply exp(iΛ(N,2)τ) to

those points x ∈ S ′. Clearly, S ′ = S is the simplest domain to consider as there

is no added computational cost, but more complex domains are accessible at only

the modest cost of describing the domain with a Boolean function.

2.6 Conclusion

Our analysis of the Abrams-Lloyd algorithm raises several questions. Firstly, it

is natural to ask what sort of qubit phase rotation accuracy is required during

the application of UΠ to the initial guess eigenstate. The phase that is applied

to qubits by the operator UΠ during the computation is of the same order as

the phase applied to the highest order eigenvector: λ
(N)
N,Πτ where the eigenvalue

λ
(N)
N,Π = Θ(N2S) for a differential operator of order 2S and τ = Ω(1/N3S+1) for

a second order splitting formula. The magnitude of the phase rotations applied

to qubits is therefore Ω(1/NS+1). The relative accuracy with which the phase
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must be applied is Θ(1/N2) if the final eigenvalue estimation is to be accurate to

the truncation error limit of Θ(1/N2). Thus the absolute accuracy required from

single qubit rotations is Ω(1/NS+3), independent of the number of dimensions

D. The absolute accuracy is a small quantity for very modest values of N = 100

(representing a relative eigenvalue accuracy of 10−4) with a second order operator

(2S = 2). Angular resolution of 10−8 in the control of qubits represents a technical

feat, but thankfully the principles of fault tolerant quantum computation [20,

54] can be applied here to lessen the accuracy requirements for physical qubit

operations.

Secondly, it is tempting to compare the quantum and classical algorithms for

the simulation of dynamical evolution. The Abrams-Lloyd algorithm simulates

the dynamics of the Schrödinger equation ∂ψ/∂t = Dψ for some (possibly fic-

titious) Hamiltonian represented by D, but only limited detail of the dynamics

in a quantum simulation are accessible. The probability amplitudes characteriz-

ing a register of D log N + log M qubits can result in at most D log N + log M

classical bits of information being extracted by measurement (by the Holevo

bound). For instance, in order to obtain the eigenvector coefficients φ
(N)
f , at least

Θ(ND/ log N) iterations of the algorithm would be required. This is in contrast

to a classical simulation of dynamical evolution where Θ(N) bits would be re-

quired to store a state at a single dynamical step, and Θ(NM) bits are required

to store the entire evolution of an initial state over M dynamical steps. We

emphasize that the strength of the Abrams-Lloyd algorithm is not in its ability

to provide great detail into dynamical evolution but rather in extracting useful

classical information (such as eigenvalues) from a very compact representation of

that dynamical evolution.

Finally, the analysis of the Abrams-Lloyd algorithm raises the question as to
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why the eigenvalue convergence for low dimensional problems (ie. small D) is less

than that of optimal classical approaches. Part of the answer lies in the classical

theory of matrix eigenvalue calculation. An important tool for numerical esti-

mation of eigenvalues is the Krylov subspace, which is defined to be the span of

the set {ψ,Aψ, A2ψ, . . . , AM ′−1ψ} for some initial guess vector ψ, some hopefully

small constant M ′ < ND, and some ND×ND matrix A of which we seek several

low order eigenvalues. The Krylov subspace is spanned by at most M ′ vectors,

rather than the full ND vector space of A, and so projecting onto the Krylov

subspace gives an efficient means of estimating eigenvalues/eigenvectors of A.

If the matrix whose lowest eigenvalue is sought is Λ(N), then we might choose

A = (Λ(N) − µI)−1 where µ is an initial estimate of the eigenvalue sought (the

eigenvalues of Λ(N) being simply related to those of A). With A = (Λ(N)−µI)−1,

the vector Ajψ converges exponentially towards the eigenvector φ
(N)
f whose eigen-

value minimizes |λ(N)
f −µ|. In contrast, if A = exp(iΛ(N)) as in the Abrams-Lloyd

algorithm, there is no such convergence towards a target eigenvector since the

eigenvalues of A are of unit norm. The unitarity of quantum gates restricts

eigenvalues to lie on the unit circle in the complex plane, which is a poor eigen-

value distribution from the perspective of estimating a target eigenvalue [46].

This leads to the question of whether controlled decoherence can be used to pro-

duce non-unitarity evolution to accelerate the selection of a target eigenvector

with a net reduction in gate operations/delay.
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CHAPTER 3

Threshold Error Penalty for Fault Tolerant

Quantum Computation with Nearest Neighbour

Communication

The error threshold for fault tolerant quantum computation with concatenated

encoding of qubits is penalized by internal communication overhead. Many quan-

tum computation proposals rely on nearest-neighbour communication, which re-

quires excess gate operations. For a qubit stripe with a width of L + 1 physical

qubits implementing L levels of concatenation, we find that the error threshold of

2.1×10−5 without any communication burden is reduced to 1.2×10−7 when gate

errors are the dominant source of error. This ∼ 175X penalty in error threshold

translates to an ∼ 13X penalty in the amplitude and timing of gate operation

control pulses.

3.1 Introduction

A critical architectural issue for quantum computation is the internal commu-

nication of quantum information within the processor. There are a variety of

proposed quantum processor implementations with different mechanisms for in-

ternal communication. For instance, the linear ion trap proposal of Cirac and

Zoller [55] involves physical motion of massive ions for internal communication, as
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do proposals using more complex ion trap structures [56]. Alternative proposals

involve using photons and cavity QED for communication [57]. The cavity QED

approach has been extended to the solid state [58, 24]. Even direct transport of

information carrying electrons has been suggested for the solid state [59, 60].

Our paper is motivated by another class of quantum computation propos-

als that rely upon local communication through nearest neighbour interactions

[22, 21, 23]. For instance, communication among electron spins in semiconduc-

tors can be performed with sequential SWAP gate operations, generated by a

controlled Heisenberg exchange between adjacent electrons. An appealing fea-

ture of the SWAP operation is that it is generated by the very same two-qubit

interaction used for computational operations. Also, a substantial degree of par-

allelism can be employed. However, the protection of qubits with concatenated

error correction requires communication between a number of physical qubits

that grows exponentially with concatenation level. This exponential increase in

SWAP operations might suggest that concatenated error correction will fail to re-

duce the logical qubit error rate. Gottesman [25], and Aharanov and Ben-Or [61]

have pointed out that a threshold error exists despite an exponential increase in

logical gate count with concatenation level L, although no attempt was made to

quantify what that threshold might be. In this paper, we estimate that threshold.

The main result we report here is that the number of nearest neighbour com-

munication operations is merely a constant factor over and above the necessary

logical operations for error correction at each concatenation level L. Our esti-

mated error thresholds are summarized in Table 3.1. We analyzed in detail fault-

tolerant error correction with a concatenated [[7,1,3]] Calderbank-Shor-Steane

(CSS) code [18, 19] on a linear qubit stripe with a width of L + 1 physical qubits

for L levels of concatenation, and find an ∼ 175 fold reduction in threshold gate
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operation error due to nearest neighbour communication overhead. This trans-

lates to an ∼ 13 fold increase in accuracy of control pulse amplitude and timing

in gate operations. Although nearest neighbour communication incurs a signifi-

cant penalty in the requisite experimental accuracy of qubit gate operations, it

is not a fundamental obstacle to fault-tolerant computation in the solid-state.

Our analysis is in general agreement with the recent work of Svore et al. [26],

who also show that internal communication with local interactions incurs an er-

ror threshold penalty, although they do not fully account for all communication

steps.

Our paper is organized as follows. In the first section, we describe the un-

derlying architecture of a quantum processor composed of electron spin qubits,

including a description of the physical layout of electron spin qubits and their

grouping into concatenated CSS logical qubits. We describe a fault-tolerant error

correction protocol in the second section. Our protocol implements error recov-

ery without direct measurement. In the third section, we calculate the threshold

error for gate operations under our error correction protocol, with various as-

sumptions about available resources. The fourth section considers the relation

between control pulse accuracy and gate error thresholds.

3.2 Layout Architecture

Given the problem of internal communication in a quantum processor, a higher

dimensional architecture is preferred because it would allow qubits to be as close

as possible. However, there must be access by control wires, thus limiting the

packing geometry. Fig. 3.1 shows a schematic cross-section of a 2-D semiconduc-

tor qubit array controlled by gate electrodes accessing qubits from the side. The

number of vertical stacked control electrodes is limited to twice the number of
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Figure 3.1: A schematic representation showing how the number of available

metal wire layers limits the width of a 2-D qubit array to only about 10-20

qubits.

serpentine 1-D chain intersecting 1-D chains

Figure 3.2: The requirement for gate electrode access to qubits restricts the layout

to stripes of either serpentine or intersecting geometry.

metal wiring layers in the integrated circuit technology. The need for a reason-

able fabrication yield limits the number of metallization layers to ∼ 10, which

means that the 2-D array can be at most 20 qubits wide. Fig. 3.1 illustrates

the case for 5 metallization layers. In this respect, we agree with Copsey et al.

[62], who pointed out this restriction specifically in the context of semiconductor

qubits. Thus, while the qubit array might be locally 2 dimensional, the overall

architecture will consist of 1-D stripes of moderate width, as illustrated in Fig.

3.2.

The lowest level of concatenated qubit encoding, L = 1, can be laid out along

stripe width, but all higher concatenation levels must be laid out along the stripe

length, and are effectively 1 dimensional. We are thus led to an essentially 1-D
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concatenation hierarchy, the most challenging for internal quantum communica-

tion.

Universal sets of fault-tolerant operations are known only for CSS error cor-

recting codes of various size [16, 63, 61, 64]. In our work, we shall consider the

[[7, 1, 3]] CSS code. Concatenation [65], where each logical qubit is composed of

encoded qubits, which are in turn composed of encoded qubits and so on, can

suppress logical error rate to arbitrary degree, provided the physical error rates

remain below a threshold value. The self-similarity of concatenation naturally

leads to the self-similar logical structure illustrated in Fig. 3.3. There are 7 level

L−1 logical qubits forming the CSS codeword that represents a single level L log-

ical qubit |ψ〉L. A minimum of two logical zeros, |0〉L, and six initially arbitrary

ancillae, |a〉L−1, are required to perform error correction on |ψ〉L. We consider

L + 1 parallel lines of physical qubits to implement error correction and compu-

tation with L levels of concatenation. The error correction protocol is described

in detail in the next section. An important feature of the self-similar hierarchy is

that at each concatenation level, the same qubit protection block is employed (for

ancillae as well as information bearing qubits). Error correction can thus take

place at any logical level within an appropriate logical qubit protection block.

3.3 Error Correction Protocol

For estimating error thresholds, we consider an aggressive error correction scheme

where every unitary operation UL at concatenation level L is followed by error

correction EL at level L, as illustrated in Fig. 3.4.

The error correction operation, EL, can be implemented in a fault-tolerant

manner with a Steane error correction circuit [66], slightly modified to that shown
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|ψ 〉
5,5 L-2

|0〉
L-2

|0〉
L-2

|a〉
L-3

|a〉
L-3 |ψ 〉

5,6 L-2
|0〉

L-2
|0〉

L-2
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...

|0〉
L

|0〉
L

|a〉
L-1

|a〉
L-1

|ϕ〉
L

|a〉
L-1

Figure 3.3: A self-similar concatenated hierarchy of logical qubits on a linear

array, with concatenation level L down to L− 2 shown. Error correction requires

a minimum of two logical zeros, |0〉L, and six ancillae, |a〉L−1. Altogether, 27

level L − 1 qubits are minimally required to protect a single level L qubit |ψ〉L.

The exponential growth with concatenation level L of physical nearest-neighbour

operations to interact |ψ〉L and |φ〉L is apparent. We consider a layout with L+1

adjacent linear arrays of qubits each organized according to the illustrated logical

heirarchy.

U
L

E
L

U
L

|ψ〉
L

E
L

|ψ〉
L

|ϕ〉
L E

L

(a) (b)

Figure 3.4: Each unitary operation UL at logical level L is followed by error

correction EL at error correction level L.
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|ψ〉
L

|0〉
L

H I|0〉
L

Z

H I

I

I|0〉
L

|0〉
L H

H

Figure 3.5: A modified Steane error correction circuit (EL). The indicator block

I computes an error syndrome, and decodes the syndrome into a bit-wise error

indicator used for error recovery. The logical SWAP gate, as well as the CNOT

gates, requires shuffling of the constituent L− 1 qubits (see Fig. 3.8). We allow

only nearest neighbour operations at all logical levels in adherence to self-simi-

larity.

in Fig. 3.5. Error correction takes place within an error correction block, with the

logical qubit |ψ〉L and logical zero states |0〉L explicitly shown. The two groups of

three L− 1 ancillae, |a〉L−1, are made use of within the bit-flip indicator circuit,

denoted by I. As can be seen in Fig. 3.5, the Steane error correction circuit is

particularly parsimonious in its use of gate operations, and leads to particularly

favorable error thresholds. The bit-flip indicator block I is essential, where for

each logical zero |0〉L it computes a bit-flip error syndrome into three ancillae

qubits |a〉L−1. The syndrome is then decoded within the indicator block I into

a bit-wise error indicator that can be directly used for error recovery. Note also

that only nearest-neighbour operations at logic level L are employed, in strict

adherence to self-similarity from the physical layer up to concatenation level L.

The key point about the bit-flip indicator block I is that it operates on logical

zeros that have effectively measured the logical qubit error, but not the logical

qubit itself, by virtue of a logical CNOT gate. As was pointed out by Boykin

et al. [67], the identification of which operations require full quantum coherence

and which operations do not is important since “quantum” operations require full

protection against both phase-flip and bit-flip errors, while “classical” operations
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require protection against bit-flip errors only. Note from Fig. 3.5 that the outputs

of indicator block I are used only as control bits for the error recovery operations

acting upon the logical qubit. Arbitrary phase flips in the output of I have no

effect on the logical qubit. Likewise, phase flips on the input of I have no effect on

the logical qubit since the syndrome is encoded as bit-flips on the input to I. We

need only protect against bit-flip errors in I, so that the operations within I can

be thought of as essentially “classical” in nature, even though they are executed

by physical qubit gates. Thus, I can in principle be protected with classical fault

tolerance, which has been shown to be much more efficient than quantum fault

tolerance [68], to ensure that the operations within I will contribute negligibly

to the quantum error threshold.

Of course, the requisite logical zeros, |0〉L, that allow for efficient fault-tolerant

error correction are complex entangled states which must be created with low

error probability to begin with. One approach to this problem is to dedicate

adjacent quantum circuitry whose sole function is to prepare and purify logical

zeros, providing a steady supply at various concatenation levels specifically for

this purpose. Alternatively, the preparation of logical zeros can be performed

directly within the qubit error protection block. The full error correction circuit

is illustrated in Fig. 3.6. Purification of three |0〉L’s, prepared by the 0L block,

results in a single |0〉L state for use in error correction. The 0L zero preparation

block is given in Fig. 3.7. Bit-flip errors are corrected with a modified indicator

block IP , which also corrects for a possible parity flip error corresponding to the

logical zero being in the state |1〉L (and thus requiring a minimum of 4 ancillae).

The qubit protection block must increase in size to accommodate |0〉L preparation

in this case. A total of 46 qubits would be required, arranged in the following

sequence of L − 1 qubits (compare with Fig. 3.6): 7 qubits for storing |ψ〉L, 7

qubits for storing a |0〉L, 3 ancillae |a〉L−1 for I, 7 qubits for storing a |0〉L, 4
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L
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Figure 3.6: Error correction circuit (phase-error portion only) directly incorpo-

rating the preparation of requisite logical zeros. Ancillae begin in arbitrary states

|arb〉. Three 0L blocks prepare logical zeros that are purified into a single |0〉L
state for use in error correction. A modified indicator block IP corrects for pos-

sible parity errors in the raw |0〉L’s.

|0〉
L-1 H

|0〉
L-1

|0〉
L-1

|0〉
L-1

|0〉
L-1

|0〉
L-1

|0〉
L-1

H

H |0〉
L

Figure 3.7: Circuit 0L for preparation of a single logical zero |0〉L from lower level

|0〉L−1’s. Only nearest neighbour operations are employed.

ancillae |a〉L−1 for IP , 7 qubits for storing a |0〉L, 7 qubits for storing a |0〉L and

4 ancillae |a〉L−1 for IP .

3.4 Error Threshold Penalty

The number of physical qubits for our concatenated CSS encoding required to

store and protect one logical qubit is 27L (or 46L including logical zero prepara-

tion). Several levels of concatenation already leads to a large number of physical
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qubits (although the width of the qubit stripe grows only as L + 1). Likewise,

the number of physical gate operations grows exponentially, NL, where N is ap-

proximately the number of logical operations required at level L− 1 in order to

implement a single logical function at level L. For example, with a single level of

encoding, N is simply the number of physical gate operations required to perform

some function on our 7-qubit CSS code word (or multiple code words in the case

of a multi-qubit logical function).

The number of gate operations N will depend on the function being per-

formed. We consider implementing a simple two-qubit unitary, UL, followed by

error correction, EL, as illustrated in Fig. 3.4(b). Error correction might re-

quire N = NE logical gate operations at level L − 1. There will be additional

logical SWAP operations at level L − 1 required to move qubits around since

only nearest-neighbour interactions are permitted. We let NEc be the number of

required nearest-neighbour SWAP communication operations, bringing the total

number of level L−1 operations to N = NE +NEc. Of course, the unitary UL will

require NU operations at level L − 1, as well as NUc additional communication

operations at level L− 1. The total gate operation count at level L− 1 to imple-

ment UL followed by EL is simply N = NU +NUc +NE +NEc. The total physical

gate count is again approximately NL = (NU + NUc + NE + NEc)
L because each

of the N operations at L−1 is simply a unitary UL−1 followed by error correction

EL−1. The self-similar hierarchy requires that N operations at L−2 are required

for each operation at L− 1 and so forth, including communication.

In reality, the gate count NU +NUc varies among the various logical qubit op-

erations possible. For instance, Hadamard at level L requires NU = 7 Hadamard

gates at level L − 1 and NUc = 0 communication gates. In contrast, the gate

operations NU +NUc = 7+42 involved in a logical SWAP on the same qubit line
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are illustrated in Fig. 3.8 for adjacent logical qubits. Clearly the number NL can

be very large, although a substantial fraction of operations at each logical level

can be performed in parallel. Note the fault tolerance of the logical SWAP gate:

a single swap gate failure induces one error in each logical qubit, which can be

recovered independently by error correction. Of course, the extra qubits involved

in a qubit protection block increases the number of communication swaps NUc.

As a final example, we show the partial sequence of gate operations required for

the logical CNOT gate in Fig. 3.9. It is in implementing the CNOT gate that an

additional line of qubits is used for every concatenation level, resulting in a total

of L + 1 lines of qubits. Similar sequences are used for the SWAP and CNOT

gates required for the error correction operation EL, contributing to NE + NEc.

Despite the exponential increase in physical qubits and physical gate opera-

tions with concatenation level (while the width of the stripe merely grows linearly

in concatenation level), logical errors are suppressed double-exponentially with

concatenation level. We let P1 be the logical error probability on a first level

encoded state, |ψ〉1, after a two qubit unitary followed by a single error correc-

tion cycle. By the fault tolerant construction of UL and EL, the probability of a

logical error is bounded above by the probability that two gate operations fail,

P1 ≤

 N

2


 ε2 ' N2

2
ε2, (3.1)

where ε is the probability of physical gate error, assumed to be equal for all

gates, and N = NU + NUc + NE + NEc as before. While logical error rates shall

vary slightly due to differences in NU + NUc amongst the logical gate operations

with the dominant NE + NEc remaining fixed, a conservative estimate can be

had by taking the gate counts for the logical CNOT gate as representative. The

criterion for error correction to reduce the likelihood of qubit error is P1 < ε.
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level: L

7 =1 SWAP
0

level: L-1

7 =49 SWAP’s
2

level: L-2

7 =2401 SWAP’s
4

Figure 3.8: A logical SWAP operation illustrated at concatenation levels L

through L − 2 with nearest neighbour interactions only. The number of level

L − 1 SWAPS required to implement a single level L SWAP between adjacent

logical qubits is NU +NUc = 7+42. There are 21 level L−1 SWAPs to interleave

the qubits, 7 level L−1 qubit-wise SWAPs, and 21 level L−1 SWAPs to undo the

interleaving. Note that a single gate failure does not produce correlated errors

within a logical qubit. Error correction, and swapping through the additional

qubits in a qubit protection block, are omitted here for clarity.
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|ψ〉
L

|0〉
L

|0〉
L

|a〉
L-1

|ϕ〉
L

|a〉
L-1

|ψ〉
L

|ψ〉
L

|ψ 〉
3 -1L

|ϕ 〉3 L-1

|ϕ〉
L

|ϕ〉
L

(a)

(b)

(c)

(d)

|ψ 〉
3 -1L

|ϕ 〉3 L-1

Figure 3.9: Partial sequence for a logical level L CNOT operation illustrated

at concatenation level L − 1 with nearest neighbour interactions only. The (a)

logical code words |ψ〉L and |ϕ〉L are (b) first brought into adjacent positions,

then (c) each of the 7 constituent L− 1 qubits are moved into an adjacent qubit

row to be (d) brought together for qubit wise interaction (only the third qubits

|ψ3〉L−1 and |ϕ3〉L−1 are shown interacting). The logical qubits are brought back

to their original positions for error correction after the logical CNOT. The scheme

is applied recursively until physical CNOT gates are performed in the L+1st row.

The CNOT gates for the error correction circuit are similarly implemented. Note

that a single gate failure does not produce multiple errors within a logical qubit.
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Table 3.1: The gate count for error correction, NE + NEc, and for logical CNOT

operations, NU + NUc, under different assumptions of internal communication

resources and ancilla preparation. Approximate threshold gate error probabilities

are given, as well as control pulse accuracy thresholds (see text for details).

Error Two-Qubit Error Gate

Correction Unitary Probability Accuracy

Gate Count Gate Count Threshold Threshold

NE + NEc NU + NUc Pth = 2/N2 φth

nonlocal no |0〉L 70 7 3.4× 10−4 2.1◦

|0〉L 298 7 2.1× 10−5 0.52◦

re-CNOT no |0〉L 238 35 2.7× 10−5 0.60◦

|0〉L 1090 35 1.6× 10−6 0.14◦

SWAP no |0〉L 1008 203 1.4× 10−6 0.13◦

|0〉L 3754 343 1.2× 10−7 0.034◦
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This leads to the threshold error condition ε < 2/N2. Likewise, at higher levels

of concatenation,

PL ≤

 N

2


 P 2

L−1 '
N2

2
P 2

L−1, (3.2)

leading to PL−1 < 2/N2 = Pth being the error threshold condition for all L.

The corresponding required phase accuracy for gate operations, as described in

section 3.6, is φ = 2
√

2/N . From the above relations, we arrive at the standard

logical error probability for concatenated error correction,

PL ≤ Pth

(
ε

Pth

)2L

(3.3)

but where N now includes the nearest neighbour communication overhead at

a particular concatenation level. The exponent 2L results in an overwhelming,

super -exponential in L suppression of logical errors while the number of qubits

and gate operations increase only exponentially in L.

Suppose that a quantum computation requires a sequence of T logical gate

operations, then a logical error probability PL = 1/T will give the correct result

with only several trials of the computation. The relation between the number,

T , of operations in a calculation and concatenation level L can be written,

T ≥ 1

Pth

(
Pth

ε

)2L

(3.4)

or alternatively,

L ≤ log2

(
log2(TPth)

log2(Pth/ε)

)
(3.5)

For instance, the error threshold might be Pth = 10−6 while the physical gate

operation error is an order of magnitude better, ε = Pth/10 = 10−7. We then

have an accessible computation length T = 106 × 102L
, which for L = 3 gives
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T ≥ 1014. It follows that interesting calculations can be performed with only a

few layers of concatenation (ie. a qubit stripe with a width of only a few qubits)

if physical error probabilities well below the error threshold can be achieved.

The problem of estimating error threshold has been reduced to counting gate

operations, for which our numerical results are summarized in Table 3.1. Note

that we have neglected storage errors in our present analysis since the coherence

times of electron spins in semiconductors [69] exceed the expected gate operation

times by at least ∼ 8 orders of magnitude, with further improvement expected.

The top row of Table 3.1 gives the most favourable error thresholds where any

qubit can interact with any other qubit without any extra communication op-

erations. The bottom row is the least favourable case where nearest neighbour

SWAP operations are used on a linear qubit array to implement all operations.

The middle row represents an intermediate case, where the remote-CNOT is used

to perform a CNOT gate between distant qubits [70, 54]. The remote-CNOT re-

quires a shared EPR pair, a resource that might be generated by independent

hardware with sufficient purity that the EPR error rate contributes negligibly to

the overall error rate of the remote-CNOT and the error threshold. Measure-

ment and classical communication are also required for the remote-CNOT (see

appendix).

For all three communication schemes, the gate count is given in Table 3.1

for sub-cases where |0〉L’s are supplied by adjacent circuitry (a parallel qubit

stripe, for instance); or where the |0〉L’s are prepared directly within the error

correction circuit itself (as in Fig. 3.6) thus burdening the error threshold. In the

former case, we assume that the adjacent circuitry can prepare and purify logical

zeros to reach an error probability much less than the preparation circuit of the

former case, thereby contributing to the error threshold negligibly. This might
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be achieved by successive rounds of purification.

In all cases, we assume that those portions of the circuit that can be imple-

mented with classical fault-tolerant logic [67], albeit with qubit gates, take advan-

tage of the greater efficiency of classical coding. The threshold error for classical

fault-tolerant circuits has been estimated to be between ∼ 1/100 to ∼ 1/3000

depending on topology and communication resources [68], we therefore assume

the error rates in the classical circuits are negligible compared to the quantum

circuits, so that in counting the gate operations we can neglect the operations

in I and IP . Furthermore, the dual-control phase-flip (Λ2(Z)) and dual-control

bit-flip (Λ2(X) =Toffoli) are assumed to count merely as two-qubit interactions,

since fault-tolerant classical logic can be used to generate a single classical control

bit. The remaining sundry details involved in counting gate operations are left

to the appendix.

Observing the gate error thresholds in Table 3.1, we see that SWAP commu-

nication incurs a penalty of ∼ 175X compared to the case of free communication.

Communication through the remote-CNOT incurs a penalty of ∼ 12X compared

to the free communication case. The improvement associated with remote-CNOT

communication is not as much as one might expect, since the remote-CNOT re-

quires multiple operations proportional to the size of the logical qubits. Thus,

internal quantum communication reduces gate error thresholds for fault toler-

ant computation by a substantial factor that we estimate to be from ∼ 12X to

∼ 175X. While this certainly increases the difficulty in experimentally realiz-

ing fault tolerant gate operations, it is by no means an impasse for solid state

quantum computation.
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3.5 Threshold Error Calculations

We provide a brief summary here of the counting of gate operations, which then

leads to the threshold error. Error correction at concatenation level L with the

circuit EL requires the use of both single qubit unitaries and two qubit unitaries

at levels L down to the physical layer. Interestingly, the quantum portions of

the circuit EL (see Figs. 3.5 or 3.6) consists of gate operations that are directly

fault tolerant, where qubit-wise (or transversal) operations are sufficient. These

operations include CNOT, SWAP, and H (Hadamard rotation). The control bits

of the dual control gates are classical, so a full quantum Toffoli is not required. Of

course, indirectly fault tolerant gates such as the Toffoli (Λ2(X)) or π/8 rotation

(Z1/4) are required for universal computation. We do not calculate the error

threshold for indirectly fault tolerant gates here.

3.5.1 Free Communication

First, we consider the idealized case where communication is achieved without

any extra operations, in other words, any two-qubits can interact directly at

any time. In this case, NUc = NEc = 0 and we need only count the number

of computationally useful gates. A directly fault tolerant two-qubit unitary will

require NU = 7 operations. The error correction gate count without logical zero

preparation is,

NE = 4× 7CNOT + 4× 7H + 7Λ2(X) + 7Λ2(Z) = 70

(3.6)

where the L−1 gate type and count are indicated. With logical zero preparation,

we have,

NE = 70 + 12× 0L + 4× 7Λ2(X) + 8× 7CNOT
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= 70 + 12× (3H + 9CNOT) + 84

= 298 (3.7)

where again L− 1 gate type and count was indicated.

3.5.2 remote-CNOT communication

Next, we consider the intermediate communication case involving remote-CNOT

operation, which we abbreviate as reCNOT. The reCNOT circuit is indicated in

Fig. 3.10. For simplicity, we assume that the classical communication and EPR

preparation introduce negligible errors compared to the other gate operations

involved. We see that a reCNOT between two level L − 1 qubits requires 5

level L − 1 operations, so that a reCNOT between two level L qubits requires

NU +NUc = 5×7 level L−1 operations. The error correction gate count without

logical zero preparation becomes,

NE = 4× 7reCNOT + 4× 7H + 7Λ2(X) + 7Λ2(Z)

= 140 + 28 + 35 + 35

= 238 (3.8)

where Λ2(X) and Λ2(Z) are counted as reCNOT operations (recall they can be

implemented with single classical control bits). With logical zero preparation, we

have,

NE = 238 + 12× 0L + 4× 7Λ2(X) + 8× 7reCNOT

= 238 + 12× (3H + 3CNOT + 6reCNOT)

+140 + 280

= 238 + 432 + 140 + 280 = 1090 (3.9)
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Figure 3.10: The remote CNOT gate requires a shared EPR pair,

|Ψ+〉 = (|01〉 + |10〉)/√2, measurement, MZ , and classical communication to

implement a CNOT operation between distant qubits.

where we have made use of both nearest neighbour CNOT and reCNOT in the

logical zero preparation.

3.5.3 SWAP communication

Finally, we consider communication by SWAP gates. Without logical zero prepa-

ration, a level L qubit protection block is 27 L− 1 qubits long. Applying CNOT

between two level L qubits as in Fig. 3.9 requires NU +NUc = 203 level L−1 op-

erations on each logical qubit argument. The error correction operation requires,

NE = 4× (7CNOT + 112SWAP) +

4× 7H + 2× (7SWAP + 84SWAP) +

(7Λ2(X) + 154SWAP) + (7Λ2(Z) + 154SWAP)

= 1008 (3.10)

where we note that 112 communication SWAPs are required for applying CNOT

between |ψ〉L with an adjacent |0〉L, and 84 communication SWAPs are required

for logical swapping of a |0〉L with another |0〉L taking account of the extra ancillae

|a〉L−1 in the way.

When logical zero generation is included, the qubit protection block increases

in size to 46 qubits. Applying CNOT between two level L qubits now requires
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NU + NUc = 343 level L− 1 operations because of the increased size of the qubit

protection block. The error correction operation requires,

NE = 1008 + 12× 0L + 2× (7SWAP + 84SWAP) +

4× (7SWAP + 98SWAP) + 4× (7CNOT +

112SWAP) + 4× (7CNOT + 168SWAP) +

4× (7Λ2(X) + 154SWAP)

= 3754 (3.11)

where we note that each logical |0〉L generation requires 27 level L−1 operations

(Fig. 3.7), and the SWAP communication accounts for all extra ancillae |a〉L−1

in the way.

3.6 Error Probability and Gate Operation Accuracy

So far, we have worked entirely with error probabilities. In practice, experimen-

tal gate accuracy is more naturally specified in terms of control pulse amplitude.

Consider the spin (or a qubit pseudo-spin), illustrated in Fig. 3.11. Suppose a

control pulse, as used in spin resonance, was to bring the spin into alignment

with the x-axis. However, an error in pulse area, phase, or timing may cause

a misalignment by some small angle φ. The probability of error, ε, is then the

probability that the spin is not projected into the +x direction when a measure-

ment is performed along the x-axis. The probability of projection along the +x

direction is cos2(φ/2), so that the error probability is,

ε = sin2(φ/2) ≈ (φ/2)2. (3.12)

The required gate timing and amplitude accuracy is φ = 2
√

ε, specified as a phase

angle, is proportional to the square root of the threshold error probability. The
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Figure 3.11: A conceptual illustration of a qubit pseudo-spin that might miss a

target x-axis by an angle φ due to a control pulse error. The resulting probability

of qubit error is ε ≈ (φ/2)2.

gate accuracy thresholds are given in degrees in Table 3.1. Of course, the ∼ 12X

to ∼ 175X penalty in error probability threshold becomes only a ∼ 3.5X to ∼ 13X

penalty in control pulse accuracy. In order to achieve an error probability of 10−7,

one would require about 1/30 of a degree accuracy in control pulse timing, which

is not entirely infeasible since it would require about 1 picosecond phase accuracy

in a clock period of about 10 nanoseconds. Recall that an error probability of

10−7 for a quantum processor with threshold error probability 10−6 and 3 levels of

concatenation will allow a computation with ≥ 1014 operations. Thus, thinking

about gate errors in terms of phase angle makes it clear that very small error

probabilities are achievable.

3.7 Conclusions

Internal quantum communication remains a challenging architectural problem

that impacts the threshold error for fault-tolerant computation with encoded
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logical qubits. The communication operation overhead required to distribute in-

formation among a number of qubits that grows exponentially with concatenation

level can be a significant burden. Whether one is limited to nearest-neighbour

communication, a communication bus (as in the original Cirac-Zoller ion trap

proposal [55]), or communication by modified teleportation schemes such as the

remote-CNOT, there is always a communication penalty in error threshold. The

minimum communication overhead cost is associated with a communication bus,

where a single operation for “transmitting” and a single operation for “receiving”

is possible in principle. The question of whether a sufficiently robust communi-

cation bus is available for solid state qubits remains open. Ballistic transport of

electron spins through mesoscopic wires is predicted to give error rates of ∼ 0.6

for GaAs [60], far above our stated threshold requirements even for the free com-

munication case. Much more promising is the combination of cavity QED tech-

niques with confined electron spins [58] or superconducting circuits [24], where

an electromagnetic bus can couple a number of qubits. The error rates of such

a bus, the reconfigurability of its links, and its parallelism (ie. how many qubits

can be transported simultaneously? through the same link?) must all be care-

fully considered in determining what benefits, if any, we can expect over nearest

neighbour architectures. Nonetheless, we expect that communication overhead

can be mitigated to a large extent by circuit optimization. Recent work [71] on

laying out Shor’s factorization algorithm on a linear chain of qubits under the

restriction of nearest neighbour interaction has shown that circuit optimization

can greatly reduce the number of logical qubit SWAPs required.
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CHAPTER 4

Photoelectron Trapping, Detection and Storage

We report the filling of a quantum dot - defined by gate electrodes on a

GaAs/Al0.3Ga0.7As modulation doped heterostructure - by single photoelectrons,

originating from weak photon pulses. The gate defined quantum dot could be

emptied in a controlled fashion before the arrival of each weak photon pulse.

Trapped photoelectrons were detected by a quantum point contact transistor

integrated adjacent to the electrostatic potential trap. Each stored photoelec-

tron caused a persistent negative step in the transistor channel current. Such a

controllable, non-invasive, single photoelectron detector could allow for informa-

tion transfer between “flying” photon spin qubits and “stationary” electron spin

qubits.

4.1 Introduction

In order to implement spin coherent photodetection [37], wherein the spin of

an incident photon is transferred to the spin of a localized photoelectron, one

must be able to trap, store and detect individual photoelectrons in quantum dot

structures suitable for quantum computing. The most common means to detect

single photons, and thus single photoelectrons, is by an avalanche multiplication

mechanism such as that found in photomultiplier tubes and avalanche photo-

diodes [72]. The need to store individually generated photoelectrons prohibits
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the use of avalanche photomultiplication, but can instead be achieved by the

conductive gain of a transistor, which can easily give single electron charge sen-

sitivity [73, 74]. In the context of detecting photo generated electrons, this same

mechanism is known as photoconductive gain [75].

The trapping, storage and detection of individual photogenerated carriers has

been reported under a variety of conditions. The most spectacular has been

the detection of single photoelectrons and photoholes generated by far-infrared

(λ ≈ 200µm) photons in a GaAs/AlGaAs heterostructure [76]. Incident far-

infrared photons were used to excite either a hole or electron in a quantum

Hall droplet, resulting in a persistent photoconductance change in an adjacent

quantum Hall edge state defined by gate electrodes. This detector holds the

record for sensitivity in the far-infrared [77] and has been applied for cryogenic

imaging [78]. In other work, photoholes created by direct bandedge absorption

have been trapped and detected in self-assembled InAs quantum dots [79] and

even Si dopant related traps [80] located adjacent to field effect transistors in

AlGaAs/GaAs heterostructures. In the case of quantum communication, it is

desired to trap photoelectrons rather than photoholes due to the increased spin

coherence lifetime of electrons versus holes. A potential well that binds electrons

rather than holes is thus desired, requiring a new device structure.

4.2 Device Structure

The device was based upon an AlGaAs/GaAs heterostructure as illustrated in

Fig. 4.1. The quantum well formed at the interface accumulates electrons

that form a 2-dimensional electron gas (2DEG). The semiconductor material

was grown by commercial (IQEP, Bethlehem Pennsylvania) molecular beam epi-

taxy on a semi-insulating GaAs substrate. At a temperature of 4.2K, the 2DEG
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Figure 4.1: (a) A 2DEG at the heterointerface between AlGaAs and GaAs

can be selectively depleted into pools and channels with negatively biased sur-

face electrodes. (b) The conduction band edge as calculated from a self-con-

sistent Schrödinger-Poisson equation. The heterolayers are: a 5 nm Si-doped

(1× 1018/cm3) GaAs cap layer, a 60 nm Si-doped (1× 1018/cm3) n-Al0.3Ga0.7As

layer, a 30 nm i-Al0.3Ga0.7As spacer layer, atop an undoped GaAs buffer of several

hundred nm thickness.

in an unprocessed sample was determined by quantum Hall measurements to

have a density of 3 × 1011/cm2, although this could be increased with exposure

to light. The sample was measured to have a low mobility of approximately

µ ∼ 200000cm2/Vs at 4.2K.

The device structure employed for photoelectron trapping, storage and de-

tection is illustrated in Fig. 4.2. The gate elecrodes depicted in Fig. 4.2(a)

were fabricated by electron beam lithography and electron beam evaporation of

Ti/Pt/Au. Gates G1 and G2 define a quantum point contact (QPC) when bi-

ased with a negative voltage. Current could be passed through the QPC via

the source and drain Ohmic contacts, SQPC and DQPC . Adjacent to the QPC, a
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Figure 4.2: (a) Scanning electron graph (SEG) of the surface metallic gates defin-

ing a quantum point contact between the source and drain Ohmic contacts. (b)

SEG of pinhole aperture etched in an opaque Al/Ti layer, 150 nm thick, acting as

a shadow mask to allow illumination of the quantum dot region only. (c) Cross–

sectional view of the device structure showing gates buried under Al/Ti/SiOx

layers.
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circular quantum dot with a lithographic radius of ∼200 nm was defined by gates

G3-G5. A negative voltage applied to G3-G5 would deplete the 2DEG in such a

way as to isolate a pool of electrons.

Similar structures employing the integration of a quantum dot adjacent to

a quantum point contact have been used to study the distribution of charge in

quantum dots [81, 82, 83, 84]. In such structures, the proximity of the quantum

dot to the QPC results in sufficient Coulomb interaction between charge on the

quantum dot and the electron current in the QPC so that the QPC can function

as a near optimal probe of the charge on the quantum dot [85].

Photogeneration of electron-hole pairs was suppressed over the bulk of the

sample by a 150 nm thick Al layer deposited as a mask over the entire device

area, except for a pinhole aperture directly above the quantum dot, as shown in

the scanning electron graph of Fig. 4.2(b). Suppressing bulk carrier generation

was essential due to the prevalence of hole trapping at Si donor related traps in

the AlGaAs layers, resulting in modulation of 2DEG density and mobility [86, 87]

that can overwhelm the desired photoconductivity signal. An SiOx layer and a

thin adhesion layer of Ti deposited by electron beam evaporation insulated the

metal gate electrodes from the Al mask layer.

4.3 Electrical Characterization

Prior to exposure to photons, the sensitivity of the QPC current to charge on the

quantum dot was characterized. All experiments were performed with the device

mounted on the tail of a top-loading probe in a 3He cryostat (CryoIndustries of

America). The sample was immersed in 3He at a base temperature of 430mK -

the temperature being limited by poor cryostat design and manufacture. Gates
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were biased with tuneable voltage sources and the QPC conductance was mea-

sured with a low noise transimpedance amplifier (FEMTO LCA-400K-10M with

65fA/
√

Hz equivalent input noise current) feeding an analog-digital convertor.

Figure 4.3 plots the current through the QPC versus the voltage on the plunger

gate, G4. The plunger was swept at a rate of ∼4 mV/s to push electrons out

of the dot, one at a time, into the adjacent 2DEG reservoirs. The charge state

of the quantum dot, at the start of the scan in Fig. 4.3, is the same as that at

time t0 (or equivalently t6) in Fig. 4.4. Upon formation of the dot, a few excess

electrons remained trapped in the dot in long-lived metastable states, prior to

being pushed out by an increasingly negative plunger gate potential. The QPC

current varied in a sawtooth fashion with a small discrete positive step for each

electron ejected, as seen in Fig. 4.3. The last electron ejection occurred on curve

(c) at a plunger (G4) voltage of ∼-2.75V. In order to ensure that the absence of

further steps is not due to very slow tunnelling times, the barrier gate voltage G3

was raised to transparency after the last detected step to allow any remaining

electrons to escape. Only a smooth increase in the QPC current was observed due

to the capacitive coupling between the QPC and the tunnel barrier gate, with no

evidence of remaining electrons (in the form of discrete QPC current changes).

The lower inset to Fig. 4.3 shows the steps corresponding to the last two electrons

after subtracting out the background slope due to capacitive coupling from the

plunger gate to the QPC. The observed single electron step size of about 500 pA

per electron on a background of ∼ 50nA represents a QPC conductance change

of the order of 1%.

Upon sweeping the plunger gate G4 from -4.0V back to -1.5V, at a scan rate of

4mV/s, no electrons were observed to reenter the dot. This came about because

the last few electrons remained trapped at a potential energy lying well above
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Figure 4.3: Single electron escape from the dot detected by the QPC transistor.

The plunger gate, G4, was swept from -1.5V to -4V with a scan rate of -4mV/s

starting at curve marked (a) and ending at (e) with each curve spanning 0.5V.

Gates G2, G3, and G5 were fixed at -0.9V while G1 was adjusted prior to each

curve for optimum QPC sensitivity. The curves are compressed along the G4

voltage axis for compactness. The inset shows the current step sizes of the last

two electrons observed in curve (c) after subtraction of the background slope

(VSD,QPC=3.25mV, GQPC = 0.35e2/h at the last electron step).
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Figure 4.4: Hysteresis measured in the current through the QPC transistor, as-

sociated with the transition of the dot from the metastable filled state to the

equilibrium empty state. See text for details.

the Fermi level in the surrounding 2DEG, as shown schematically in the right

inset to Fig. 4.4. Quantum dots strongly isolated from adjacent reservoirs by

opaque tunneling barriers have been previously observed in metastable states for

durations exceeding tens of minutes [88].

Figure 4.4 illustrates the metastable/hysteretic behavior in the QPC current

associated with the trapping and ejection of electrons from the quantum dot.

Immediately following time t0 (equivalent to time t6), the quantum dot was pre-

pared in a metastable state with excess trapped electrons. This was achieved

by simply biasing the gates G1-G5 from 0V to the respective negative values

indicated in Fig. 4.4. No electrons were observed to escape in the interval be-
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tween times t0 and t1. At t1, the plunger gate G4 was set to -4.0V, overwhelming

the quantum dot barriers and forcing all electrons out of the quantum dot. The

plunger gate voltage was sufficiently negative to pinch off the QPC channel. At

the time t2, the plunger potential was retracted to -1.5V. The difference in QPC

current I1 (during the interval t1−t0) and the QPC current I2 (during the interval

t3− t2) corresponds to the effect of the change in quantum dot charge state from

filled to empty. Opening and closing the barriers in the interval t6 − t3 allows

the dot to become repopulated with electrons. However, it is with the quantum

dot in an empty charge state that photoelectrons can be most readily captured.

With an empty quantum dot, the binding (anti-binding) potential for an injected

photoelectron (photohole) is greatest. Optical excitation of the sample was thus

performed with the dot prepared as in the interval t3 − t2.

4.4 Photoelectron Trapping, Detection and Storage

Highly attenuated optical pulses at a vacuum wavelength λ=760nm from a con-

tinuous wave Ti:Sapph laser were externally modulated by a Pockels cell to create

photocarriers at selected time intervals in the sample. The light was delivered to

the sample via a single mode optical fiber coupled to bulk optics at the tail of

the 3He cryogenic probe. The pulses were focused to a spot size of about 100µm

diameter on the sample (at room temperature). The Al mask blocked most of

the incident photon flux - as evidenced by the near absence of 2DEG density

modulation - with the exception of the are area directly above the dot, where the

200 nm radius pinhole aperture was etched. Assuming a Gaussian profile for the

incident spot over the illumination area of radius 50µm, and given the 200nm

radius of the electrostatic dot, the photon flux impinging on the dot is a fraction

∼ 10−5 of the total incident flux.
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Figure 4.5: (a) Photoelectron trapping in the quantum dot detected by adjacent

point contact transistor. The dot was emptied of charge prior to exposure to

λ=760nm optical pulses, at a flux of 0.1 photons/pulse through the aperture

within a 150µs time window. The QPC current versus time traces are depicted

with a vertical offset for clarity. (b) An expanded view of QPC current for pulses

20, 21, and 22 without offset. The charge sensitivity is ∼ 10−3e/
√

Hz.
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The QPC current versus time is plotted in Fig. 4.5, illustrating the device

response to a series of consecutive optical pulses (with the dot emptied prior to the

first exposure). The data of Fig. 4.5 was obtained with a mean incident photon

flux of 0.1 photons/pulse through the aperture. Time t = 0 marks the time at

which the Pockels cell was opened for a duration of 150µs. Photon absorption

resulted in electron-hole pair creation, after which the quantum dot potential

well served to attract the photoelectron and repel the photohole. Capture of

a photoelectron was detected during pulse sequence 21 as a persistent negative

photoconductivity step in the QPC current during the optical exposure window.

The persistent photoconductivity change of several percent is consistent with the

electrical characterization of Fig. 4.3.

Upon emptying the dot with the plunger gate G4, persistent negative pho-

toconductivity was not observed if any one of the gates G3-G5 were not biased

negatively to form a quantum dot. We thus rule out the possibility of photoelec-

tron capture in traps other than that formed by negatively biased gate electrodes.

The fall time associated with the single electron signal is 20µs, from Fig. 4.5(b).

The signal-to-noise ratio in Fig. 4(b) corresponds to a QPC sensitivity to quan-

tum dot charge of about 10−3e/
√

Hz.

Increasing the photon flux through the aperture increases the frequency of

occurrence of negative photoconductivity steps. A series of QPC current ver-

sus time traces with an increased photon flux of 1.2 photons/pulse through the

aperture is illustrated in Figure 4.6. Based on the frequency of occurrence of pho-

todetection events, we estimate the photoelectron trapping quantum efficiency to

be approximately 10%, in fair agreement with the ratio of quantum dot volume

(∼ 0.03µm3) to effective absorption volume (∼ 0.5µm3 at 4.2K, λ = 760nm).

Interspersed among the negative photoconductivity steps, positive photocon-
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Figure 4.6: An optical pulse series with an average flux of 1.2 photons/pulse

within the dot area. Occasional positive steps, of which one is observed here,

could be attributed to photohole trapping at a Si donor related defect or the

photoionization of the gate defined quantum dot.
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ductivity steps were occasionally seen, as in the 34th pulse in Fig. 4.6. Such

positive steps occurred even in the absence of a negative voltage bias on gates

G3-G5. These persistent positive photoconductivity steps could be attributed to

the photohole trapping at Si donor related related defects in close proximity to

the QPC, as observed with a bare QPC exposed to light [80]. It is also possible

that the persistent positive photoconductivity steps were due to photoionization

of the gate electrode defined quantum dot.

4.5 Conclusion

In conclusion, we have demonstrated single photoelectron trapping, storage and

detection in a gate electrode defined quantum dot integrated adjacently with a

quantum point contact. The photoelectrons were generated by interband tran-

sitions, so that the experimental technique demonstrated could be extended to

other III-V materials whose bandgaps match photon energies in the low-loss win-

dows of conventional optical fiber (λ ≈ 1300nm or 1500nm). The successful

trapping and detection of photoelectrons reported here, in spite of the usually

dominant photohole trapping, is a significant step towards the development of

spin coherent photodetectors required for the long distance teleportation of “sta-

tionary” electron spin qubits via “flying” photon spin qubits.
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CHAPTER 5

Towards Spin Coherent Photodetection

We briefly summarize experimental efforts towards the demonstration of single-

shot transfer of spin states from weak photon pulses to photoelectrons trapped

and stored within gate defined quantum dots in GaAs/AlGaAs heterostructures.

An intermediate step between the trapping, storage and detection of photo-

electrons [39] and the single shot quantum coherent transfer of spin from photon

to electron [37] is the demonstration of single shot classical transfer of spin from

photon to electron. The term “classical” is used here to indicate that measure-

ment of spin is permitted during the photodetection process so that only classical

bits can be transferred rather than qubits. Specifically, the photohole is allowed

to become entangled with the photoelectron so that the photocarrier pair creation

process is,

α|σ+〉+ β|σ−〉 → α|+〉e|+〉h + β|−〉e|−〉h (5.1)

rather than the fully quantum coherent transfer,

α|σ+〉+ β|σ−〉 → (α|+〉+ β|−〉)e |arb〉h (5.2)

that is required for quantum communication.

This intermediate goal was chosen primarily for two reasons; firstly, InGaAsP

heterostructures required to implement the selection rules permitting quantum

communication [38] have yet to become readily available of sufficient quality

for gate electrode confinement of single electrons. Secondly, the GaAs/AlGaAs
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Figure 5.1: The optical selection rules for incident photons creating electron-hole

pairs at band edge (Γ point). Without resolving the Zeeman splitting of conduc-

tion band or valence band states, a 75% fidelity in spin transfer from photon to

electron and hole can be expected in the common quantization axis defined by

magnetic field, optical wavevector and Stark splitting field of the heterostructure.

79



heterostructures already used for photoelectron detection [39] and single shot spin

measurement [32]. Classical spin transfer with 75% fidelity, as illustrated in Fig.

5.1, is in fact possible in GaAs/AlGaAs heterostructures.

The experimental demonstration of single shot transfer of spin can be imple-

mented by the combination of single photoelectron detection and single shot spin

measurement. The experimental protocol is illustrated schematically in Fig. 5.2,

and is based largely upon the single shot spin measurement protocol of Elzerman

[32]. Briefly, a photoelectron is trapped by the quantum dot in a spin eigenstate

(determined by an applied magnetic field), and detected by the QPC. Following

adjustment of the quantum dot potential so that the Zeeman split levels straddle

the Fermi level of an adjacent reservoir, electron escape and recapture in the

quantum dot will be spin dependent. Monitoring the quantum dot charge state

with the QPC will reveal the change in quantum dot charge state. In effect,

Pauli exclusion can be used to convert the measurement of spin (magnetic dipole

moment) to a much easier measurement of charge (electric monopole moment),

as first demonstrated by Xiao et al. [89].

Minimal experimental requirements for the protocol described is as follows:

• the Zeeman energy splitting gµB must exceed the thermal broadening kBT

of the electron energies in the reservoirs; for GaAs/AlGaAs structures we

thus require T < 2.4K at a typical laboratory magnetic field of 8T

• the transition rate Γ0↔1 between the empty and singly occupied quantum

dot must exceed the spin relaxation rate 1/T1, where T1 is the longitudinal

spin relaxation rate; for GaAs/AlGaAs heterostructures T1 ∼0.8ms [32]

• the QPC must be able to measure quantum dot charge at a rate exceeding

the transition rate Γ0↔1 > 1/T1, implying a minimum charge sensitivity
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Figure 5.2: (a) the proposed protocol for verification of single shot spin transfer

from photon spin to electron spin, along with (b) the expected QPC current.

An initially empty dot traps an injected photoelectron in one of two Zeeman

split ground states, and the photoelectron charge is detected by the QPC. The

Zeeman split ground state energy levels are tuned via a gate electrode bias so as to

straddle the Fermi level of the adjacent reservoir. With a sufficiently transparent

tunneling barrier, a photoelectron in the higher energy spin state will tunnel

out of the quantum dot and will be replaced by a lower energy spin state. The

transient change in quantum dot charge state (dotted line) can be detected by

the QPC from which the spin can be inferred. The entire process must take place

within a T1 spin flip lifetime.
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δq < e/
√

Γ0↔1 < e
√

T1; for GaAs/AlGaAs heterostructures the charge

sensitivity must then be 0.03e/
√

Hz

In the following, we describe the experimental progress towards realizing these

criteria for single shot spin transfer.

5.1 Device Structure

The device employed for realizing single shot classical spin transfer is illustrated

in Fig. 5.3. The heterolayers are: a 10 nm i-GaAs cap layer, a 50 nm Si-doped i-

Al0.3Ga0.7As layer, a 20 nm Si doped (1×1018/cm3) n-Al0.3Ga0.7As layer, a 15 nm

i-Al0.3Ga0.7As spacer layer, atop an undoped GaAs buffer of 500 nm thickness.

Atop the GaAs/AlGaAs heterostructure are gate electrodes defined by electron

beam lithography and electron beam evaporation. When biased at negative volt-

ages, the gate electrodes define a quantum dot adjacent to a quantum point

contact (QPC) in a geometry previously used for the single shot measurement of

electron spins [32]. To suppress photohole trapping and the resultant modulation

of 2DEG density, an Al mask layer was deposited atop the entire structure with

an aperture etched out over the quantum dot region. In contrast with the device

previously employed for photoelectron trapping, detection and storage ??, the

insulating layer is 300 monolayers of atomic layer deposited (ALD) Al2O3. The

advantages of ALD alumina over electron beam evaporated SiOx are: increased

adhesion to the GaAs substrate and a highly reproducible 5% modulation of

2DEG density in contrast with the tendency of electron beam evaporated SiOx

to deplete the 2DEG entirely (resulting in poor reproducibility and low device

yield).

The gate electrode geometry of the device illustrated in Fig. 5.3 differs from
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Figure 5.3: (a) Scanning electron graph (SEG) of the surface metallic gates defin-

ing a quantum point contact between the source and drain Ohmic contacts. (b)

SEG of pinhole aperture etched in an opaque Al/Ti layer, 150 nm thick, acting as

a shadow mask to allow illumination of the quantum dot region only. (c) Cross–

sectional view of the device structure showing gates buried under Al/Ti/Al2O3

layers.
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that described in Chapter 4 in two ways: the quantum dot is smaller with a

diameter of ∼ 220nm as opposed to a ∼ 400nm diameter and the tunnel barri-

ers are shorter (∼ 80nm lithographic length). The purpose of these changes in

geometry are to allow greater tuneability of the quantum mechanical tunneling

of the last electron on the quantum dot and reservoir. Recall that the quantum

dot described in Chapter 4 could only be brought into single electron occupa-

tion when the tunneling barriers were opaque and the dot existed in a metastable

state. This was the result of a large lithographic area of the quantum dot and rel-

atively long tunneling barriers (since tunneling is suppressed exponentially with

distance, long barriers behave more “classically”).

5.2 Preliminary Results

The sample described above was mounted in an optical microscope on the cold

finger of a 3He cryostat insert (Janis Research Company, HE-3-SSXGAS) in a

dewar with a superconducting magnet (∼ 8T peak field) as illustrated in Fig. 5.4.

The base temperature of all experiments reported herein are 290mK-310mK. Gate

electrodes were biased with tuneable voltage sources while source-drain currents

were measured with a low noise transimpedance amplifier (FEMTO LCA-400K-

10M). A polarization maintaining fiber brought light in from a laser diode source

that could be directly modulated.

The dependence of the number of electrons in the quantum dot potential

well on the applied gate voltages was mapped out using the QPC. By measuring

the differential transconductance dIQPC/dV G3 of the QPC with respect to the

plunger gate voltage VG3, a stability diagram can be generated indicating the

voltage biases at which the quantum dot holds a well defined number of electrons

[82, 84]. Measurements of the differential transconductance dIQPC/dV G3 as a
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Figure 5.4: The AlGaAs/GaAs device was thermally anchored to a chip carrier

that was mounted in an optical microscope on the tail of a 3He cryostat. A polar-

ization maintaining optical fiber was used for delivering light into the microscope

from a room temperature source.
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function of the bias voltages on G1 and G3 are illustrated in grey scale in Fig.

5.5 under (a) zero magnetic field and (b) high magnetic field B = 7.55T normal

to sample surface, corresponding to a ν = 3/2 quantum Hall filling factor in the

bulk 2DEG.

Regions of nearly constant conductance correspond to a well defined number

of electrons on the quantum dot. These are regions of Coulomb blockade, where

it is energetically unfavourable for the quantum dot to give up or take up an

electron along with its discrete electrostatic addition energy e2/2C. The regions of

Coulomb blockade are separated by sharp dips in the conductance, corresponding

to bias voltages at which the quantum dot can give up or take up an electron

with very small changes in bias. In effect, an electron can enter or exit the dot

to screen small gate potential changes. This screening can be detected as a dip

in QPC transconductance. One can thus count the number of electrons in the

quantum dot.

The stability diagram for a single quantum dot is expected to consist of regions

bounded by straight lines, corresponding to a fixed capacitance between quantum

dot and gate electrode. The curving nature of the observed lines indicates a

capacitance change as a function of gate bias, or in other words, a redistribution

of charge as a function of gate voltage. Both the presence of local defects in the

semiconductor [90] and tight magnetic confinement at high fields [91, 92] can lead

to charge redistribution amongst multiple local minima in the effective potential.

Both effects are seen to be present in Fig. 5.5, but the empty and singly occupied

quantum dot states are still clearly visible.

The stability diagram also gives information on the electron tunneling rate.

The transconductance dIQPC/dV G3 in Fig. 5.5 was measured with VG3 modu-

lated at a frequency of 3.381kHz. If the electron tunneling rate between quantum
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Figure 5.5: The differential conductance dIQPC/dV G3 is plotted in (a) zero mag-

netic field and (b) B = 7.55T magnetic field corresponding to quantum Hall

filling factor ν = 3/2. White indicates high conductance and black indicates low

conductance. A QPC bias of IQPC = 10nA and VSD = 750µV was used. The

AC excitation on VG3 was 1.6mV rms at a frequency of 3.381kHz and observed

with lock-in amplifier with a 30ms integration time. The broad bands in (a) are

resonances in the QPC due to the local dopant/defect potential. Electron num-

ber on the quantum dot is indicated in red. The circled region in (b) is the gate

voltage bias condition in which random telegraphing was observed as the charge

on the quantum dot fluctuated by one electron.
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Figure 5.6: Discrete changes in quantum dot charge state are detected by the

QPC at bias points indicated by the circled region in Fig. 5.5(b). Varying the

potential on VG3 varies the mean occupation of the quantum dot from 0 electrons

to 1 electrons. The charge sensitivity here is 0.006e/
√

Hz.

dot and reservoir is below the modulation frequency, screening of the modulated

gate potential is suppressed and the transconductance dip will disappear as in-

dicated by the dotted circle in Fig. 5.5(b). With the gate electrodes biased in

this region of moderate tunneling rate, the fluctuation in electron number on the

quantum dot can be measured directly by the QPC. The quantum dot charge

fluctuation manifests itself as a random telegraph signal in the QPC current as

shown in Fig. 5.6. The sensitivity of the QPC current to quantum dot charge

is 0.006e/
√

Hz, corresponding to a single electron being resolved in 36µs, well

below the T1 = 800µs spin-flip lifetime of GaAs.
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In addition to the high speed measurement of quantum dot charge and the

control of tunneling rate through the quantum dot, single shot spin measurement

also requires the precise control of the quantum dot energy levels with respect

to the Fermi level of the adjacent reservoirs. The tuning of quantum dot en-

ergy levels with respect to the reservoir Fermi level can be directly probed by

measuring current flow through the quantum dot. The typical differential con-

ductance dIQPC/dVSDQPC measured under zero applied magnetic field is plotted

in Fig. 5.7. Bias regions of current flow suppressed by Coulomb blockade ideally

take the form of diamonds, in which the number of electrons within the quantum

dot is well defined. The Coulomb diamonds are bounded by differential conduc-

tance peaks corresponding to electron tunneling through the quantum dot ground

state. Differential conductance peaks at source drain biases beyond the ground

state tunneling peaks correspond to electron tunneling through excited states.

From the typical Coulomb diamonds of Fig. 5.7(b), the width of the tunneling

peaks through the quantum dot is a rather large 300µeV, corresponding to an

effective electron temperature of 3.4K. This magnitude of broadening presently

prohibits resolution of Zeeman splitting ∆E = gµB = 200µeV in the quantum

dot ground state at readily available magnetic fields of B = 8T. The fluctuation

in reservoir electron energy is almost certainly the result of “technical” noise:

capacitive transduction of acoustic noise from cryostat capillary flow lines and

inadequate electrical filtering of high frequency noise (10GHz - 1THz). Improved

filtering and shielding developed for exquisite low temperature measurements [93]

are expected to overcome these “technical” limitations.
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Figure 5.7: (a) The current IQDOT through the quantum dot was measured under

varying bias conditions. A typical grey scale plot (b) of the measured differen-

tial conductance dIQPC/dVQDOT , where VQDOT = (EFS−EFD)/e is the potential

bias across the dot, reveals diamond shaped regions where Coulomb blockade sup-

presses current through the quantum dot. The electron occupancy of the quantum

dot is labeled in Coulomb blockade regions; a charging energy of ∼ 3.5meV is

determined from the half width of the single electron Coulomb diamond. The

differential conductance is a sensitive probe of (c) the relative alignment between

quantum dot energy levels and the adjacent reservoirs.
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5.3 Conclusions

Significant progress has been made towards realizing single shot spin transfer,

particularly in the control over charge in quantum dots, but experimental demon-

stration of photon to electron spin transfer awaits the resolution of two “technical”

problems. Firstly, the reduction in effective electron reservoir temperature (noise)

is essential. Previously reported single shot spin measurement in AlGaAs/GaAs

heterostructures was performed with electron temperatures of the order of 0.29K

[32], well below the measured effective temperature of ∼ 3.4K reported herein.

Secondly, the tunneling rate Γ0↔1 of an electron on and off the quantum dot

has been found to be difficult to control to the precision that would allow single

shot spin measurement. The limited ability to control the tunneling rate is likely

due to excess effective electron temperature with the electron reservoirs. The

tunneling rate Γ0↔1 is a function of quantum dot energy level alignment with the

Fermi level, and as such is averaged over an energy range equal to the effective

electron temperature in the reservoirs. Reducing the “technical” noise that is

likely producing the elevated effective electron temperature will improve control

over tunneling rate.
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CHAPTER 6

Conclusions

6.1 Summary

The contributions reported in this dissertation are:

• the means by which a quantum algorithm can be applied to finding eigen-

values of partial differential equations was described; it was found that

domains must be of more than 4 dimensions to give any computational ad-

vantage over existing classical schemes for electromagnetics eigenproblems

• the penalty in the error correction threshold for fault tolerant quantum com-

putation on a one-dimensional array of qubits was numerically estimated;

it was found that error correction circuits contain sufficient complexity that

additional communication operations only have a moderate impact on error

thresholds even in one dimension

• the trapping, storage, and detection of individual photoelectrons was ex-

perimentally demonstrated, which is an important step towards realizing

spin coherent photodetection for quantum communication applications

In addition, recent progress towards the demonstration of single shot classical

spin transfer from photons to photoelectrons has been detailed. This is the next

logical step towards realizing spin coherent photodetection.
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6.2 Future Work

Open questions for future research raised by the work reported in this dissertation

are briefly discussed.

Perhaps the most immediate theoretical problem is in the advancement of

quantum computational architectures, where there are primarily two concerns.

The first and foremost is the error threshold. The experimental difficulty in con-

trolling analog quantities such as spin orientation (equivalently qubit location on

the Bloch sphere) to fractions of a degree necessitates a search for a fault tolerant

scheme with the highest tolerance for errors in spin manipulation. Of course, this

can not come at an unreasonable cost in the number of qubits (and the resulting

tolerance requirements on communication that will ensue). The second concern

is that of quantum circuit latency or depth. Although concatenation is known

to be effective at suppressing error, the self-similar structure of concatenation

leads to exponential growth of latency with concatenation level. Thus, circuit

optimization for minimum error rate and minimum depth is a concern for all

proposed implementations of quantum computational hardware.

Experimental implementation of quantum hardware in semiconductors re-

quires a number of problems to be resolved as well. Most importantly is the

development of valence IV materials such as the SiGe alloy system to produce re-

liable gate electrode confinement of electrons. The primary reason is the reduced

nuclear spin density, and thus a reduced magnitude of the fluctuating effective

field from nuclear spins (Overhauser shift) and enhanced lifetime of T2 = 60ms

[69] in isotopically purified valence IV material compared to a T2 ∼ 10ns lifetime

in GaAs [94](in which there are no spin-free isotopes and a large Overhauser

shift ensues). There has already been recent progress in the development of

SiGe quantum dot technology [95]. Secondly, the stability of modulation doped

93



heterostructures poses a concern. It is well known that the AlGaAs/GaAs het-

erostructures used for most work to date are often times eratic in background

charge noise [96, 97]. While there has been some experimental effort towards

reducing background charge fluctuation [98], the development of material sys-

tems based strictly on surface charge rather than partially ionized dopant layers

is conjectured here as a possible means to reduce background charge noise. This

would improve charge sensitivity (limited by charge noise rather than intrinsic

bandwidth) and would also reduce error in coherent charge manipulation.
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