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Abstract 

 

 

Reinventing the PN junction: Dimensionality Effects on Tunneling Switches 

by 

Sapan Agarwal 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Eli Yablonovitch, Chair 

 

 Tunneling based field effect transistors (TFETs) have the potential for very sharp On/Off 
transitions.  This can drastically reduce the power consumption of modern electronics.  They can 
operate by either electrostatically controlling the thickness of the tunneling barrier or by 
exploiting a sharp step in the density of states for switching.  We show that current TFETs rely 
on controlling the thickness of the tunneling barrier but they do not achieve the desired 
performance.  In order to get better performance we need to also exploit a sharp step in the 
density of states. 

 In order to have a sharp density of states turn on, a variety of non-idealities need to be 
accounted for.  A number of effects such as thermal vibrations, heavy doping, and trap assisted 
tunneling are analyzed and engineered. 

 After accounting for the various non-idealities, the ideal density of states will determine 
the on state characteristics.  The nature of the quantum density of states is strongly dependent on 
dimensionality. Hence we need to specify both the n-side and the p-side dimensionality of pn 
junctions. For instance, we find that a typical bulk 3d-3d tunneling pn junction has only a 
quadratic turn-on function, while a pn junction consisting of two overlapping quantum wells (2d-
2d) would have the preferred step function response. Quantum confinement on each side of a pn 
junction has the added benefit of significantly increasing the on-state tunnel conductance at the 
turn-on threshold.  We analytically demonstrate these effects and then give a numerical non-
equilibrium greens function (NEGF) model to verify the key results.  Finally we introduce some 
new device designs that will take advantage of the benefits of 2d-2d tunneling. 
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Chapter 1: Introduction 

1.1 THE NEED FOR LOW POWER ELECTRONICS 

 Power consumption is increasingly critical for modern electronics.  Reducing the power 
consumption of electronics can make a significant impact on the worldwide energy demands.  In 
2010 data centers alone consumed about 2% of all the electricity in the United states as seen in 
Figure 1.1 [1].   Reducing the power consumption is also critical for portable electronics such as 

Figure 1.1: US electricity use for data centers (from Koomey 2011) 
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smartphones whose battery can barely last for a single day.  In the past, transistor voltage 
reduced with shrinking size, but in recent years the voltage scaling has stopped as seen in Table 
1.1. At the end of the transistor roadmap [2], the high performance operating voltage is projected 
to be 0.57 V. Consequently, there has been a growing focus on increasing the number of cores on 
a chip, even if it means decreasing the clock frequency. This is because the power dissipation 
increases significantly for a small increase in clock frequency.   

 

Technology 
Node  

0.25 
μm 

0.18 
μm 

0.13 
μm 

90 
nm 

65 
nm 

45 
nm 

32   
nm 

22 
nm 

15 
nm 

10.9 
nm 

Vdd 
 

2.5 V 1.8 V 1.3 V 1.2 V 1.1 V 1.0 V 0.97 V 0.9 V 0.8 V 0.71 V 

Table 1.1: Vdd scaling has slowed after 0.13μm node (From the High Performance 
ITRS roadmap). 

 

1.2 THE LIMIT OF CURRENT TRANSISTORS 

The reason the voltage has stopped scaling is because conventional transistors rely on the 
thermal excitation of carriers over an energy barrier as shown in Figure 1.2.  The probability 
distribution of electrons follows a Boltzmann factor and at best the current will change by a 
factor of e for a change in gate voltage of KbT.  This corresponds to a subthreshold slope limit of 
60 mV/decade at room temperature.  At least 60 mV of bias on the gate is required for each 
decade of current.  While maintaining a good on/off ratio of around 6 orders of magnitude, it is 
impossible to significantly reduce the supply voltage. 

E
x

E

Electron 
Probability

0 1

e-
TkE be /−∝

Figure 1.2: Conventional transistors rely on the thermal excitation of carriers over
a barrier.  If the barrier is shifted by KbT, the current only changes by a factor of e.
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1.3 USING TUNNELING FETS FOR LOW POWER 

 In order to overcome these fundamental limits a new more sensitive switching 
mechanism is needed.  Since we cannot have current going over a barrier, we can have it go 
through the barrier.  The family of Tunneling Field Effect Transistors (TFETs) includes a 
number of different devices that may be promising for low voltage operation.  

 When trying to achieve a very sharp TFET turn on there are at least two mechanisms that 
can be exploited.  The gate voltage can be used to modulate the tunneling barrier thickness and 
thus the tunneling probability [3-6].  This is illustrated in Figure 1.3.  The thickness of the 
tunneling barrier can be controlled by applying a bias to the gate to change the electric field in 
the tunneling junction.  The difficulty in using this method is that at high conductivities there is 
already a large electric field across the tunneling junction and so the gate bias cannot control the 
depletion width resulting in a poor subthreshold slope at high conductivities.  

 Alternatively, it is also possible use the band overlap or density of states turn-on.  The 

Figure 1.3: The thickness of the tunneling barrier can be controlled to switch a
tunneling junction on or off.  Applying a bias on the gate changes the electric field
in the tunneling barrier and thus the barrier thickness. 

EC

EV

VOL

GaSb InAsAlSb

I

EC

EV

GaSb InAsAlSb

I

(a) (a)

Figure 1.4: (a) No current can flow when the bands do not overlap. (b) Once the
bands overlap, current can flow.  The band edges need to be very sharp, but
density of states arising from dimensionality also plays a role. 



 

 

4 

 

band overlap turn-on is illustrated in Figure 1.4.  If the conduction and valence band do not 
overlap, no current can flow.  Once they do overlap, there is a path for current to flow.  This 
band overlap turn-on has the potential for a very sharp On/Off transition that is much sharper 
than that which can be achieved by modulating the tunneling barrier height or thickness[7]. If the 
band edges are ideal, one might expect an infinitely sharp turn on when the band edges overlap.  
However, the steepness of the turn on will depend on the density of states of the band edge 
which will depend on both the ideal density of states as well as various non-idealities such as 
phonons and dopant or defect induced disorder. 

 Simulations tend to predict phenomenal TFET performance while experimental results 
tend to fall short.  This can be seen in a review article by Alan Seabaugh [8].  The reason for this 
is that all the simulations attempt to use the density of states turn on, but do not properly account 
for the band edge density of states.  Nevertheless, there are many experimental results that show 
sub 60 mV/decade subthreshold slopes at low currents [3-6, 9-11]. However, these devices 
typically rely on barrier thickness modulation and consequently cannot get a steep subthreshold 
slope at higher currents.  By understanding the physics and limitations of each mechanism we 
can engineer a new transistor that will overcome these challenges and potentially replace the 
transistor. 

1.4 USING STEEP TUNNEL JUNCTIONS AS A BACKWARD DIODE 

 Even before creating a full transistor, creating a diode with a sharp turn on near zero bias 
will be very useful for radio mixing and detection [12, 13].  Backward diodes are tunneling 
diodes where the tunneling occurs near zero bias as shown in Figure 1.5.  The reverse tunneling 
current results in a highly nonlinear I-V characteristic at small bias.  These are used to make high 
performance detectors and there have already been many interesting devices that perform better 
than the thermally limited schottky diodes [14-20].  Any improvements to the tunneling junction 
that results in a sharper turn-on can be immediately used for creating new backward diodes. 

Bias Voltage

C
u

rr
en

t

Sharp 
Step

Figure 1.5: Band to band tunneling occurs near zero bias in a backward diode
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1.5 RESEARCH OUTLINE 

 In this dissertation, we will first analyze the limit of tunneling barrier width modulation 
and show that while it might be interesting for low current applications; it cannot meet all of the 
desired performance goals.  Next, we will analyze the effects of thermal vibrations on the 
subthreshold slope and propose a few structures to minimize those effects.  Then we analyze 
optical and electrical methods to infer the band edge density of states and show that heavy 
doping can create an extremely gradual tail of states extending into the band gap.  We also model 
various other limitations such as trap assisted tunneling that can limit a TFET’s performance. 

 After considering and engineering all of the non-idealities in a TFET we will consider the 
effect of the ideal density of states on the on-state characteristics.  The nature of the quantum 
density of states is strongly dependent on dimensionality. Hence we need to specify both the n-
side and the p-side dimensionality of pn junctions. We will find that a typical bulk 3d-3d 
tunneling pn junction has only a quadratic turn-on function, while a pn junction consisting of two 
overlapping quantum wells (2d-2d) would have the preferred step function response. Quantum 
confinement on each side of a pn junction has the added benefit of significantly increasing the 
on-state tunnel conductance at the turn-on threshold.  After analytically demonstrating these 
effects, we will use a numerical non-equilibrium greens function (NEGF) model to verify the key 
results.  Finally we will introduce some new device designs that will take advantage of the 
benefits of 2d-2d tunneling. 
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Chapter 2: Tunnel Barrier Width Modulation 

2.1 INTRODUCTION 

 Controlling the thickness of the tunneling barrier as shown in Figure 1.4 results in steep 
subthreshold slopes at low current densities and is likely the mechanism behind the best 
experimental results.  This can be seen in the germanium source device in [3].  The experimental 
ID-VG curve closely follows a tunneling barrier width modulation model that is based on gate 
induced drain leakage.  The relevant curves and device structure are reproduced in Figure 2.1.  
We will examine that model in more detail in the next section.  Another steep subthreshold 
device where the experimental results were matched to a barrier width modulation model is 
given in [5].  In this paper the simulator Medici was used to model the tunneling current.  The 
tunneling model in Medici does not account for band edges and only considers the thickness of 
the tunneling barrier.  On the contrary, the newer tunneling model in Sentaurus could not fit the 
experimental characteristics.  This is because the model in Sentaurus assumes an abrupt band 
edge and prematurely cuts off the tunneling current, giving an artificially steep turn-off.   

 In fact, almost all of the interesting experimental results with a subthreshold slope below 
60 mV/decade show tunneling barrier width modulation characteristics.  This is indicated by the 
shape of the ID-VG curve that is steep at very low current densities and rapidly rolls off at the 
higher current densities. 

 Unfortunately, all of the steep experimental results occur at very low current densities.  
This is a fundamental limitation of relying on the modulation of the tunneling barrier thickness.  
As the barrier gets thinner the electric field across it gets larger and it becomes harder to make 
further changes to the thickness. 

  

Figure 2.1: (a) schematic of a germanium source TFET (b) The ID-VG

characteristic closely follows a tunneling barrier width modulation model.
(from Kim 2009) 
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2.2 A SIMPLE BARRIER WIDTH MODULATION MODEL  

 In order to examine the effectiveness of modulating the tunneling barrier width we 
consider the simple model used in [3] that was originally derived to model gate induced drain 
leakage [21].  The basic concept is that applying a voltage to the gate will change the electric 
field in the tunneling junction and consequently change its width.  

 To model the tunneling current we can look at the Kane expression for tunneling[22].  A 
version of this equation is derived later in Chapter 6: 

[ ][ ]

2/12/1*

21

2/32/1*

3

*

)(

2
 where

)/2exp(1)()(
22

)(
exp

218

G

S
G

Em

Eq
E

dEEEEfEf
Eq

EmEAem
I

π

π







=

−−−×






 −××=

⊥

⊥
⊥ 

  (2.2.1) 

We see that the dominant effect of the gate bias is to change the tunneling probability which is 
given by the exponential.  We assume the rest of the equation varies slowly and can be taken as a 
constant.  To have a reasonable on current of 100 μA/μm at 1V we will find that we need a 
tunneling probability of roughly 1%.  Given that, we can focus on the exponential and see what 
the subthreshold slope at a tunneling probability of 1% is.  For the moment we will ignore the 
fact that germanium has an indirect gap.  Requiring a phonon to participate can reduce the 
current by up to three orders of magnitude [22].  Fortunately it may be possible to use dopants or 
other impurities to relax the requirement for phonons [23] 

Figure 2.2:  The ID-VG characteristics of the silicided source TFET shown above fit
well with a Medici model that is based on tunneling barrier width modulation. (From
Jeon 2011) 
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 To estimate the required tunneling probability, we consider the material parameters of 
germanium.  For the prefactor we use a reduced density of states mass of (1/0.34 + 1/0.22)-1 = 
0.13 and a band gap of 0.67eV.  We also note that the energy integral is roughly given by the 
applied bias of 1V and is 1eV.  We also assume a tunnel junction size of 1 μm by 10 nm and that 
the electric field is roughly 0.2 V/ nm.  Plugging these into Eqn. (2.2.1) solving for a current of 
100 μA gives a required tunneling probability of 1%. 

 Now that we know the tunneling probability should be around 1% we can focus on the 
equation for the tunneling probability: 








 −
=

Eq

Em
T G

22

)(
exp

2/32/1*π

                                                     (2.2.2) 

The subthreshold slope will be given by the change in the tunneling probability with gate bias: 

GdV

Td
SS

)log(
1=

                                  (2.2.3) 

To relate T to VG we need to calculate how the electric field across the junction changes with VG.  
This depends on the exact geometry and TFET design being analyzed.  As an example we 
consider the vertical tunneling junction in Figure 2.1(a).  Near the tunneling turn on the channel 
will be inverted and so the electric field across the oxide will simply be given by: 

OXTGOX TVVE /)( −=


                                                         (2.2.4) 

The maximum electric field in the semiconductor will occur at the oxide semiconductor interface 

and is given by the boundary condition SSOXOX EE


εε = .  This means that the maximum electric 

field in the semiconductor is given by: 

 
OX

TG

S

OX
S T

VV
E

−×=
ε
ε

                                  (2.2.5) 

Using this in Eqn. (2.2.2) gives the curve in Figure 2.1(b).  Evaluating the subthreshold slope 
Eqn. (2.2.3) at a given tunneling probability using Eqn (2.2.2) and Eqn (2.2.5) gives 

OX

SOXG T

q

Em

T

e
SS

ε
επ ××=

22

)(

)log(

)log( 2/32/1*

2
                                              (2.2.6) 

Now we can evaluate this for germanium to see what the subthreshold slope at a tunneling 
probability of 1% (which corresponds to the desired conductivity of 100 μS/μm at 1V).  For the 
tunneling effective mass we use the geometric mean of the transverse electron mass and the light 
hole mass as those are the most favorable masses for tunneling and get *m =0.06 [24].  We also 
assume an effective oxide thickness of 1 nm.  Using these values we get a subthreshold slope of 
240 mV/decade at 100 μS/μm.  The conductivity at a subthreshold slope of 60 mV/decade is 1 
μS/μm.  This illustrates the fundamental limitation of barrier width modulation.  The steeper 
subthreshold slopes only occur at the lower current densities.  Nevertheless, observing this in 
practice would be extremely interesting, but unfortunately the indirect gap reduces the observed 
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current by 2-3 orders of magnitude and the approximations used tend to overestimate the 
conductivity at a given subthreshold slope. 

 If we had a direct gap semiconductor, we could ask what material parameters are needed 
to achieve a slope of 60 mV/decade at a tunneling probability of 1%.  Looking at Eqn. (2.2.6) we 
can see that reducing the effective mass, band gap and permittivity will all reduce the 
subthreshold slope at a given conductivity.  If we only vary the band gap we would need a band 
gap of 0.26 eV.  However, up to this point we have ignored the fact that there is also a mismatch 
between the conduction and valence band wavefunctions.  If we account for this the current 
would reduce by roughly another order of magnitude meaning that we would need tunneling 
probability of roughly 10% for a current of 100 μS/μm.  At T=10% the barrier height would have 
to be 105 mV and the barrier would be about 50 nm thick in the off state! 

 While this is even smaller than the band gap of InAs (0.354 eV) it is possible to achieve 
an effective tunneling barrier much smaller than this by using a heterojunction.  Taking this to its 
ultimate limit, we could design a barrier modulation heterojunction TFET with a barrier height of 
only a few mV as is done in the next section.  Unfortunately, we will see that the maximum on-
off ratio will be limited by the fact that the band edges are not perfectly sharp, but rather have a 
density of states tail that extends into the band gap and so the electrons will never see the 
extremely thick barriers that are required in the off state. 

2.3 THE ULTIMATE LIMITS OF BARRIER WIDTH MODULATION 

 By taking barrier width modulation to its ultimate limit, we could design a barrier 
modulation heterojunction TFET with a barrier height of only a few mV.  If we assumed 
perfectly sharp band edges we find that the device can be optimized to provide a very steep 
swing, on the order of a few millivolts per decade, at a high current density over about a decade 
of current or it can be optimized to provide a slightly worse swing over several decades of 
current at a lower current density.  Unfortunately, as we will see in the following section, 
accounting for the band tails will prevent the following proposal from operating as intended. 

quantum well 1 n+

gate

drain
contact

source
contact

material 2
z

x

pp+ n+

i

material 3

(a)

insulator
gate

drain
contact

source
contact

pp+ n+

i

(b)

insulator

modulation 
occurs here

Figure 2.3: (a) Possible implementation of new gate control mechanism (b)
structure with the current path labeled 
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 The proposed device is shown in Figure 2.3a, with the current path shown in Figure 2.3b.  
The vertical band diagram under the gate (along the z-axis) shown in Figure 2.4.  Figure 2.4a 
shows the band diagram of the device right before it turns on.  This is a vertical tunneling device 
with a quantum well on top of a strained layer.  A blow up of the region where the tunneling 
occurs is shown in Figure 2.5.  The tunneling barrier, Δ, is set by the heterostructure band 
alignment between materials 1 and 2.  By choosing the correct materials, the barrier can be made 
very small to allow a large amount of current to pass or it can be made larger to have a steeper 
response over more decades of current, but at a lower current density.  One possible combination 
of materials is InAs for material 1 and GaSb or GaAlSb for material 2.  Introducing Al into the 
GaSb allows the barrier height to be fine-tuned.  While InAs/GaSb form a type 3 heterostructure, 
the InAs (Material 1) will be a quantum well and so the confinement energy will effectively 
create the type 2 heterostructure shown in Figure 2.4 and Figure 2.5.  The quantum well size can 
also be used to fine tune the barrier height through the confinement energy.  Any material system 
that creates a type 2 or type 3 heterostructure can be used, and since material 1 will be a thin 
quantum well the materials do not have to be lattice matched.  Material 1 can even be a 
conducting layer of interface states.  In Figure 2.3, materials 2 and 3 can be the same.  However, 
material 3 can be chosen to strain material 2 such that the heavy hole band is raised above the 
light hole band.  This improves the subthreshold slope, as will be shown later.  One possible 
option for material 3 is AlSb or GaAlSb if material 2 is GaSb.  
 As shown in Figure 2.4, when an increasing gate bias is applied, more electrons are added 
to the 2d channel and so the splitting between the Fermi level and the conduction band increases. 
Ideally, most of the change in gate voltage should be transmitted to material 2.  In order to 
minimize the potential change across the quantum well and maintain the same the relative carrier 
distribution in the channel, the quantum well needs to be very narrow and on the order of a 
nanometer.  Furthermore simply using a quantum well in the channel reduces the capacitance 

Figure 2.4: Band diagram of the proposed device in the (a) ON and (b) OFF states
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and thus improves the gate coupling.  Since the channel quantum well is very thin the doping in 
the channel will not have significant effect and the channel potential will be set by the gate.  
Consequently the channel doping can be arbitrarily set.  At most the channel doping will shift the 
threshold voltage. 

 As seen in Figure 2.5, the position of the Fermi level is fixed with respect to the bulk 
valence band in material 2.  With an increasing gate voltage the potential drop across material 2 
increases and since the band offsets are rigidly fixed, the valence band must curve downwards 
and so the tunneling barrier height with respect to the Fermi level must increase.  However since 
the offset between the conduction band in material 1 and the valence band in material 2 is fixed 
at Δ, the tunneling barrier height for states at the bottom of the conduction band is fixed.  
Nevertheless, the barrier width will decrease as the electric field near the junction increases with 
increasing gate voltage.  This is shown in Figure 2.5 where w’ is less than w.  This means that 
the current will increase as the gate voltage increases.  While it is true that due to Fermi-Dirac 
statistics, the available states to tunnel to decreases as the conduction band gets farther away 
from the Fermi level, it takes a 25 mV change (kBT) in the energy level to reduce the available 
states by a factor of e.  However, a few mV change in the conduction band can significantly 
decrease the tunneling barrier and thus significantly increase the tunneling probability. 

 The heavily doped p+ and n+ regions in Figure 2.3 are used to make the source and drain 
contacts.  The source contact simply needs to contact the p-region in material 2 and any method 
can be used to make that contact.  Likewise the drain contact simply needs to contact material 1.  
However, the n+ doping of the drain contact should not come in contact with the p doped region 
or else it is possible for a leakage path to form.  Similarly the n+ doping should extend to the 
gate to reduce the series resistance. 

2.3.1 Quantitative Analysis 

2.3.1.1 Gate Coupling Efficiency 
 First we consider the coupling between the gate and the depletion region.  Ideally, most 
of the voltage should be transmitted through to the depletion region and so a small quantum well 
thickness and small equivalent oxide thickness (EOT) are desired.  In order to estimate the 

Figure 2.5:  Tunneling portion of the band diagram 
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voltage on material 2 we will make approximations that give a conservative worst case estimate 
of the gate coupling.  The oxide, quantum well channel and depletion region in material 2 can be 
modeled as three capacitors which are labeled by COX, CQW, and CDEP, respectively.  The channel 
needs to be a quantum well in order to minimize the capacitance.  The quantum well channel is 
in parallel with the depletion region and both of them are in series with the gate oxide as shown 
in Figure 2.4a.  Thus the change in the surface potential of the semiconductor at the oxide 
interface, Vs, is given by: 

g
DEPQWOX

OX
s V

CCC

C
V

++
=

        
(2.3.1) 

Where 

OXOXOX tC ε=                                   (2.3.2) 

2
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(2.3.3) 
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2
2ε=

              
(2.3.4) 

 Vg is the voltage applied on the gate relative to the threshold voltage.  In order to estimate 
this, we consider material 1 to be InAs and material 2 to be GaSb and consider an EOT of 1 nm 
with εOX=3.9ε0.  The electron effective mass for InAs, m*, is taken to be 0.023, the relative 
permittivity for GaSb, ε2, is 15ε0 and a doping level, Na, of 1016/cm3 is chosen.  The voltage 
across the depletion region, VDEP, is chosen to be 10 mV.  This gives the following capacitances: 
COX=3.45*10-6 F/cm2, CQW=1.54*10-6 F/cm2, CDEP=3.26*10-7 F/cm2.  Thus Vs= 0.65 Vg.   

 The quantum well and the depletion region are not exactly in parallel as some voltage is 
lost across the quantum well before the gate potential reaches the depletion region in material 2.  
A worst case estimate of this voltage is the peak field in the quantum well times the well width.  
The peak field is the field set by the oxide.  The voltage dropped across the quantum well will 
be: 
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

                
(2.3.5) 

VOX is the voltage across the oxide. If a quantum well thickness, tQW, of 1nm is assumed and 
εQW= εInAs=15ε0, the voltage lost across the quantum well is less than 9% of the gate voltage.  
Thus the voltage change in the depletion region is V=(0.65-0.09)*Vg=0.56*Vg.  Over half of the 
gate voltage is transmitted to the depletion region. 

2.3.1.2 Tunneling Probability and Subthreshold Slope 
 There are two mechanisms that can turn the device on and off.  First the conduction and 
valence band need to overlap in order for there to be states available for tunneling.  At first it 
seems like there will be a sudden transition as the gate bias is increased where current is allowed 
to flow and so this process can result in a very steep subthreshold slope as.  However, the band 
edges are not necessarily very sharp and there will be band tails that will limit the subthreshold 
slope.  Nevertheless, this process will still be better than the current thermally limited 
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subthreshold slope of 60mV/decade.  As such, this device can be optimized for this process by 
making the tunneling barrier width as thin as possible by doping material 2 heavily. 

 The tunneling current can also be modulated by adjusting the depletion region width 
through the gate bias.  In the following analysis we consider this effect in order to obtain a 
subthreshold slope that is even steeper than that which can be obtained from the band overlap 
effect alone.  Consequently we ignore the band overlap effect and consider only the tunneling 
probability. 

 The tunneling probability can be estimated from the WKB approximation.  The tunneling 
barrier is shown in Figure 2.5.  Electrons tunnel across a parabolic barrier from the valence band 
to the conduction band.  The states with the greatest tunneling probability (T) are those at the 
band edge and so we will consider those states.  Let V’ be the barrier height at a given position z.  
Then we have: 

 ⋅−
∝

'

0
2

w
dzk

eT                                                   (2.3.6) 

Where 2* )'(2 VVmk −= and aqNVz '2ε= .  Thus 


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Where  
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=
                     

(2.3.9) 

The voltage V is the voltage that is transmitted to the depletion region and is about half the 
applied gate voltage.  ∆ is the built in barrier set by the heterostructure band alignment.  m* and ε 
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Figure 2.6: Tunneling probability for a 5 mV barrier 
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are the effective mass and permittivity, respectively, in material 2.  Vs is a parameter that sets the 
steepness of the subthreshold slope.  The smaller Vs is the steeper the subthreshold slope will be.  
This implies that a light doping and heavy effective mass are desired.  To estimate the optimal 
device performance we consider low doping level of 1016/cm3 and the heavy hole effective mass 
of GaSb of 0.4m0. This gives a Vs of 0.76mV.  Given this value of Vs, the tunneling probability 
as a function of V is plotted in Figure 2.6 for a barrier height, Δ, of 5 mV and for a barrier height 
of 20 mV in Figure 2.7.  As seen in Figure 2.6, a 2 mV change changes the tunneling probability 
by a decade and the on state tunneling probability is roughly 1%.  After including the gate 
coupling, this corresponds to a subthreshold slope of roughly 4 mV/decade.  Figure 2.7 shows 
that a change in six decades of current for a 25 mV change in potential is possible with a 20 mV 
barrier.  However, in this case the on state current is significantly reduced and the on state 
tunneling probability is 10-6.  

2.3.2 Conclusion 

 This device exploits a unique heterostructure and surface quantum well to create a new 
transistor with an extremely steep subthreshold slope.  By varying various parameters such as the 
doping or the material compositions this device can be optimized for a range of performance 
metrics.  It can provide a steep subthreshold slope over many decades of current at a lower 
overall current density, or it can provide a very steep subthreshold slope at a high current density, 
but only for a limited range of current.  These different modes of operation mean that the device 
will have many potential applications. 

2.4 SO WHAT WENT WRONG? 

 Based on the description in Section 2.3 is seems like TFETs should be solved.  However 
we have not accounted for states that extend into the band gap.  As shown in Figure 2.8, the band 
edge is not perfectly sharp, but rather there is a tail of states extending deep into the band gap.  
Since we were considering a barrier height of only 20 mV, the electrons will never see the 
barrier, but rather they will pass directly into the band tail and the device will not turn off.  As 
will be shown in Chapter 4, the intrinsic phonon induced band tails in silicon are around 27 
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Figure 2.7: Tunneling probability for a 20 mV barrier 
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mV/decade.  This means that with a 20 mV barrier we will see less than 1 decade on to off ratio 
before the band tails dominate the I-V characteristic. 

2.5 IS THERE ANY HOPE FOR BARRIER MODULATION? 

 As we saw in Section 2.4, using a very small barrier on the order of 10’s of millivolts will 
not work.  However, as we saw at the end of Section 2.2, we should be able to see useful results 
with a 260 mV high tunneling barrier at lower conductances.  Since there will be band tails on 
both the conduction band and the valence band, the band edge density of states midway through 
the effective gap will control the off state current.  This means we should ask, “What is the 
density of states 130 mV from the band edge?”   

 If we assume the junction has been designed well and the only contribution to the band 
tail is the intrinsic phonon limited tail described in Chapter 4, the density of states will fall off at 
a rate of 27 mV/decade.  Consequently we could have up to 130/27= 4.8 decades of on to off 
ratio before being limited by the band tails and even then the band tails would provide a slope of 
27 mV/decade resulting in a high performance device. 

 However, if the junction is poorly designed and uses heavy doping, the band tails could 
be worse than 100 mV/decade as described in Chapter 4.  In this case the on to off ratio for 
barrier modulation would only be 130/100= 1.3 decades of current and then the subsequent band 
tail turn off would be 100 mV/decade.  This would be a very poor device. 

 Overall, using barrier width modulation could be interesting with a small barrier height, 
but only if the band tails are properly accounted for.  Unlike current barrier width modulation 
devices, a properly designed one would use barrier width modulation to provide a steeper slope 
at the higher current densities while the slope at lower current densities would be controlled by 
the band tail density of states.  However, given that the band tail density of states needs to be 
optimized it might still be better to design a switch that operates exclusively on the density of 
states overlap.  The tradeoff between the different possibilities needs to be analyzed further.  As 
it stands now, it seems that barrier thickness modulation is unlikely to provide the desired 
performance at the higher current densities. 
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EC

Figure 2.8:  Current can easily pass through the band tails, preventing the barrier
modulation from working as intended. 
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Chapter 3: Engineering the Deformation 
Potential Limits 

3.1 INTRODUCTION 

 In practical devices the band edges will not have an ideal density of states that fall 
sharply to zero at the band edge, but rather there will be a band tail.  This tail will be caused by 
any imperfections in the lattice, whether they are due to impurities or phonons.  In optical 
measurements this results in the Urbach tail of the absorption spectrum.  In silicon the optical 
absorption coefficient falls off as an exponential at the rate of 27 mV/decade [25, 26].  A similar 
tail exists in tunneling devices and it will pose a similar limit on the achievable sub-threshold 
slope.  This can be seen in some non-equilibrium greens function (NEGF) simulations that 
account for phonon scattering [27-32].  Once phonons are included the best achievable sub-
threshold slope is significantly reduced due to the phonon band tails.  Nevertheless, by 
engineering the electron-phonon interactions it may be possible to reduce the phonon effects.  In 
this chapter we will focus on long wavelength acoustic phonons, how they contribute to the 27 
mV/decade limit and how to reduce their effects. 

3.2 THERMAL GENERATION OF STRAIN WAVES 

 Thermal vibrations can be represented as phonons or displacement waves. These phonons 
will cause random strains that cause the band edge energies to shift.  Every point in the first 
brillouin zone of reciprocal space corresponds to three acoustic phonon modes and three optical 
phonon modes for typical semiconductors.  If we consider a device operating at 10 GHz, the 
optical phonons oscillate roughly a thousand times faster on the order of 1013 Hz[33].  Thus any 
energy shifts that they cause will be subject to motional narrowing, or time averaging.  We have 
not considered the possibility of directly absorbing an optical phonon. 

 The three acoustic modes at each point in k-space can be divided into a longitudinal 
mode and two transverse modes.  In this analysis we approximate the phonon dispersion 
relationship as linear, i.e. || ks


νω = , where ω is the phonon frequency, k is the phonon wave 

vector and νs is the speed of sound for the phonon mode. An arbitrary phonon mode can be 
written as: 

)cos()ˆˆˆ( tzkykxkzAyAxAR zyxzyx ωδ −++++=


         (3.2.1) 

The strains are also defined as[34]: 
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Applying this definition (3.2.2) to the phonon wave equation (3.2.1) results in following strain 
tensor: 
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               (3.2.3) 

For longitudinal waves k


is approximately parallel to A


and for transverse waves k


is 
approximately perpendicular to A


.   

 We will need to know the variance, or the root mean square (RMS) magnitude, of each 
type of strain in order to engineer the subthreshold slope as shown in the next section.  The 
magnitude of the strain wave, |||| kAo =ε  can be found be setting the strain energy[35] of each 

phonon mode equal to the thermal energy of each mode. 
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where C11, C12 and C44 are the elastic constants of the material.  When working in reciprocal 
space each phonon mode can create a full tensor of coherent strains.  In Section 3.5 
(Appendix A) the equations of motion in a solid are solved in order to find the displacement 
eigenmodes (3.2.1).  Those modes are then used to compute the strains (3.2.3) due to each 
phonon and then the strains are summed over the first brillouin zone.  This finally gives the RMS 
strains ijε . Fortunately the strains can be found by a simpler and more intuitive method by 

making a simplifying approximation and working in a ‘strain space’ where each strain mode, ijε , 

is independent. The results in Section 3.5 (Appendix A), which may not be more accurate due to 
the linear dispersion approximation, are within 5% of the results (3.2.11, 3.2.12) found by the 
much simpler method that follows. 

 In a bulk material each of the uniaxial strains ),,( zzyyxx εεε  will have the same magnitude 

as each other and each of the shear strains ),,( xzyzxy εεε  will have the same magnitude by 

symmetry.  An arbitrary strain mode, aε , will have the following form: 
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where 12
, =

k
kaα and ka,α and ka,φ  are chosen to make each strain mode independent and 

represent a single degree of freedom.  Thus for a uniaxial strain we have: 
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The total mean squared strain of a uniaxial mode, >< 2
iiε , is: 
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where Ndeg is the number of degrees of freedom.  Similarly the total mean squared strain for a 
shear mode is: 

deg
44

2 *
2

N
VC

Tk

crystal

b
ij >=< ε                        (3.2.9) 

The number of degrees of freedom can be found by comparison to the number of phonon modes 
in reciprocal space.  The number of points in reciprocal space is equal to the number of unit cells 
in reciprocal space, 

cellunit VVN crystalcells = .  Each point in reciprocal space has three degrees of 

freedom corresponding to the 3 acoustic phonon modes (the optical phonons have already been 
neglected).  One degree corresponds to the three uniaxial strains, one degree to the three shear 

strains, and one degree to the three rotations that take the form ( ) jiiRjR ji ≠∂∂−∂∂ ,
2

1 δδ  and do 

not affect the energy.  Thus each strain mode has: 

cellunit 
deg 33

1

V

V
NN crystal

cells ==          (3.2.10)  

However, the strains with a short wavelength may average out or those with a high frequency 
may be subject to motional narrowing.  Consequently we will let β equal the fraction of strain 
modes that contribute to the energy.  In general 0< β≤1 and we assume that it will be the same 
for shear and uniaxial strains.  Thus we finally get the following expressions for the mean 
squared strains: 
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3.3 ENERGY SHIFTS DUE TO STRAIN 

3.3.1 Conduction and Valance Band Response to Strains 

The strain waves cause shifts in the band edge energies.  This is qualitatively illustrated in Figure 
3.1 (based on [36]).  The average conduction band energy shifts are given by[37]: 

( )zzyyxxudavcE εεε ++





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3

1
,

              (3.3.1) 

The constants ( ud ΞΞ , , a, b, and d) are given in Section 3.6 (Appendix B).  In addition to the 

average shift, the degenerate minima also split. The conduction band minima along the <100> 
directions split in pairs according to the following equations[37]:  
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The conduction band minima along the <111> directions split according to the following 
equations [37]:  

Figure 3.1: Variation of band edges and band splitting as function of strain 
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The valence band energy also shifts with strain and the heavy and light hole band degeneracy is 
lifted.  The energy shifts including quantum confinement along the z  [001] direction are shown 
below [38].  In the unconfined case let, the confined wavevector, kz=0. 
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where: 

Figure 3.2: Different types of strain cause band extrema to shift 
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where 1γ  and 2γ are the luttinger parameters and m0 is the free electron mass.  The different 
types of strain that affect each of the band extrema are shown in Figure 3.2. 

3.3.2 Engineering the Energy Shifts 

 The tunneling junction between a p-doped semiconductor and a n-doped semiconductor 
is shown in Figure 3.3.   Throughout the semiconductor, the band edge energy will vary 
randomly due to the strains.  However an electron tunneling from one side to another will 
approximately respond to the average energy over the volume in which the electron is coherent.  
This means that if the strain wavelength is considerably shorter than the coherence length, the 
effects of the short wavelength strains will average out.  To get an order of magnitude estimate of 
the coherence volume, consider the wavelength of an electron with kbT of energy.  At room 
temperature for silicon this is roughly 10 nm ( *22 2/ mkTkb = ).   This means that strains with 

wavelengths considerably shorter than 10 nm will average out and have no effect, reducing the 
factor β in Eqs. (12)-(13).  High frequency strains or phonons will also tend to average out due to 
motional narrowing.  Strains faster than the device, on the order of 100Ghz and higher, which 
correspond to wavelengths of 50 nm and shorter[33] in silicon, will likely be subject to motional 
narrowing.   This means that primarily strains with wavelengths greater than 50 nm will 
contribute to the energy level shifts.  Since the strain wavelengths are much larger than the 
coherence length, the energy shift due to any one phonon will be roughly constant over the entire 
coherence volume.  Consequently any given electron will see an approximately uniform thermal 
strain over its entire coherence volume, which includes both the P and N sides of the tunneling 
junction.  The direct quantum mechanical absorption and emission of phonons was not 
considered.  If this allows shorter wavelength phonons to contribute, the following methods can 
be considered a partial solution to phonon problem. 

3.3.2.1 Response of Bulk Valence Band to Thermal Strains 
 The degeneracy between the heavy hole and light hole bands is broken whenever a strain 
is present.  However, in a bulk band, thermal strains are still present and so it seems like the 
bands should split.  However, this is not observed in practice.  Motional narrowing will reduce 

Figure 3.3: Tunneling junction showing region where electron is coherent 
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the effect, but it alone is not sufficient to explain why the splitting is not observed.  In order to 
get a better understanding of what is happening we will assume that each of the strains has a 
Gaussian distribution centered at zero.  This is reasonable as each strain component is the sum of 
many random degrees of freedom.  The distribution of the energy splitting or square root term in 
(3.3.4) is related to a chi distribution and is the solid line in Figure 3.4.  The plot is normalized to 
have an area of 1.  It was made by using a monte carlo method of generating random energies 
and then creating a histogram.  The RMS value of each strain distribution is given by (3.2.11) 
and (3.2.12). In this case there are clearly two separate energy bands.  When the entire valence 
band energy distribution is plotted the leading hydrostatic term 

13 εa , causes the distribution to 
partially smear and two bands are not as distinct as shown in the dashed line of  Figure 3.4.  
Finally, if the band gap distribution, as defined in the following section, is plotted the two peaks 
are completely smeared out and only a single peak is seen and shown in the dotted line of Figure 
3.4.   

3.3.2.2 Response of Bulk Silicon to Thermal Strains 
 In order to get an estimate of the variation of the band edges we will find the standard 
deviation of the band gap for a Δ conduction band minimum ( VcVcg EEEEE Δ−Δ=−=Δ ).  First 

we redefine the energy shifts in terms of ε1, ε2, and ε3 (3.3.5).  These strains are orthogonal linear 
combinations of εxx, εyy, and εzz.  Since εxx, εyy, and εzz are independent and equally distributed, 
ε1, ε2, and ε3 are also independent and equally distributed.  By construction, they even have the 
same distribution as εxx, εyy, and εzz. Redefining (3.3.1) and (3.3.2) using (3.3.5) gives the 
following conduction band energy shifts: 
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Figure 3.4: Probability distributions of the energy shifts.  Solid line: distribution of
the valence band splitting.  Dashed line: distribution of the valence band energy.
Dotted line: distribution of the band gap energy. 
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The band gap will be defined by the CB minima distribution and the VB maxima distribution at 
any given time.  In the conduction band, the multiple minima have the same distribution as a 
single minimum in the band tail and so we only need to consider one of the conduction band 
minima.  However, the two valence band minima have different distributions and so we need to 
consider both of them.  Consequently we get the following expression for the fluctuations in the 
band gap of silicon: 
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              (3.3.8) 

In calculating the standard deviation, 22)( >Δ<−>Δ<=Δ ggg EEEσ , all of the terms can be 

found analytically as the mean of each strain is zero and the mean squared strains are given by 
(3.2.11) and (3.2.12).  The mean squared values of ε1, ε2, and ε3 will be the same as εxx.  
Equations (3.2.11) and (3.2.12) are only defined to within the factor β and so the standard 
deviation will be defined with respect to β as well. Nevertheless, this will still be useful for 
comparing to the following engineered cases.  When accounting for both valence bands the mean 
of +/- the square root term is zero and the mean squared value follows from the mean squared 
values of the individual strains. Using deformation potentials from[36] and elastic constants 

from[35] we get βσ 0.229)( =Δ gE eV. 

3.3.2.3 Engineering a Si-Ge Heterostructure [001] Device 
 By using bias strains or confinement it is possible to reduce the band gap fluctuations and 

Figure 3.5: (a) A possible device structure using a phonon engineered
heterostructure (b) the band diagram of the heterostructure 
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thus the subthreshold slope.  Since there is an approximately uniform thermal strain across both 
the P and N sides of the tunneling junction for a given electron, the effective band gap will not 
change if somehow the conduction band on the N side and the valence band on the P side have 
the same energy shift in response to a strain. 

 Both the valence band and the conduction band [001] minima have the strain term ε2.  It 
is possible to get these terms to parallel each other with the correct biases.  The [001] conduction 
band minima need to be lowered in energy with respect to the other minima.  This means that a 
biaxial tensile strain needs to be applied to an Si N-region, possibly by growing the device on a 
Ge or Si-Ge substrate.  Let ε2= ε2

0+ε2’ where  ε2
0 is the grown in strain and ε2’ is the strain due to 

thermal vibrations.  A biaxial tensile strain means ε2
0  >0.  On the P-side of the device, strong 

confinement or a large ε2
0 will suppress all of strain terms except for ε2’.  However, in order to 

have the conduction band parallel the valence band, the heavy hole (J=3/2, mJ=3/2) band must be 
raised above the light hole band. This means any bias strain must be compressive[24].  Thus the 
P-region could be germanium.  A possible transistor structure based on this is shown in Figure 
3.5.  In this case the valence band edge energy will become: 

( ) ( ) ( )εεγγεε ′++−−= 0
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Combining the effects in the conduction band and valence band gives the following band gap 
fluctuation: 
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where N stands for strains on the N-side and P for strains on the P side.  We assume the strains 
are coherent throughout the N and P sides, but that the magnitude changes based on the crystal 
parameters.  Since ΔΞu >0 and b <0, the net effect is that the fluctuations are reduced.  Therefore, 

we get βσ 0.132)( =Δ gE eV. Consequently, growing a device with biaxial tensile strain in the 

N-region and strong confinement or compressive strain in the P-region, results in a 42% 

Figure 3.6: Tunneling junction with Si-Ge superlattice 
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reduction in the effect of long wavelength acoustic phonons.  Thus a significant improvement 
can be achieved in simple silicon (n-side) germanium (p-side) heterostructure. 

3.3.2.4 Engineering a Si-Ge Superlattice [001] Device 
 If we have more control over deformation potentials it is be possible to reduce the 
variations in the band gap even more.  Introducing a second material, germanium, in an alloy or 
superlattice gives us this control.  One especially interesting feature of germanium is that the 
hydrostatic band gap deformation potential, ( ) aL

u
L
d −Ξ+Ξ 31 , is negative while in silicon it is 

positive. 

 However, the deformation potentials in the conduction band are closely related to what 
type of minima are the lowest energy minima (i.e. Δ or L) and so deformation potentials will not 
scale linearly in an alloy.  Consequently a short period superlattice is necessary in order to have 
more of a linear interpolation between the two materials.  In order to have both the Δ and L states 
mix, they must both be degenerate in energy[39].  Thus the superlattice will consist of Si-Ge 
alloys, with a Si-like part that corresponds to the Δ minima and a Ge-like part that corresponds to 
the L minima.  For ease of fabrication we consider a strain relaxed superlattice with the L part 
consisting of pure germanium.  We then need to match the strained conduction band energy of 
the Δ part to that of the L/Ge part.  This depends on the value of the strain which depends on the 
optimized superlattice composition as described later.  Calculating the energies using the model 
solid theory [36], with band gap bowing given by[40], and elastic constants from [35] for a 
superlattice that is 80% Si-like and 20% Ge, results in the si-like region being composed of 23% 
Si and 77% Ge.  Since the valance band in both materials is of the same type, either an alloy or a 
short period superlattice can be used on the P side.  A generalized schematic is shown in Figure 
3.6.  Figure 3.7 shows a TFET structure built using the superlattice. 

 As a simplifying approximation we will neglect phonon scattering off the superlattice and 
assume that Δ and L regions have linearly interpolated bulk properties. We also assume that the 
phonon modes are coherent through both the Δ and L regions, but that the amplitude changes as 
the elastic constants change. Furthermore, we will use the same bias strain methods used in the 
previous section.  Thus the Δ parts of the N region must be under tensile strain and the P region 

Figure 3.7: (a) TFET based on a SiGe superlattice (b) Band diagram along the
tunneling junction 
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must be under a compressive strain or strong confinement.  We get the following expression for 
the conduction band energy: 
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where x is the fraction of si-like/ Δ material on N side.  The valence band energy shift is: 
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where y is the fraction of silicon on the P side.  Calculating the standard deviation of 

Vcg EEE Δ−Δ=Δ  using the methods outlined in the previous sections and minimizing it with 

respect to x and y (while also calculating the strains and deformation potentials in the 

superlattice) gives the following results.  We get βσ 0.0856)( =Δ gE eV with 80% si-like/ Δ 

material in the N side and 34% Si on the P-side. The Si-like/Δ material is composed of 23% Si / 
77% Ge and the L material is pure Ge. This results in a 63% improvement compared to bulk 
silicon.  This is shown in Figure 3.7.  Interestingly, the composition of the P region has a small 
effect on the standard deviation.  Arbitrarily changing the composition changes )( gEΔσ by no 

more than 5%.  This is because the different types of CB minima in the N region have 
significantly different deformation potentials, while the valence band maxima are of the same 
type.  Nevertheless a germanium rich P region is necessary in order to correctly split the valance 
band maxima. 

3.4 CONCLUSIONS 

 As shown in the previous sections, it may be possible to get roughly a 60% reduction in 
the band gap fluctuations due to long wavelength acoustic phonons and thus a corresponding 
reduction in the subthreshold slope.  This could achieved by growing a device under tensile 
strain with a short period superlattice of roughly 80% si-like material and 20% Ge in the N side.  
The si-like material can be composed of 23% Si/ 77% Ge. The composition of the p side can 
engineered to improve other device properties, so long as it is compressively strained or 
confined.  The exact compositions will have to be determined experimentally as there is still a 
large variation in the values of the deformation potentials in the literature.  However, the 
experimentally realized gains may be smaller as a number of approximations were made in this 
derivation.  In particular the assumption of a uniform strain over the entire coherence volume of 
an electron may not be entirely true, and phonon scattering and superlattice effects have not been 
fully accounted for.  Despite these limitations, this work shows that there is a strong possibility 
of improving the subthreshold slope using just silicon and germanium. 
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3.5 APPENDIX A- CALCULATING RMS STRAINS USING PHONON MODES 

 In order to find the total RMS strain ijε , the strain contribution from each phonon needs 

to be added.  This is done by first discretizing k-space by using periodic boundary conditions, i.e. 

ii Lnk /2 π±=  where Li is the length of the i’th dimension of the crystal and n=0,1,2,…  Then a 

linear acoustic phonon dispersion relationship is assumed and so the equations of motion for 
sound in a solid can be solved in order to give the phonon modes (3.2.1).  The equations of 
motion are: 
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Solving for zRyRxRR zyx ˆˆˆ ++=


δ  )cos()ˆˆˆ( tzkykxkzAyAxA zyxzyx ω−++++=  at each point in k-space 

simplifies to a simple eigenvalue problem as the displacements are sinusoidal.  The result is three 
eigenvectors that correspond to the longitudinal and transverse phonon modes.  This gives the 
relative values of Ax, Ay, and Az but not the overall magnitude, |A|. The magnitude can be found 
by using the fact that each phonon mode has kbT/2 Joules of energy. The total energy is given by 
(3.2.4).  However this equation is in terms of displacements and not strains and so the strains 
need to be found by plugging the displacement R


δ  into (3.2.3).  Thus the |A| is known and the 

strains due to each phonon mode ),( skijε are known. Finally the total strain should be found by 

summing over all points in the 1st Brillouin Zone (BZ).  For instance, 

 
=

><>=<
BZ1st in  1,2,3s 

22 ),(
k

xxxx skεε  where s represents the three modes per point in k-space. 
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3.6 APPENDIX B- TABLE OF DEFORMATION POTENTIALS 

 

Parameter name Description Si [36, 41] Ge[36, 41] 

a Average valence band shift 2.46 1.24 

b Valence band splitting  (100) strain -2.35 -2.55 

d Valence band splitting  (111) strain -5.32 -5.50 

ΔΞd  
Conduction band – dilatation deformation 
potential - Δ minimum 

1.13 -0.59 

ΔΞu  
Conduction band – uniaxial deformation 
potential - Δ minimum 

9.16 9.42 

ΔΔ Ξ+Ξ ud 3

1

 

Conduction band – hydrostatic deformation 
potential - Δ minimum 

4.18 2.55 

aud −Ξ+Ξ ΔΔ

3

1

 

Band gap deformation potential - Δ minimum 1.72 1.31 

L
dΞ  

Conduction band – dilatation deformation 
potential - L minimum 

-6.04 -6.58 

L
uΞ  

Conduction band – uniaxial deformation 
potential - L minimum 

16.14 15.13 

L
u

L
d Ξ+Ξ

3

1

 

Conduction band – hydrostatic deformation 
potential - L minimum 

-0.66 -1.54 

aL
u

L
d −Ξ+Ξ

3

1

 

Band gap deformation potential - L minimum -3.12 -2.78 

All values are in eV 
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Chapter 4: Modeling and Experimentally 
Determining the Band Edge Steepness 

4.1 INTRODUCTION 

 In order to properly design a tunneling junction we need to know just how steep the band 
edges are.  As mentioned in Section 3.1 it is possible to extrapolate the band edge steepness from 
the steepness optical absorption, or the Urbach tail.  The optical absorption is proportional to the 
joint density of states and so if the optical absorption falls of exponentially, the density of states 
should follow the same pattern.  Nevertheless, since an absorption measurement is inherently an 
optical process, it is possible that the physics of the tunneling process could be different.  

Figure 4.1:  Optical absorption coefficient of silicon at 300K in the vicinity of the
band edge (from Tiedje 1984) 
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Consequently, it would be extremely useful to have an electronic way to measure the steepness 
of the band edges.  To some extent this can be done by correctly interpreting the I-V 
characteristics of a backward diode. 

 In this chapter we will first go through some optical absorption measurements showing 
the limitations of different types of materials.  Then we will show how to interpret backward 
diode measurements to extract a rough measure of the band edge steepness and how to model the 
band tail effects on the I-V curve.  Finally we will compare a number of different engineered 
backward diodes to see what sort of band edge steepness we can expect. 

4.2 MEASURING THE DENSITY OF STATES THROUGH OPTICAL ABSORPTION 

 In bulk undoped silicon the optical absorption silicon falls off at a rate of 27 mV/decade 
as seen from Figure 4.1 [25, 26].  Consequently, we can expect to see a similar steepness for the 
density of states turn on in a tunneling junction.  The next thing we can ask is: what is the 
steepness for a doped semiconductor?  Typically free carrier absorption will hide the band tails 
and.  In order to avoid this, a type of photoluminescence experiment need to be done [42].  The 
resulting absorption measurements are shown in Figure 4.2.  As seen in the figure varying the 
doping from 1e14 to 5e18 only seems to change the steepness of the absorption from 27 
mV/decade to 30 mV/decade.   

 This seems to indicate that moderate doping will not have a significant effect on the 
steepness density of states.  Unfortunately, the same results may not be true in tunneling 
junction.  The theory modeling the doping induced band tails [43-47] is extremely sensitive to 
the electrostatic screening length.  This means that having a lot of free carriers can screen out 
many of the potential fluctuations and reduce the impact of the band tails.  Unfortunately, in a 
tunneling junction there are very few carriers in the depletion region.  This means that a 
tunneling switch will not get the benefit of the electrostatic screening and so the actual band tails 
will be much worse.  This can be seen when we analyze the diode measurements in the following 

Figure 4.2:  The absorption curves of Silicon at different doping levels (from Duab
1996) 
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sections.  In order to see the correct band tails in an optical measurement we would need to 
measure the absorption of a compensated semiconductor that has an equal number of N and P 
type dopants.  This will eliminate the free carriers that screen out the potential fluctuations. Even 
with the electrostatic screening, the models predict that the band tails will get significantly worse 
once the doping is in the 1019 to the 1020 range[43-47]. 

 In order to see just how bad the band tails can get we can look at the optical absorption of 
undoped polycrystalline silicon [48].  The absorption is plotted in Figure 4.3.  The absorption 
coefficient falls off with a slope of around 200 mV/decade.  That is completely unacceptable for 
a tunneling switch.  The reason for the poor slope can be seen from Figure 4.4.  There is a broad 
density of states near the band edge that results from the poor crystal structure. 

4.3 USING BACKWARD DIODES TO MEASURE STEEPNESS 

 When designing a TFET we are interested in how the gate voltage changes the 
conductance of the channel at a fixed source drain bias.  Since the conductance is the relevant 
measure, we should look at how the conductance of a backward diode changes with bias.  A 
backward diode cannot achieve the same level of electrostatic control over the tunneling junction 
as a transistor and so it is very difficult to achieve a steep response using barrier width 
modulation.  However, almost all the voltage applied to a PN junction is dropped in the depletion 
region and so the change in band alignment directly corresponds to the applied voltage.  This 
means that the change in the conductance will be predominantly limited by the density of states 
turn on. 

Figure 4.3: (from Jackson 1983) Absorption vs photon energy for different types of
silicon.  Crystalline silicon, silicon on sapphire (SOS), polycrystalline silicon and
amorphous silicon are plotted.  The different polycrystalline lines correspond to
different intervals of hydrogen exposure varying from unhydrogenated (solid) to
120 min (dashed) 
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 The benefit of looking at the conductance can be seen by looking at a modified equation 
for the tunneling current: 

)(*)(** EDffTEj BandEdgeVCt  −∂∝          (4.3.1) 

In order to account for the band edge density of states we have added an extra band edge density 
of states term.  We will refine this model further in the following section.  The key difference 
between a transistor and a diode is the Fermi function term, )( VC ff − .  In a transistor it is fixed 

by the source drain bias and is a constant, but it varies with bias in a diode.  In order to see the 
transistor response in a diode we need to divide out the effect of the Fermi functions.  At small 
biases it is easy as we can Taylor expand the Fermi functions: 
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This means that simply dividing by the voltage and plotting the conductance will give the 
transistor response! 

 At larger biases the method will only be approximately correct as the Fermi functions 
will vary with energy.  Nevertheless the Fermi functions still introduce a proportionality to the 
applied voltage as: 

qVdEff VC =− )(                       (4.3.3) 

This means that dividing by the applied voltage is still helps to remove the effect of the Fermi 
functions at higher biases.  Of course this method still does not separate the effects of barrier 
modulation and band edge steepness.  Nevertheless, useful information can still be gathered by 
correctly interpreting the data as seen in the next section. 

4.3.1 Measuring the Steepness of Silicon Backward Diodes 

 Now we can apply this method to some backward diodes build by IBM [49].  Dr. 

Figure 4.4: (from Jackson 1983) Features of the grain boundary density of states
derived from optical absorption and ESR measurements for polysilicon. 
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Solomon shared the raw data with us so that we could analyze the diodes.  The structure is a 
simple implanted diode shown in Figure 4.5.  In order to have an abrupt heavily doped junction 
the diode was heavily implanted to near 1e20 and is heavily compensated.  This means that there 
are an excessive number of dopant atoms present that will create a large impurity band that has a 
gradual density of states tail extending into the band gap.  This is reflected in the electrical 
measurements.   

 Figure 4.6(a) shows the I-V curve.  As expected it shows a little bit of Esaki behavior that 
is more pronounced at low temperatures.  The I-V curve appears to be very steep at zero bias, but 
that is only because the current crosses zero at zero bias.  Figure 4.6(b) shows the plot of the 
conductance which has two very distinct regions as labeled in the figure.  By plotting the 
conductance we are able to use the data near the zero crossing and in the Esaki part of the curve.  
Figure 4.6(c) shows the slope of the conductance in mV/decade.  The dotted line at the bottom of 
the plot indicates the desired slope of 60 mV/decade.  Since the conductance is a reflection of the 
performance one could hope to achieve in a transistor, the slope of the conductance indicates the 
subthreshold slope that a transistor could achieve using the density of states switching 
mechanism.  A transistor can have better performance using barrier width modulation, but the 
density of states switching will have the same performance in a diode or a transistor as only the 
band alignment matters. 

 The diode’s initial turn-on is dominated by the density of states turn on and is reflected 
by the steeper region in Figure 4.6(b) and (c).  At the higher current levels, the current is limited 
by the tunneling probability and so it is the barrier width modulation that controls the shape of 
the I-V curve.  This is also indicated in Figure 4.6(b) and (c).  Unfortunately the minimum 
conductance slope is around 120 mV/decade.  This means that the heavy doping has caused 
severe band tails that limit the steepness of the band edges. 

4.3.2 A Refined Band Tail Model 

 Now that we have I-V curves we can create a simple model to verify our interpretations: 

Figure 4.5: (from Solomon 2004) Backward diodes built in silicon. (a) The structure
is a simple implanted PN junction.  (b) The doping levels are near 1e20 and the
diode is heavily compensated  
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)()()(0 EDEDffTEJJ pnVC ××−××∂=            (4.3.4) 

In this model we will ignore the effects of transverse momentum and simply defined a constant 
prefactor to account most phonon related effects.  In this model we only keep a few critical 
terms.  The voltage dependent tunneling probability is: 
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                          (4.3.5) 

Here α is a fitting parameter that allows us to fit the barrier modulation tunneling.  The equation 
is derived from the Kane tunneling probability given in Eqn (2.2.2.) [22]: 
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Figure 4.6: (a) The I-V characteristics for a silicon backward diode measured at two
temperatures. (b) The conductance for the backward diode.  There are two regions
in the conductance curve corresponding to band edge tunneling and barrier width
modulation. (c) The slope of the conductance in mV/decade is plotted.  The two
different regions are more evident in the plot of the conductance slope. 
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In this case we are interested in the bias dependence which is given in the electric field term 
which is the peak electric field in a PN Junction: 
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Since many of the parameters are uncertain we abstracted everything except for the key ( )VVbi −  

dependence as a single fitting parameter.  Vbi is the built in voltage across the junction. 

 Next, the Fermi functions are given by the standard equations:  
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The Fermi levels are depicted in Figure 4.7.    Finally we need to define the band tail density of 
states: 
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Here EVp is the valence band edge on the p side and ECn is the conduction band edge on the n 
side as depicted in Figure 4.7.  In defining these band edge functions we assumed that the density 
of states fell of exponentially from the band edge with some slope VO.  This slope gives the 
steepness of the density of states band tail and ideally would be less than KbT (or 60 mV/decade) 
for a good tunnel junction. 

4.3.2.1 Applying the Band Tail Model to Silicon Diodes 

EVp
ECn
EFn

EFn

EGo

Vbi-V

Figure 4.7:  The various energy levels used in the tunneling model are depicted
here 
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 Now that we have a model for the band tails we can apply it to the Esaki diodes that we 
previously analyzed.  In order to fit the IBM diode data we used the following values for the 
constants in the model: 

Vbi  =0.91 V 

EGo  =1.12 eV 

Vo   =0.126 V  

J0     =3.84e7 A/cm2 

α      =0.843 V1/2 

As seen in Figure 4.8, the analytic model and the experimental data fit very well.  Of course, this 
is mostly due to the fitting parameters.  Nevertheless, this gives us some confidence in our 
interpretation of the different regions of the I-V curve.  One thing to note is that the exponential 
slope required to fit the date, V0, is 0.126 V.  This corresponds to a slope of 0.126*ln(10)=290 
mV/decade.  This is far worse than the minimum slope of 120 mV/decade that was extracted 
directly from the experimental data.  The reason for this is that the model includes both the 
effects of barrier modulation and band edge steepness.  When the two effects are multiplied 
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Figure 4.8: Comparison between the fitted analytic model and measured data for a
silicon backward diode.  (a) The reverse bias I-V curves match very well.  The 
forward bias current was not modeled.  (b) The model also fits the conductance 



 

 

37 

 

together, the resulting slope can be slightly better than either one taken individually. 
Nevertheless, analyzing the conductance slope can still provide a lower limit for the density of 
states steepness. 

 Since both the band edge steepness and the barrier thickness modulation play a key role 
in determining the overall steepness, models like this one need to be developed to more 
accurately account for both effects.  Doing so would allow us to explore the sort of optimizations 
between barrier width modulation and band edge steepness needed at the end of Chapter 2. 

4.3.3 Using the Backward Diode Figure of Merit, γ 

 So far, the silicon diodes that were analyzed were not optimized for being good backward 
diodes with a highly non-linear characteristic.  The figure of merit for backward diodes is called 
γ and is defined as: 

dVdI

dVId

/

/ 22

=γ                          (4.3.12) 

In order to relate this to the steepness of the tunneling junction we need a model for the tunneling 
current.  Near zero bias the current has two key dependencies on the voltage.  First the difference 
between the Fermi functions )( VC ff − goes to zero and can be Taylor expanded as done in Eqn 

(4.3.2).  Second, the tunneling current is exponentially increasing with increasing reverse bias.  
Consequently we have 

OO VVVV
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Here V0 is the exponential steepness that we are interested in.  Plugging this into (4.3.12) gives: 
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We can then convert this to a conductance slope in mV/decade: 
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Using this, we see that we need γ>80 in order to have a conductance slope less than 60 
mV/decade. 

 In order to check this method we can plot the slope of germanium a backward diode 
[15]and compare the extracted steepness to the steepness derived from γ.  The I-V curve in the 
paper is digitized and replotted in Figure 4.9.  The conductance and conductance slope is also 
plotted.  The average conductance slope is 92 mV/decade.  This is identical to the slope 
computed from γ:  2/γ × ln(10) = 92 mV/decade.   
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 Now, looking through the backward diode literature for the best γ ever reported we find a 
γ around 70 from a 1967 paper by Karlovsky [16].  Unfortunately, this is still not greater than 80.  
Does this mean that the band edges cannot be sharper than 60 mV/decade?  Most likely this is 
the case for current backward diodes that require heavily doped junctions to get a turn on near 
zero bias. 

4.3.4 Comparing Backward Diodes 

 In the next few pages we plot the current, conductance and slope for a variety of different 
diodes to see how they compare.  In Figure 4.10 we analyze the best (highest γ) InAs / AlGaSb 
backward diode reported to date[19].  Since the width of the tunneling barrier is fixed by the 
AlSb, the slope of this device is determined entirely by the density of states turn on.  
Unfortunately the slope is still worse than the 60 mV/decade limit.  Figure 4.11 shows an MBE 
grown silicon Esaki diode.  Figure 4.13 is an In0.53Ga0.47As PIN Diode and Figure 4.12 is an InAs 
nanowire grown on silicon.  None of the diodes show sub 60 mV/decade slopes. 
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Figure 4.9: (after Karlovsky 1961) (a) The I-V characteristics near zero bias for a
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Figure 4.10: The (a) current (b) conductance and (c) conductance slope
for an InAs/AlGaSb backward diode is plotted. (d) The device structure
is shown (from Zhang 2011)

Figure 4.11: The (a) current (b) conductance and (c) conductance slope for
an MBE grown silicon Esaki diode is plotted. (d) The device structure is
shown (from Oehme 2009) 
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Figure 4.12: The (a) current (b) conductance and (c) conductance slope for an 
InAs nanowire on silicon is plotted. (d) The device structure is shown (from
Tomioka 2011) 

Figure 4.13 The (a) current (b) conductance and (c) conductance slope for
an In0.53Ga0.47As PIN Diode is plotted. (d) The device structure is shown
(from Tomioka 2011) 
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4.4 CONCLUSION 

 It is critical to preserve the quality of the semiconductor to ensure a sharp band edge.  
This can be seen from both the optical and electrical measurements.  If the crystalline quality is 
ruined through either a polycrystalline semiconductor or through heavy doping, a long tail of 
states extending into the band gap will form. 

 Furthermore, additional models like Eqn (4.3.4) that account for both the band tails and 
barrier width modulation need to be developed in order to fully analyze the performance of a 
tunneling junction.  If a model like Eqn (4.3.4) is implemented in TCAD tools, we should be able 
to get significantly better and more useful simulation results. 

 Finally, we still need more ways to measure the band edge density of states.  A method 
such as scanning tunneling spectroscopy might be useful for measuring the local density of 
states.  It might also be possible to interpret the smearing of a C-V measurement to give the 
density of states falling into band gap.  We can infer information about the density of states, but 
neither optical nor the electrical measurements are unambiguous. 
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Chapter 5: Trap Assisted Tunneling and Other 
Limitations on Tunneling Switches 

5.1 TRAP ASSISTED TUNNELING 

 Trap assisted tunneling has been a major limitation of many experimental TFET results 
[50] and can often explain an anomalous temperature dependence in the threshold voltage of 
TFETs.  Consequently, we present a model for trap assisted tunneling and use it to explain the 
anomalous temperature dependence of silicon pocket TFETs.  The different types of current in a 
reverse biased PN junction are shown in Figure 5.1.  The standard thermoionic current is shown 
in orange.  The direct tunneling current we’re interested in is shown in blue.  There are also two 
leakage currents that pass through trap states in the band gap.  The first is the result of the 
standard Shockley-Reed-Hall (SRH) generation where an electron is thermally excited from the 
valence band to a trap and then it is excited again from the trap to the conduction band.  In the 
second trap assisted process the electron is still thermally excited from the valence to a trap, but 
then it tunnels out as shown by the red arrows.  If there is a large trap concentration, this can 
easily be the dominant current in the PN junction. 

 In order to model the trap assisted tunneling current we will start the Shockley-Reed-Hall 
theory and modify the rates to account for tunneling.  Figure 5.2  shows the different trap 
assisted recombination present in a PN junction.  Only tunneling to/from the conduction band is 

Trap Assisted Tunneling

Direct 
Tunneling

Generation in the 
Depletion Region

Thermionic Current

Thermionic Current

Figure 5.1: The different types of current in a reverse biased PN junction 
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shown.  Tunneling to/from the valence band is also possible.  First we start with the SRH rates 
given below[51]:  

( ))(11 ttth EfnNvr −= σ
           (5.1.1) 
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To calculate the rate of tunneling out of a trap, 5r , we start with the rate of thermoionically 

escaping from the trap, 2r , and appropriately modify it.  Since the electron no longer needs to 
overcome a thermal barrier, the escape rate is increased by the Boltzmann factor, 

( )( )TkEE BtC /exp − . However, it is also decreased by the tunneling probability, T.  The total 

rate is: 
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To calculate the rate of tunneling into a trap, 6r , we start with 1r , and modify it appropriately.  

Figure 5.3: We model the trap assisted tunneling in this pocket based TFET.  The
tunneling occurs between the P+ source and the N+ Pocket 

Figure 5.2: Different recombination processes involving a trap are shown.  The
direction an electron would go in each process is shown. 

r1 r2 r3 r4 r5 r6
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In this case the electron density, NLn , is nonlocal and increases to the bulk value where the 

electron tunneling process starts.  However, the rate is also decreased by the tunneling 
probability, T.  The total rate is: 

( ) TEfnNvr tNLtth ×−= )(16 σ
    (5.1.6) 

 Using these rates we can now model a trap assisted tunneling process.  A more detailed 
trap assisted tunneling model is used in these papers [52-54] for diodes, but our simpler model 
can capture the essential physics in trap limited TFETs.  Consider the pocket based TFET shown 
in Figure 5.3 that  was fabricated by Pratik Patel.  In this transistor, the tunneling occurs between 
the N+ pocket and P+ source.  Figure 5.4 shows the trap process that dominated the experimental 
results.   

 To model the current we need to know the tunneling probability and the energy of the 
trap level.  The tunneling probability can be found by the WKB approximation for a triangular 
barrier and is given by[13]:  
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Now we need to know the electric field across the junction.  Since we are modeling a vertical 
tunneling device, we can use the same approximations used in Section 2.2.  Namely, we assume 
the electric field across the oxide is the same electric field in the semiconductor: 
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                           (5.1.8) 

 Next we assume that there is a uniform distribution of traps in the band gap and find the 
energy at which the trap assisted tunneling current is maximized.  The maximum trap assisted 
tunneling current will occur when r4 = r5 and the probability of the trap being occupied is 50%.  
Given a particular voltage we can solve for the trap energy by solving for r4 (Et)= r5 (Et).  Thus 
r4=r5 is the rate per unit volume at which carriers are generated through trap assisted tunneling.  
To get a current we only need to multiply by q and by the volume: 

Figure 5.4:  The trap assisted tunneling process shown dominates the Id-Vg
characteristics of the pocket TFET  
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)(4 tErVqJ ××=
              (5.1.9) 

Finally we can apply this model to the device shown in Figure 5.3.  The key parameters used are 
Nt = 1012 /cm2, σ= 1 nm2, and the background leakage = 10-13 A/um.  The resulting simulated 
current as a function of temperature is shown in Figure 5.5(a).  The experimental curves 
(courtesy of Pratik Patel) are shown in Figure 5.5(b).  The agreement between our simple model 
and the experimental curves is not perfect, but several key features are reproduced.  The biggest 
success of the model is that it reproduces the large threshold voltage shift with temperature.  It 
also qualitatively reproduces the shape of the Id-Vg curve.  It is possible that the increased 
experimental on-state conductivity is partly due to the benefits of tunneling to a confined state as 
discussed in Chapters 6 and 7.   

 The strong temperature dependence of trap assisted tunneling can also be seen in the 
reverse bias current of trap limited diodes [54].  Reducing the temperature can reduce the current 
by orders of magnitude as the thermal part of the trap assisted tunneling process is suppressed.  
In forward bias, the trap assisted tunneling current (typically the “excess” current in the valley of 
an Esaki diode) has a weak temperature dependence.  This is because carriers fall into the traps 
and give off energy instead of absorbing energy. 

 As seen from Figure 5.5 the subthreshold slope for the trap assisted tunneling process is 
fairly gradual.  In fact, it will always be worse than direct tunneling if there is a uniform density 
of trap states in energy.  This is because the trap assisted process will allow current to flow when 
it should have been cut off by the band edges.  However, it may be possible to use traps that are 
localized in energy to reduce the effective band gap and get a steeper turn on. 

5.2 CONTACT BROADENING / SOURCE TO DRAIN TUNNELING 

 Having a contact or a drain near the tunneling junction can cause the energy levels to 
broaden and reduce the sub-threshold slope.  The level broadening will only occur at energies 

Figure 5.5: (a) The modeled trap assisted tunneling current for the pocket TFET is
shown as a function of temperature. (b) The experimental Id-Vg curve as a function
of temperature is shown (from Pratik Patel, unpublished).  
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that are allowed in the contact.  (This can be verified by considering an NEGF model.  The 
contact self-energy is non-zero only at energies that are allowed in the contact.) The entire level 
broadening process can be modeled as direct tunneling to the contact.  This means that an 
electron can directly tunnel to a nearby metallic contact or it can directly tunnel from the source 
to the drain.  The size limitations posed by direct source to drain tunneling will be worse in 
TFETs than in traditional CMOS.  Since TFETs will have a steeper subthreshold slope, the direct 
source to drain tunneling will need to be suppressed more and so a longer channel will be 
needed.  This will pose a direct limit on the maximum scaling of TFETs.  The dependence of the 
sub-threshold slope on the channel length can be seen in a simulation paper by Ganapathi et all 
[55] and is reproduced in Figure 5.6.  A basic PIN TFET as shown in Figure 5.6(a) was 
simulated.  As the channel length is decreased from 30 nm to 10 nm the subthreshold slope 
progressively gets worse as seen in Figure 5.6(b).   

5.3 GRADED JUNCTIONS/POOR ELECTROSTATICS 

 Another major concern in designing TFETS is to ensure that the entire tunneling junction 
turns on at once.  If different regions turn on at different biases, the overall I-V curve will be 
smeared out and the subthreshold slope will not be very steep.  These types of effects are 
analyzed in detail in Pratik Patel’s dissertation[56] and so we have just reproduced a couple key 
figures in Figure 5.7.  The simulated structure is shown in Figure 5.7(a).  The tunneling occurs 
between the P+ source and an N+ pocket.  As indicated by Vov,1 and Vov,2 there are two possible 
tunneling paths.  The vertical tunneling path corresponding to Vov,1 is the desired tunneling path 
and the lateral tunneling path corresponding to Vov,2 is an undesired parasitic tunneling path.  If 
the parasitic tunneling path turns on prior to the desired tunneling path, the subthreshold slope 
will not be very steep.  This is shown in Figure 5.7(b).  If the pocket is misaligned, the parasitic 
tunneling paths will dominate.  Figure 5.7(c) shows what happens if the pocket doping profile is 

Figure 5.6: (from Ganapathi 2010) As the channel length is reduced the direct
source to drain tunneling limits the subthreshold slope. 
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not abrupt.  The lateral straggle of the dopants allows for parasitic tunneling paths to dominate 
and the subthreshold slope loses its steepness. 

5.4 CONCLUSION 

 As we saw in this chapter there are a variety of effects that can limit the performance of a 
tunneling field effect transistor.  Fortunately, they can be engineered around if one is cognizant 
of the limitations.  Focusing on high quality gate interfaces and material quality will suppress 
trap assisted tunneling.  Using reasonable channel lengths will avoid direct source to drain 
tunneling (while accepting some more stringent scaling limits).  Finally, simulating and correctly 
designing the electrostatics can avoid any problems with parasitic tunneling paths. 
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Figure 5.7: (from Patel 2010) (a) A pocket source TFET was simulated and shown
to very sensitive to the exact doping profile. (b) The drain current as a function of
varying offsets is shown.  If designed incorrectly, a gradual lateral tunneling
process can dominate the Id-Vg characteristic.  (c) If the pocket doping is not
abrupt, different regions have different threshold voltages and so the overall turn on
is very gradual. 



 

 

48 

 

Chapter 6: Pronounced Effect of pn-Junction 
Dimensionality on Tunnel Switch Sharpness 

6.1 INTRODUCTION 

 Now that we have considered the non-idealities that can affect a tunneling switch, we can 
look at what impact the ideal density of states will have on a tunneling switch and how we would 
design an ideal density of states switch. 

 The density of states turn-on is illustrated in Figure 6.1.  If the conduction and valence 
band do not overlap, no current can flow.  Once they do overlap, there is a path for current to 
flow.  This band overlap turn-on has the potential for a very sharp On/Off transition that is much 
sharper than that which can be achieved by modulating the tunneling barrier height or 
thickness[7].  If the band edges are ideal, one might expect an infinitely sharp turn on when the 
band edges overlap.  We will find that in a typical 3d-3d bulk pn junction, the nature of the turn 
on is only quadratic in the control voltage.  A sharper density-of-states occurs if the 
dimensionality on either side of the pn junction is reduced.  In specifying a pn junction it is also 
necessary to specify the dimensionalities of p, and of n regions. We count nine different possible 
pn junction dimensional combinations, as shown in Figure 6.2.  

 In the following sections we analyze each of the nine cases, in the following sections:  
II. 1d-1d;  III. 3d-3d;  IV. 2d-2dedge;  V. 0d-1d;  VI. 2d-3d;  VII. 1d-2d; VII. 0d-0d;  IX. 2d-2dface;  
X. 1d-1dedge.  We ask which are promising for adaptation into a TFET[8], or for a new generation 
of Backward Diodes? 

(a) (b)

EV

EC

EV

EC

VOL

OFF
ON

Figure 6.1: (a) No current can flow when the bands do not overlap. (b) Once the
bands overlap, current can flow.  The band edges need to be very sharp, but
density of states arising from dimensionality also plays a role. 
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6.2 1D-1D POINT JUNCTION 

 A 1d-1d point pn junction describes tunneling[9] within a nanowire or carbon nanotube 
junction as schematically represented in Figure 6.3(a).  Tunneling is occurring from the valence 
band p-side to the conduction band n-side.  The gate is not shown as there are many possible gate 
geometries.  The band diagram across this junction is given by Figure 6.3(d).   

 In analyzing all of the devices, we consider a direct gap semiconductor with a small gate 
bias.  In particular we consider the regime near the band overlap turn-on where a small change in 
gate voltage (kbT/q or less) will result in a large change in the density of states but only a small 
change in the dimensionless tunneling probability.  Consequently we assume that the tunneling 
probability is roughly a constant, Tdevice, and will not change significantly for small changes in 
the gate voltage. 

 We also define VOL to be the overlap voltage between the conduction and valence bands 
as shown in Figure 6.1(b).  In a backward diode structure this would be related to the reverse 
bias.  In a transistor structure, this would typically be related to the gate voltage, VG, and the 

Figure 6.2: We identify here the nine distinct dimensionality possibilities that we
believe can exist in pn junctions.  Each of the different tunneling pn junction
dimensionalities shown have different turn on characteristics 

Figure 6.3: Various characteristics of a 1d-1d point overlap junction. (a) The
pn junction is oriented in the Z-direction.  (b) Linear I-V of the junction (c) Energy
versus position for a typical 1d tunnel barrier.  (d) Band diagram for the tunnel
pn junction showing that the relevant voltage is the overlap voltage and not the
source drain voltage. (e) The differential current per unit energy is constant across
the tunneling region. 
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source drain bias voltage, VSD.  In order to keep the analysis as simple and general as possible 
we will use the band overlap voltage, VOL in all of the analyses instead of VG or VSD. 

 The 1d nanowire current can be derived as an adaptation of the normal quantum of 
conductance, 2q2/h, approach.  The band diagram for the typical quantum of conductance is 
shown in Figure 6.3(c).  The current flow is controlled by the difference in the Fermi levels, 
which is the source drain voltage, VSD, as shown.  Current is given by charge  × velocity × 
density of 1d states.  Furthermore, the differential current, dJ/dE, that flows at any given energy 
is the same at all energies.  This arises because the energy dependence of the velocity and 1d 
density of states exactly cancel, such that current is the same regardless of the energy.  This 
results in a current I, controlled by quantum conductance where (I=2q2/h)×VSD×Tdevice, where 
Tdevice is the tunneling probability. 

 Now to properly consider the transition from conduction band to valence band we look at 
the band diagram given in Figure 6.3(d).  Initially, we consider the situation shown in Figure 
6.3(d), where the valence band on the p-side of the junction is completely full and the conduction 
band on the n-side is completely empty.  This would correspond to non-degenerate doping, 
VSD>kbT/q and VSD>VOL.   

 As shown in Figure 6.3(d), the band edges cut off the number of states that can contribute 
to the current. Unlike a single band 1d conductor, the overlap voltage VOL determines the amount 
of current that can flow.  Nevertheless, as shown in Figure 6.3(e), dJ/dE is still independent of 
energy and is equal to q/h.  This arises because the exact same energy dependence cancellation 
between the velocity and density of states still occurs on both sides of the 1d pn junction. 

 Thus the 1d pn junction will conduct with a quantum of conductance times the tunneling 
probability, with the relevant voltage being the overlap voltage.   

deviceOL
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1d1d V
2q

I T××=− h
             (6.2.1) 

 Since a long-range goal is a powering and switching voltage <kbT/q, let us consider the 
case VSD<kbT/q.  To account for the small voltage we need to multiply by the Fermi occupation 
difference (fc – fv).  In this small bias regime everything of interest occurs within a kbT or two of 
energy.  Consequently we can Taylor expand (fc – fv):  
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Thus the ultimate effect of the small differential Fermi occupation factors is to multiply the low 
temperature current by the factor qVSD/4kbT.  We can therefore write a conductance for small 
source drain biases: 
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This is true for all of the following devices to be considered in this article, as well.  Thus we will 
continue to make the approximation that the valence band is full and the conduction band is 
empty when calculating the potential current flow, and then add the effect of the partial Fermi 
occupation functions afterwards.  A more rigorous derivation of the tunneling current and the 
effect of the Fermi functions are given in Appendix A and B (Section 6.16 and 6.17). 

6.3 3D-3D BULK JUNCTION 

 A 3d-3d junction simply means a pn junction or heterojunction where there is a bulk 
semiconductor on either side of the sample.  A generalized schematic of the tunneling junction 
only is shown in Figure 6.4(a).  The band diagram across this junction is given by Figure 6.4(c). 

 The 3-d bulk current can be derived from a few simple considerations.  The junction is a 
large 2d surface and can be considered to be a 2d array of 1d channels.  The 2d array is defined 
by the transverse k-states that can tunnel.  Each 1d channel is equivalent to the 1d-1d case 
described in the previous section and will conduct with a quantum of conductance times the 
tunneling probability.  The differential current density can therefore be written as: 

E
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NI devicestates ∂×××=∂ ⊥ T
h

           (6.3.1) 

Figure 6.4: Various characteristics of a 3d-3d bulk junction. (a) Schematic
representation of the pn junction (b) Quadratic I-V threshold behavior of the
junction (c) Band diagram (d) The differential current per unit energy is proportional
to the number of transverse states (e) The transverse k states that contribute to the
current at various energies 



 

 

52 

 

The number of transverse states is the number of k-states within the maximum transverse energy 
at a given energy.  The transverse energy is limited by the closest band edge and peaks in the 
middle of the overlap.  This is shown in Figure 6.4(e). The differential current density is given by 
Figure 6.4(d).  Integrating over the overlap gives: 
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for large VOL>kbT/q where A is the area of the junction.   

 For small VOL<kbT/q the conductance can be written as: 
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Thus for very small biases the current is quadratic in the overlap voltage as shown in Figure 
6.4(b).  This is the exact same result that comes from taking the appropriate limits of Kane’s 
tunneling theory[22].   

 In the Appendix, we also formally derive this result in a different manner using the 
transfer Hamiltonian method[57-60].  We do this as an alternative to employing the more 
modern channel conductance approach.  The transfer Hamiltonian method was first used by 
Oppenheimer to study the field emission of hydrogen[60].  It was then expanded by Bardeen[57] 
for tunneling in superconductors and then the case of independent electrons was considered by 
Harrison[59].  The transfer Hamiltonian method in the Appendix is just an application of Fermi’s 
golden rule with a clever choice of states and perturbing Hamiltonian. 

6.4 2D-2D EDGE JUNCTION 

 A 2d edge overlapped junction describes a junction where the tunneling occurs along a 
line separating p and n regions within in a 2d confined surface.  The junction is schematically 
represented in Figure 6.5(a).  This could be represented by a case where tunneling occurs within 
a thin inversion region near a surface or within an ultra-thin body device. 

 The derivation of the current is almost identical to the 3d-3d case, except that instead of 
having a 2d array of 1d channels we now have a 1d array of 1d channels.  Therefore the current 
is: 
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    =No. of 1d Channels  ×  1d Conductance 

for large VO>kbT/q where LX is the length of the junction. 

 For small VOL<kbT/q the conductance can be written as: 
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Thus for very small gate biases the current is proportional to VOL
3/2 as shown in Figure 6.5(b). 

Similar to the 3d case, the number of transverse states that can tunnel varies with energy and 
needs to be properly integrated.  As shown in Figure 6.5(d) and (e), the differential current 
density is proportional to the number of states that can tunnel.  The number of 1d states is 
proportional to the square root of the energy and so the differential current density follows a 
square root with respect to energy. 

6.5 0D-1D JUNCTION 

 A 0d to 1d junction represents tunneling from a quantum dot to a nanowire as shown in 
Figure 6.6(a).  Our main goal in analyzing this case is to provide the basis for analyzing higher 
dimensionality systems such as a 2d-3d or 1d-2d junctions.  Consequently we consider two 
different 0d-1d systems. First we will assume that there is an electron in the quantum dot and 
find the rate at which it escapes into the end of a 1d wire.  In reality, there is no way to 
electrically contact the quantum dot.  Therefore we consider a more realistic situation that 
includes the need to couple current into the dot.  This case essentially evolves into a single 
electron transistor (SET) as shown in Figure 6.6(e) and (g). 

Figure 6.5: Various characteristics of a 2d-2d edge overlap junction. (a) Schematic 
representation of the junction (b) Power law I-V characteristic of the junction (c) 
Band diagram (d) The differential current per unit energy dJ/dE is proportional to 
the number of transverse states (e) The transverse k-states that contribute to the 
current at various energies 
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 The rate at which an electron escapes from the quantum dot into a nanowire is given by 
the field ionization of a single state such as an atom.  In Gamow’s model of alpha particle 
decay[61], the particle is oscillating back and forth in its well and it attempts to tunnel on each 
round trip oscillation.  If the dot has a length of LZ along the tunneling direction, the electron will 
travel a distance of 2LZ between tunneling attempts.  Its momentum is given by pZ=mvZ= Zk  
where kZ=π/LZ in the ground state.  Using /2mkE 2

Z
2

Z = , the time between tunneling attempts 

is τ=2LZ/vz=h/2Ez.  The tunneling rate per second is R=(1/τ)×Tdevice.  This can be converted to a 
current by multiplying by the electron charge, and a factor 2 for spin to give:  
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     (6.5.1) 

This is the same result that one obtains from the transfer Hamiltonian method outlined in the 
Appendix.  It also assumes a large source drain bias, as usual.  These simple considerations 
predict a constant current as soon as the bands overlap as shown in Figure 6.6(b).  As seen from 
the band diagram in Figure 6.6(c), all tunneling occurs at the single confined energy.   

 To include coupling into the dot, we add a second nanowire to supply current, as shown 
in Figure 6.6(e) or (g).  We assume that the second nanowire has the same tunneling 
probability/coupling strength to the quantum dot as the original one.  The new band diagram is 
shown in Figure 6.6(f) or (h), and resembles that of a “single electron transistor”[62].  As in 
Figure 6.6(c), the tunneling occurs at a single energy and will result in a constant current once 
the bands overlap.  The tunneling event out of the dot follows sequentially after tunneling in.  
Therefore the total current tunneling transport rate is halved (1/2τ)×Tdevice, and the current is cut 
in half: 
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      (6.5.2) 

Figure 6.6: Various characteristics of a 0d-1d end junction. (a) Schematic 
representation of the junction. (b) Step function I-V of the junction. (c) Band 
diagram. (d) Differential current per unit energy. (e) More realistic 1d single 
electron transistor (SET) structure. (f) Band diagram corresponding to the more 
realistic SET. (g) Alternate SET structure with a p-type contact (h) Band diagram 
corresponding to the alternate SET 
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This applies to a filled source wire, and an empty drain wire.  If there is partial Fermi-Dirac 
occupation on both sides we can define a conductance based on the Fermi Level difference:   

T4k

q
E

2q
G

b
deviceZ ×××= T

h
             (6.5.3) 

 While our simple model assumes a perfectly sharp level and therefore a step turn-on in 
the current, in reality the level will be broadened and the turn-on threshold will assume the shape 
of the level broadening.  This broadening can be extrinsically caused by any inhomogeneities in 
the lattice such as defects, dopants, or phonons.  Even without these effects, simply coupling to 
the dot to the nanowires will already cause a significant amount of broadening[63].  In the 
simplest model, the density of states in the level broadens to form a Lorentzian with a full width 
in energy at half maximum of γ.  We seek to find γ, since that will determine the inherent 
broadening at threshold.  We start with the escape rate of electrons from the dot =(4Ez/h)×Tdevice, 
where the escape rate is doubled, since there are two extra wires that can capture the escaped 
electron.  Multiplying by   leads to a broadening:   

γ =(2/π)×EZ×Tdevice                  (6.5.4) 

which allows us to write the conductance as G = (q2/h)×γ×(π/4kbT). 

 We can now define a Figure-of-Merit for 0d-1d switches: 
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which can be rewritten as: 
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This means that a steep switch with broadening γ<<kbT, must come as the expense of a 
conductance much less than the conductance quantum G<<(q2/h). 

6.6 2D-3D JUNCTION 

 A 2d-3d tunneling junction is typical in vertical[3] TFET’s where the tunneling occurs 
from the bulk to a thin confined layer under the gate.  The thin layer can either be a thin 
inversion layer or a physically separate material.  A generalized schematic of this tunnel junction 
is shown in Figure 6.7(a).  Here the z-axis is rotated 90° from what one would usually expect so 
that the axes remain parallel between figures. 

 The derivation for this case is very similar to the 3d-3d case.  As in that section, the 
junction is a large 2d surface and can be considered to be a 2d array of 1d tunneling problems. 
However, this case does not represent the typical 1d quantum of conductance.  In this case, the 
1d problem is better described by the field ionization of a single state such as an atom as 
described in the 0d-1d section.  We simply multiply that result by the number of 2d channels to 
get a current of: 
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for large VOL>kbT/q.  

 For small VOL<kbT/q the conductance can be written as: 











×





 ×××








×=

T4k

q
E

4q

2

qV

2π

Am
G

b
deviceZ

OL
23d-2d T

h
                (6.6.2) 

Here, EZ is the confinement energy of the 2d layer.  This is the exact same result that comes from 
the transfer Hamiltonian method in the Appendix so long as we also assume that the confined 
electron is in the ground state such that kZ=π/LZ.  Thus for very small VSD, or small gate biases, 
the current is linear in VOL as shown in Figure 6.7(b).  Compared to the bulk 3d-3d case, 
confining one side of the junction resulted in the replacement of qVOL with 4EZ. 

 To justify the number of transverse states that we have included we need to look more 
closely at the tunneling process.  The band diagram is shown in Figure 6.7(c).  Since the tunnel 
rate from the 2d quantum well states is constant, the differential current per unit energy is exactly 
proportional to the number of states that tunnel at any given energy.  The number of states that 
tunnel is equal to the number of transverse states, and since the 2d density of states is 
independent of energy, the differential current per unit energy is also a constant.  Figure 6.7(e) 

Figure 6.7: Various characteristics of a 2d-3d junction. (a) Schematic
representation of the junction (Z-axis rotated 90° from the usual.) (b) Linear I-V
threshold response of the junction (c) Band diagram (d) The differential current per
unit energy is proportional to the number of transverse states (e) The transverse
k-states that contribute to the current at various energies 
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shows that the states that tunnel at any given energy map out a ring in k-space of constant area.  
Oddly, the figures also show current flowing in only the upper half of the energy overlap region, 
at low kinetic energy in the valence band.  At higher kinetic energy in the valence band, the 
transverse momentum becomes too large to fit into the small region of k-space on the conduction 
band side.  Thus only valence band states with a kinetic energy up to VOL/2 will tunnel. 

 Current can flow in along the transverse direction as shown in Figure 6.7(a).  Other 
methods can also be considered for making electrical contact. 

6.7 1D-2D JUNCTION 

A 1d-2d junction describes tunneling between the edge of a nanowire and a 2d sheet as 
shown in Figure 6.8(a).  The derivation for this case is very similar to the 2d-3d case.  The only 
difference is that instead of a 2d array of 1d tunneling, we now have a 1d array of 1d tunneling.  
Thus the current is: 
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for large VOL>kbT/q.   

 For small VOL<kbT/q the conductance can be written as: 

Figure 6.8: Various characteristics of a 1d-2d junction. (a) Schematic
representation of the junction (b) Square root I-V threshold of the junction (c) Band
diagram (d) The differential current per unit energy is proportional to the number of
transverse states (e) The transverse k-states that contribute to the current at
various energies 
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where, EZ is the confinement energy along z-axis of the 1d layer.  This is exactly the same result 
that comes from the transfer Hamiltonian method in the Appendix as long as we also assume that 
the confined electron is in the ground state such that kZ=π/LZ as before.  Thus for very small VOL 
the current is proportional to sqrt(VOL) as shown in Figure 6.8(b).  In addition, comparing to the 
2d-2d edge overlap formula, confining one side of the junction resulted in the replacement of 
qVOL with 3EZ.  

 As in the 2d-3d case, current flows in only the upper half of the energy overlap region at 
low kinetic energy in the valence band, due to conservation of transverse momentum.  This is 
indicated by the shaded part of the band diagram in Figure 6.8(c).  At higher kinetic energy in the 
valence band, the transverse momentum becomes too large to fit into the small region of k-space 
on the conduction band side.  Therefore, we included transverse states only up to half the overlap 
voltage.  In this case, the 1d density of states varies with energy and so the current that tunnels at 
different energies is different.  This is shown in Figure 6.8(d).  Figure 6.8(e) shows which 
transverse states contribute at each energy.  

6.8 0D-0D QUANTUM DOT TUNNELING 

 This case simply represents tunneling from a filled valence band quantum dot to an 
empty conduction band quantum dot.  It is schematically represented in Figure 6.9(a).  In order 
to create a meaningful device the quantum dots need to be coupled to contacts, to pass current in 
and out of the device.  This coupling is indicated by the tunnel junctions in Figure 6.9(a).  By 
itself this case is not very interesting, but it will be useful for describing some of the other cases.  
As with the 0d-1d case, we will consider two different 0d-0d systems.  Initially we will ignore 
the effects of the contacts to the dots and then we will include the effects of contacting the 
quantum dots in order to make a realistic device. 

 If we have two isolated quantum dots that are coupled to each other with an electron in 
one of the dots, the electron will quantum mechanically oscillate back and forth between the 
dots.  The band diagram for this situation is shown in Figure 6.9(c).  The thick lines represent the 
confined energy levels.  In order to calculate the rate at which the electron travels between the 
two states we need to use time dependent perturbation theory (TDPT).  The standard result from 
TDPT for the transition probability of a two level system subject to a constant perturbation 
is[64]: 
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Where )/E(Eω ifif −=  and Mf i is the transition matrix element between the states as defined 

in Appendix A (Section 6.16).  In the Appendix we derived the current using Fermi’s golden 
rule.  Evaluating the matrix element is similar and is given by Eqn. (6.16.12): 
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Plugging Eqn. (6.8.2) into Eqn. (6.8.1) gives: 
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Here, EZ,i is the confinement energy along the z-axis of the initial dot and  EZ,f is the confinement 
energy along the z-axis of the final dot.  Thus the probability that the electron is in the final dot 
oscillates back and forth and its magnitude is set by the confinement energies in each dot, as 
given in Eqn. (6.8.3). 

 Now we consider what happens when the electrical contacts couple to the dot.  The levels 
in the quantum dots will broaden due to the contact coupling and will have a broadened density 
of states as shown in Figure 6.9(d). When the quantum dots are aligned, current will flow.  This 
results in a single peak in the I-V curve as shown in Figure 6.9(b).  The width of the current peak 
is determined by the contact broadening.  For a single level coupled to a single contact the 
energy broadening will be γ = I/q/τ  = .  As in Section V, the electron’s escape rate is 
analogous to the attempt frequency of Gamow’s theory[61] of alpha decay tunneling and is given 
by 2EZ,i/h.  The maximum current to the contact per spin state is half of Eqn. (6.5.1):  
I=(2q/h)×EZ,i×Tcontact., where the contact tunneling transmission is labeled Tcontact to distinguish it 
from the interdot transmission Tdevice.  Consequently, the broadening will be given by: 

γ=(1/π)×EZ×Tcontact         (6.8.4) 

For simplicity, we assume that the confinement energies are the same in both dots:  
EZ,i = EZ,f = EZ. 

Figure 6.9: The properties of a weak 0d-0d junction that is coupled to electrical
contacts. (a) Schematic representation of the junction (b) I-V of the junction (c)
Band diagram (d) The density of states per unit energy on left and right sides of
the pn junction. 
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 The transition probability, Eqn. (6.8.3), resembles a delta function, which when 

integrated leads to Fermi’s Golden Rule: 
dE
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= , where dN/dE is the density of 

final states.  In the 0d case, there is only one state, and so the density of states is the inverse of 
the broadening, γ:  dN/dE=1/γ = π/(EZ×Tcontact).  The transition rate leads to a current: 
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We will show in Section XI that the condition for perturbation theory to be valid requires that the 
interdot tunneling transmission Tdevice be less than the square contact tunneling transmission: 
Tdevice<<(Tcontact)

2.  This assures that the interdot current is always less than the maximum 
contact current.  Eqn. (6.8.7) can now be adapted to allow for Fermi occupation of the dots, 
which leads to a conductance: 
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 We can now define a Figure-of-Merit for 0d-0d switches as before: 
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which can be rewritten as: 
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Since the perturbation condition, Eqn. (6.11.4), is that [Tdevice/(Tcontact)
2]<1, this places an upper 

limit on the conductance G/(q2/h)<2π2γ/(kbT).  This means that a steep switch with broadening 
γ<<kbT, must come as the expense of a conductance much less than the conductance quantum 
G<<(q2/h). 

6.9 2D-2D FACE OVERLAP 

 A 2d-2d area overlapped junction describes tunneling from one quantum well to another 
through the face of the quantum well.  This is different from resonant interband tunnel 
diodes[65], since the tunneling proceeds from the valence to conduction bands.  The junction is 
schematically represented in Figure 6.10(a).  Here the schematic is rotated 90° from what one 
would usually expect so that the z-axis lines up between figures.  This is one of the most 
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interesting cases as it is the closest to a step function turn-on as illustrated in Figure 6.10(b).  The 
band diagram is shown in Figure 6.10(c). 

 The step function turn on can be seen by considering the conservation of transverse 
momentum and total energy.  This depicted in Figure 6.10(e).  The lower paraboloid represents 
all of the available states in k-space on the left side of the junction and the upper paraboloid 
represents the available k-space states on the right side of the junction.  In order for current to 
flow the initial and final energy, and wave-vector k, must be the same and so the paraboloids 
must overlap.  However, as seen in the right part of the figure, they can only overlap at a single 
energy.  Furthermore, the joint density of state pairs between valence and conduction band is a 
constant in energy.  Thus the number of state pairs that tunnel is a constant regardless of the 
overlap energy as seen in Figure 6.10(d). 

 The tunneling rate of the valence/conduction band state pairs that transition is different 
from the 3d-3d bulk case where we had a 2d array of 1d channels.  In this case we have a fixed 
number of 2d states and a completely different 1d problem.  The 1d problem now represents 
tunneling from a single fixed level to another single fixed level as in the 0d-0d case.  As seen 
from the transition probability in the 0d-0d case, Eqn. (6.8.3), the transition probability 
resembles a delta function as in Fermi’s Golden Rule.  This will be integrated below, and is 
independent of the overlap voltage.  Thus the total tunneling current is independent of the 
overlap voltage and will be a step function with respect to the gate voltage.   

 In order to calculate the amount of current that flows we need to find the transition rate 
for each state that tunnels and sum over all of the states that tunnel.  Every initial state is coupled 
to only one final state.  This is due to conservation of momentum.  This means that we can use 
the 0d-0d result, Eqn. (6.8.3), to describe the transition probability between an initial and final 
state.  Current can flow into each quantum state, along the quantum well, or through the face of 
the quantum well.  We also do not need to externally impose conservation of energy as the 0d-0d 
result in time dependent perturbation theory is sharply peaked about Ei=Ef.  Therefore we simply 

Figure 6.10: Various characteristics of a 2d-2d face overlap junction. (a) Schematic
representation of the junction (b) The I-V characteristic is a step function.  (c) The
band diagram along the tunneling direction shows that the electron is tunneling
from one confined sheet to another. (d) Even though the overlap of the density of
states increases with increasing overlap voltage, there is only a single energy,
indicated by the dotted line, at which the electrons tunnel. (e)There is only a single
tunneling energy because of the simultaneous conservation of energy and
momentum.  The energy versus wave vector paraboloids on each side of the
junction only intersect at a single energy. 
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need to sum Eqn. (6.8.3) over all initial states or final states: 
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When evaluating the integral we used equal valence and conduction band mass.  Here we see 
that oscillation in transition probability of individual states is averaged out in summation and that 
the probability of being in the final state is proportional to time t, as is usual in time-dependent 
perturbation theory.  We also assumed that the bands were sufficiently overlapped and that the 
lower limit of the integral can be taken to be -∞.  This form of Fermi’s golden rule is done in 
Appendix A (Section 6.16). 

 We can then convert this to a transition rate by taking the time derivative.  The transition 
rate can then be converted to a current density by multiplying by the electron charge and 2 for 
spin to give a current of: 

devicefZ,iZ,32face2d,2d EE
π

qmA
I T×××=−


       (6.9.2) 

for large VSD>kBT/q.  For small VSD the conductance depends on the difference in Fermi 
occupation fractions, and can be written as: 

T4k

q
EE

π

qmA
G

b
devicefZ,iZ,32face2d,2d ××××=− T


                       (6.9.3) 

The main change in going from 3d-3d to 3d-2d is that the energy factor qVOL became EZ.  
Likewise, in going from the 3d-2d to 2d-2d the other energy factor qVOL also became EZ.  Thus 
for each confined side of the junction the relevant energy changes from the overlap energy to the 
confinement energy.  Consequently the 2d case has roughly the same current as a 3d case if the 
confinement energy EZ is the same as the overlap voltage qVOL.  In practice EZ is likely to be 
much larger than qVOL, providing the 2d-2d case with a significant current boost. 

 Following the joint density of states, the current takes the form of a step function with 
respect to the gate voltage.  This is similar to the step function case of quantum well optical 
transitions.  As soon as the bands overlap, the current immediately turns on.  However, contact 
broadening mechanisms will smear out the step-like turn-on function and this will be discussed 
later. 

6.10 1D-1D EDGE OVERLAP 

 A 1d-1d edge overlap junction represents two nanowires overlapping each other as shown 
in Figure 6.11(a).  This junction is similar to the 2d-2d area overlap.  The current can be found 
by summing the 0d-0d result over a 1d density of states.  Alternatively, the method in the 
appendices will also give the same result.  The resulting current is: 
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fZ,iZ,22
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edge1d,1d qV

m
EE

π

qL
2I T×××=−


          (6.10.1) 

for large VOL.>kbT/q. 

 For small VOL<kbT/q the conductance can be written as: 

T4k

q

qV

m
EE

π

qL
2G

b
device

OL
fZ,iZ,22

X
edge1d,1d ××××=− T


               (6.10.2) 

As in the 2d-2dface case the tunneling only occurs at a single energy due to the conservation of 
momentum and energy as shown in Figure 6.11(e).  Since we are now dealing with 1d 
nanowires, the number of transverse states follows a 1d density of states which follows a 

OL/1 V  dependence.  This is illustrated in Figure 6.11(d).  This predicts a step function turn on 

followed by a reciprocal square root decrease.  This seemingly implies that the initial 
conductance will be infinite.  However, the contact series resistance will limit the conductance 
and the broadening associated with the contacts will also limit the peak conductance. 

6.11 PERTURBATION TUNNEL TRANSMISSION LIMIT 

 When a level on the p-side of a junction interacts with a level on the n-side of the 
junction it is possible for the two levels to interact strongly and repel each other.  In most cases 
this is not a problem, as the interaction between any two particular levels goes to zero as the 
devices get larger and any small amount of level broadening will wash out the level repulsion.  In 
the case of very large contact regions leading to the tunnel junction, the large normalization 
volume of the wave functions guarantees that individual level repulsion matrix elements are 
negligible.   

 In contrast, the 0d-0d, 1d-1d edge overlap and 2d-2d area overlap cases, have finite 
extent along the tunneling direction, restricting the normalization volume.  This means that the 
tunnel interaction matrix element, |Mf i|, can take on a large finite value.  If this interaction is too 

Figure 6.11: Various characteristics of the 1d-1d edge overlap junction. (a)
Schematic representation of the junction. (b) I-V curve of the junction.  (c) Band
diagram along the tunneling direction (d) The 1d density of states at the tunneling
energy is different at different overlap voltages (e) There is only a single tunneling
energy because of the simultaneous conservation of energy and momentum.  The
energy versus wave-vector parabolas on each side of the junction only intersect at
a single energy. 



 

 

64 

 

large, the two interacting levels will be strongly coupled and all the perturbation results in this 
paper will fail.  Contrarily, if the level broadening is greater than the level repulsion matrix 
element, γ>|Mf i|, the level repulsion will be washed out justifying our perturbation approach.  
The broadening γ is typically caused by coupling to the contacts.  It is also possible for various 
scattering mechanisms to broaden the level. 

 We will show that if the current is limited by the weak tunneling junction rather than the 
contact resistances, we will have |Mf i|<γ, and the levels will be sufficiently broadened for 
perturbation theory.  This will occur if the allowed contact current is greater than device current 
which is limited by tunneling transmission Tdevice.  For a single level device such as the 0d-0d 
and 1d-1dedge, the contact current can be related[63] to the broadening γ to give: Icontact=2qγ/ , 
from Section VII, where the factor 2 is due to spin.  The device current is given by Fermi’s 
golden rule: 

dE

dN
M

2π
2qI

2

ifdevice ×××=


           (6.11.1) 

The density of states dN/dE can also be expressed as the inverse of the level spacing, ΔE, or 
level broadening, γ: dN/dE=1/ΔE if ΔE<γ, or dN/dE=1/γ if ΔE>γ.  Using this and setting 
Idevice<Icontact gives |Mf i|

2<(γ×ΔE) or |Mf i|
2<γ2, respectively.  But in the first case ΔE<γ assures 

|Mf i|<γ.  Therefore in both cases |Mf i|<γ satisfies the level broadening requirements for Fermi’s 
Golden Rule, and limits the permitted tunneling current.   

 Perturbation theory requires the matrix element to be less than the width of the 
broadening.  We have shown that the levels are sufficiently broadened when the device current is 
limited by the tunneling junction but not limited by the contacts.  The same restriction on tunnel 
junction current applies to the 2d-2dface case, since both the contact current and the device current 
are multiplied by the number of transverse y states and can be analyzed as many 1d-1dedge modes 
in parallel. 

 The tunneling matrix element, which is less than γ, is given by Eqn. (6.16.12):

device,,

1 T××= fZiZif EEM
π

.
  

Solving for the maximum permitted tunneling transmission 

probability Tdevice in the general case: 

fZ,iZ,

22

device EE

γπ

×
<T               (6.11.2) 

This perturbation requirement applies to the 0d-0d, 1d-1dedge, and 2d-2dface cases. 

 Now specifically considering the 0d-0d case, the contact broadening is Eqn. (6.8.4), 
γ = (1/π)×EZ,i×Tcontact.  Inserting this into the maximum permitted tunneling transmission 
probability, Eqn. (6.11.3), with the EZ confinement energies equal, the basic requirement |Mf i|<γ 
implies:  

2
contactdevice TT <               (6.11.3) 

which we regard as the condition for the validity of time-dependent perturbation theory for the 
0d-0d case. 
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 The contact broadening for a specific 1d-1dedge case will now be worked out:   

We consider the 1d-1dedge case with contacts consisting of nanowires extending to infinity.  The 
electrical contact broadening for 1d-1d edge overlapped nanowires, Figure 6.11(a), is controlled 
by the loss of carriers into the extended nanowires.   Let the length of the overlap region be LX.  
In each wire, the carrier will travel an average distance of LX before escaping.  At turn on, its 
momentum is given by pX=mvX= Xk  where kX=π/LX in the ground state. Using 

2
X

222
X

2
X /2mLπ/2mkE  == , the average escape time is τ=LX/vX=h/4EX.  Then the energy level 

broadening due to contacts is:  

γ≡ /τ=(2/π)EX = 2
X

22 2mL/π)(2/π              (6.11.4) 

The coupling matrix element is the same as the 0d-0d case and is given by Eqn. 

(6.16.12): devicefZ,iZ,if EE
π

1
M T××= .  Requiring |Mf i|<γ implies that the tunneling 

transmission factor Tdevice should not be too large: 

2
X

fZ,iZ,
device L

L2L ×
<T                (6.11.5) 

This is the condition for perturbation theory to be valid for 1d-1dedge case contacted by extended 
wires.  The same condition applies to the 2d-2dface case because it can be analyzed as many 
1d-1dedge modes in parallel.  This condition can be relaxed if the level broadening is dominated 
by a scattering mechanism such as electron-phonon scattering. 

6.12 MAXIMUM CONDUCTANCE LIMIT 

 Since we have found a maximum permitted tunneling transmission, Tdevice for 
perturbation theory, this sets the maximum permitted current or conductance within our 
perturbation approach.  For the 0d-0d case we already derived Eqn. (6.8.10), the conductance 
G/(q2/h)=2π2γ/(kbT)×[Tdevice/(Tcontact)

2].  The maximum permitted tunneling transmission is 
[Tdevice/(Tcontact)

2]=1, which leads to the maximum permitted conductance: 

Tk

γ
π

2

b

2
2

00 ××<− h

q
G dd       (6.12.1) 

which is unfortunately less than the conductance quantum for sharp thresholds, γ<kBT. 

 For the 1d-1dedge case the expression for the 1d-1dedge conductance is Eqn. (6.10.2):  
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L
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OL
fZ,iZ,22

X
edge1d,1d ××××=− T


 

In the most general damping model device,,

1
γ T××=> fZiZif EEM

π
.  Plugging |Mf i|=γ into 

G1d-1d, edge and setting qVOL=γ to provide the peak permitted conductance gives: 
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        (6.12.2) 

Now we specialize to damping due to extended nanowire contacts reaching to infinity.  Inserting 
the broadening equation, Eqn. (6.11.4), γ=(2/π)EX, and the explicit expression 2

X
22

X /2mLπE =  
gives the maximum conductance: 

Tk

γ

2

π2q
G

B

3/22

edge1d,1d ××<− h
          (6.12.3) 

which is a similar limit as the 0d-0d case. 

 The derivation for the 2d-2dface case maximum permitted conductance is similar:   

From Eqn. (6.9.3): 
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devicefZ,iZ,32face2d,2d ××××=− T


 

Where A≡W×LX is the area of the overlap region between quantum wells.  Once again, in the 

most general damping model devicefZ,iZ,if EE
π

1
Mγ T××== .  Plugging |Mf i|=γ into G2d-2d, face, 

we obtain the general maximum permitted conductance: 
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 Now we specialize to damping owing to extended quantum well contacts reaching to 
infinity.  Inserting the broadening equation, Eqn. (6.11.4), γ=(2/π)EX, and the explicit expression 

2
X

22
X /2mLπE =  gives the maximum conductance: 

Xb

22

2d,face2d L

W

Tk

γ

4

2 ×××<−
π

h

q
G              (6.12.5) 

 Thus we have obtained the maximum permitted perturbation conductance for the 0d-0d, 
1d-1d, and 2d-2d cases, for both general damping and for end-wire damping models.  Within the 
limits of perturbation theory all of the cases have a tradeoff between the broadening and the 
conductance. 

Figure 6.12: (a) When there is poor spatial overlap, at long wave-vectors near the
turn-on threshold, the overlap integral is small and nonzero. (b) For perfect spatial
overlap, the overlap integral between the same transverse k-vector is 1.  (c) The
overlap integral is zero for different transverse k-vectors. 
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6.13 SMEARING THE STEEP RESPONSE: 

 The finite overlap length LX of the 1d-1dedge, and 2d-2dface cases led to loss of carriers to 
the extended nano-wire/quantum well contacts, and the damping smeared the steep response.  
We can show the modification of the steep response in an entirely different way, by employing 
the exact wave functions at the ends of the wires.  The wave-functions are illustrated in Figure 
6.12(a) where long wavelengths approach zero at the ends of the wires, precisely where overlap 
is needed.  These long wavelengths occur right at threshold, impairing the sharp turn-on. 

 On the other hand, shorter wavelengths as shown Figure 6.12(b) and (c) are either 
overlapping in Figure 6.12(b) or orthogonal in Figure 6.12(c).  If there is a perfect overlap the 
states completely couple by tunneling.   

The shape of the turn on due to wave functions going to zero at the wire ends can be 
modeled following the methods in the Appendix.  The kronecker deltas in Eqn. (6.16.10) need to 
be replaced by the actual transverse overlap integral from Eqn. (6.16.5) and the sums in Eqn. 

Figure 6.13: (a) The conductance curves for various 1d dimensionalities are
plotted.  Parameters were chosen at the limit of perturbation theory:  Tunneling
transmission probability is Tdevice=2.16%; damping due to propagation down the
nano-wire is γ =2.34meV; nanowire thickness and corresponding quantum
confinement energy is LZ=8.7nm and EZ=50meV respectively; and length of
overlap region LX=32nm.  The effective mass was 0.1me.  (b) A close-up view. 
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(6.17.4) should include all the transverse states.  Taking the limit near turn-on for long k-vectors, 
we get the following expressions for the conductivities: 
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where, W is the width of the quantum well.  The turn-on conductance versus overlap control 
voltage VOL can be seen in Figure 6.13 for the 1d-1dedge, 1d-2d, and 1d-1dpoint cases.   Similarly 
Figure 6.14 covers the 2d-2dface, 2d-3d, 3d-3d and 2d-2dedge cases, with conductance per unit 
width plotted. 

Figure 6.14: .(a) The conductance curves for various 2d and 3d dimensionalities
are plotted.  The parameters chosen were the same as in Figure 6.13, at the limit
of perturbation theory:  Tunneling transmission probability is Tdevice=2.16%;
damping due to propagation down the nano-wire is γ =2.34meV; nanowire
thickness and corresponding quantum confinement energy is LZ=8.7nm and
EZ=50meV respectively; and length of overlap region LX=32nm.  The effective
mass was 0.1me.  (b) A close-up view. 



 

 

69 

 

 The effective broadening is the overlap voltage required to reach peak conductance for 
the 1d-1dedge and 2d-2dface cases that would otherwise have been infinitely sharp.   

 For the 1d-1dedge case, the voltage requirement is met when Eqn. (6.13.1) equals the on 

state conductance Eqn. (6.10.2): 
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gives an effective broadening:  
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 Likewise for the 2d-2d case the voltage requirement is met when Eqn. (6.13.2) equals the 

on state conductance Eqn. (6.9.3) 
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In both cases γ~EX which is what we found in the simple escape time model given by Eqn. 
(6.11.4).   

6.14 DENSITY OF STATES BROADENING 

 In sections 6.1 to 6.10 we have assumed an ideal 1d, 2d or 3d density of states and 
ignored any level broadening.  In practical devices the band edges will not have an ideal density 
of states that fall sharply to zero at the band edge, but rather there will be a band tail.  This tail 
will be caused by any imperfections in the lattice, whether they are due to impurities or phonons.  
In optical measurements this results in the Urbach tail of the absorption spectrum.  In silicon the 
optical absorption coefficient falls off as an exponential at the rate of 23mV/decade[25, 26].  If a 
similar tail exists in tunneling devices it could also pose a limit on the achievable sub-threshold 
slope and on the level broadening, γ. 

6.15 CONCLUSIONS 

 Since there were many geometries, and many different cases covered here, we provide a 
global Table I that covers all the cases considered in this paper. 

 Dimensionality significantly affects the low voltage turn on characteristics of a tunneling 
device, including Backward Diodes and tunneling Field Effect Transistors.  The ideal tunneling 
transistor would have step function turn on characteristic.  Fortunately, a 2d-2dface overlapped 
tunneling junction is very close to this.  In practice, various effects such as nonuniformities, 
dopants, phonons, series resistance, level broadening, poor wavefunction overlap, will prevent us 
from observing an ideal 2d density of states step function turn on.  In spite of non-idealities the 
2d-2dface overlapped junction is expected to bring us closer to a step function response.  
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Furthermore quantum confinement on either side of a tunneling barrier can significantly boost 
the on-state conductance. 
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6.16 APPENDIX A: TRANSFER-MATRIX ELEMENT DERIVATION 

 In our derivation of the tunnel matrix element by the transfer Hamiltonian method we 
will consider 3d-3d case. The method for the other reduced dimensionality cases is very similar 
and we will note some of the changes that would be necessary for those cases as we go through 
the derivation.   

 First we consider a simple Type III junction band diagram as shown in Figure 6.15.  The 
total Hamiltonian H, is illustrated in Figure 6.15(a).  The incomplete initial Hamiltonian Hi, on 
the left is in Figure 6.15(b), and the incomplete final state Hamiltonian Hf on the right is in 
Figure 6.15(c).  For the cases in Figure 6.15(b)&(c), the incomplete Hamiltonians lead to their 
own stationary Schrodinger’s equations: Hi|Ψi=Ei|Ψi and Hf|Ψf=Ef|Ψf respectively.  The 
subscript ‘i’ represents the initial electron in the valence band and the subscript ‘f’ represents the 
final electron in the conduction band.   

 In the true full Hamiltonian, H, a valence band electron on the left decays exponentially 
into the barrier, and tunnels to the conduction band on the right.  The perturbation Hamiltonian 
with respect to the starting Hamiltonian is therefore H'=H-Hi.  The Fermi’s Golden Rule 
transition rate for an electron in the valence band on the left, tunneling to the conduction band on 
the right, is.   

EV

EC

0 L z
2

L

e-

H

EC

0 L z

Hi

EV

EV

EC

0 L z

Hf

(a)

(b) (c)

Figure 6.15: (a) The exact total Hamiltonian H.  (b) The incomplete Hamiltonian Hi
whose eigenstate represents the initial valence electron of energy Ei. (c); The
incomplete Hamiltonian Hf  whose eigenstate represents the final conduction band
electron of energy Ef. 
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    (6.16.1) 

where we used the fact that Hi|Ψi=Ei|Ψi, and dN/dE represents the density of final states.  

 The exact Hamiltonian, in Figure 6.15(a) naturally divides into three regions.  For z<0 the 
system resembles Hi, whose eigenstates are in the valence band on the left.  For 0<z <L, there is 
a barrier which the electron must tunnel through, and for z>L the system resembles Hf with 
eigenstates in the conduction band on the right.  Ψi is a free particle in the valence band and the 
exponential decay can be modeled by the WKB approximation.  For convenience we segregate 
the problem into halves, picking a surface somewhere in the barrier so that we can divide the 
junction into a left half and a right half.  For simplicity we choose the dividing plane to be at L/2 
as shown in Figure 6.15(a). 

 Since (Hi-Ei)|Ψi=0 everywhere, and H≡Hi in the left half space, then (H-Ei)|Ψi=0, in the 
left half-space; z<L/2.  Likewise, since (Hf-Ef)|Ψf=0 everywhere, and H≡Hf  in the right half-
space, then, (H-Ef)|Ψf=0, in the right half-space; z>L/2. 

 Following refs. [57] &[58], the matrix element, ( )
∞

∞−
−= ii

*
f

3
if ψEHψrdM can be 

simplified by recognizing that the integral is certainly zero for z < L/2 and by subtracting 
*

ff
*
i ])ψE(H[ψ0 −= for z > L/2.  Further simplification arises when we express the Hamiltonian 

in the standard format: 

 V(r)
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H
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                   (6.16.2) 

where V(r) describes the entire potential of the junction.  By substituting this into: 
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and using both energy conservation, Ei =Ef, and the cancellation of terms involving V(r), we will 
be left with: 
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Now we use Gauss’s law to express the matrix element as: 

 =
⋅=

L/2Z ifif SdGiM


  where      (6.16.5) 



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The matrix element is now expressed as a surface integral of fiG


which is nonzero only at the 
z=L/2 surface.   
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 To determine the tunneling matrix element (A.5) in our case of 3d-3d bulk tunneling we 
must first write down Ψi and Ψf in order to evaluate Gf i.  Within the effective mass 
approximation, we can use the WKB approximation to write down the wave functions.  We 
neglect the underlying Bloch functions, but for a more complete treatment see ref. [59].  We also 
assume that most of the probability density is outside of the barrier region and so the barrier 
region can be neglected when calculating the normalization constant.  The normalized WKB 
approximation becomes: 
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In these equations kα,i and kα,f are the α-component of the k-vector in the initial and final states 
respectively.  kZ(z) is the spatially dependent value of kZ that varies within the barrier.  LX, LY, 
LZ,i, and LZ,f are the dimensions of the device as shown in Figure 6.4(a).  LZ,i represents the 
length of the left half of the device for z < 0.  LZ,f represents the length of the right half of the 

device for z>L.  Plugging these wavefunctions into ifG


 and evaluating it at z=L/2 gives: 
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where )k(kΔk fX,iX,X −= and )k(kΔk fY,iY,Y −= .  Using this and evaluating the expression for 

the matrix element we get: 
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         (6.16.9) 

The kronecker deltas represent the conservation of transverse momentum and show that the 
conservation is a natural result of calculating the matrix element. For the case of incomplete 
conservation of momentum, the kronecker deltas will be replaced by the actual surface integral 

in Eqn. (6.16.4).  At this point we desire to replace 




− 

L

0 Zdzk2exp  with Tdevice.  But we 

redefine Tdevice to be a phenomenological factor that includes both the WKB exponential and the 
effect of the underlying Bloch functions.  Thus the matrix element is given by: 

fY,iY,fX,iX, k,kk,kdevice
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fi δδ
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Interestingly, this expression is also valid for all of the reduced dimensionality cases, we just 
need to sum over fewer k-states. 

For the reduced dimensionality cases we can use kZ=π/LZ and *22 2/ mkE ZZ =  to further 
simplify the matrix element.  For 0d-1d we get the following matrix element: 

device
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2

iZ,
1d0di,f L

k

2mπ

E
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


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
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
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        (6.16.11) 

For 0d-0d both sides of the junction are confined which gives: 

devicefZ,iZ,0d0di,f EE
π

1
M T××=−                 (6.16.12) 

6.17 APPENDIX B: USING THE TRANSFER MATRIX ELEMENT TO DERIVE CURRENT 

 In Appendix A we found the matrix element that can be used with Fermi’s golden rule.  
Using this, we can now find the current in any of the different cases.  To aid in correctly 
counting the number of states, we use the delta function version of Fermi’s golden rule.  The 
transition rate between two states is: 

)Eδ(Eψ|EH|ψ
2π

R fi

2

iifif −−=


        (6.17.1)  

We convert the transition rate to a tunneling current by multiplying the rate by the electron 
charge, summing over initial and final states, and multiplying by the Fermi-Dirac occupation 
probabilities. 
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q4
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   (6.17.2c) 

Where 

[ ] 1T)/kF(Eexp

1

bpi
V +−

=f         (6.17.3a) 

[ ] 1T)/kF(Eexp

1

bnf
C +−

=f        (6.17.3b) 

Fn and Fp are the quasi Fermi levels for electrons and holes respectively.  

Plugging the matrix element Eqn. 6.16.10 into Eqn. 6.17.2c for tunneling current gives: 
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 (6.17.4b) 

Interestingly, this expression is also valid for all of the reduced dimensionality cases, we just 
need to sum over fewer k-states. 

For 3d to 3d bulk we break the sums up into a transverse (kt) and z component (kZ) and 
then we convert the sums over kZ and kt to integrals over the z-component of energy (EZ) and 
transverse energy (Et) respectively.  We can then convert the integrals over EZ to integrals over 
total energy by a change of variables. Subsequently evaluating the delta functions gives us: 

( )  ×−=
−OL OLV

0 deviceVC

E)Vmin(E,

0 ti32Tunnel dEdE
2π

qmA
I Tff


       (6.17.5) 

Here we take the zero of energy to be at the conduction band edge on the n-side.  The transverse 
energy can be no more than the total energy on either side of the junction.  For reduced 
dimensionalities we will be summing over fewer k-states and so there may be only one or even 
no integrals. 

 Now we can set ( ) T)(4kqV BSDVC ≈− ff  by assuming small biases less than kBT.  

Finally, we evaluate the integrals and divide by VSD to recover Eqn. (6.3.3) 
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Thus we have finally recovered the equation for 3d-3d bulk tunneling current with small biases.  

 Next, we consider the 2d-3d case to demonstrate the general applicability of Eqn. 
(6.17.4).  In this case we sum over the transverse states (kt) and only the final kZ states. After 
converting the sums to energy integrals and evaluating the delta function we get: 
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             (6.17.7) 

Taking the small bias limit and dividing by VSD we recover Eqn. (6.6.2) 
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Similarly, we can derive the current for any of the cases using Eqn. (6.17.4). 
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Chapter 7: Non-Equilibrium Green’s Function 
Modeling of Dimensionality Effects 

7.1 INTRODUCTION 

 Now that we have analytically demonstrated the importance of considering the 
dimensionality of a PN junction, we will take a different approach to the problem and 
numerically model the tunneling junctions and verify the key effects.  The non-equilibrium 
greens function (NEGF) method allows us to accurately model all of the quantum effects and 
conservation laws. 

 In this chapter we will first explain the theory required to use a NEGF model starting 
with a one dimensional two band k.p model and then a two dimensional 8 band k.p model.  
Finally we will use the NEGF simulation to analyze a 1d-1dedge junction and show the key 
features of the junction.  The basic NEGF theory follows Datta’s book [63], but several 
extensions need to be made to account for the multiple bands[66-68].  The use of k.p theory 
follows from the work by Ganapathi et all [55]. 

7.2 1D 2 BAND K.P NEGF MODEL 

 In order to demonstrate the concepts behind the NEGF simulation we will first develop a 
one dimensional two band k.p model.  The first step is to create a Hamiltonian to describe the 

system.  To do this we first start with the following bulk two band k.p Hamiltonian[69]:
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(7.2.1) 

This defines the band structure, but only describes a bulk material.  In order to work in real space 
we need to convert k to a spatial derivative: 
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Thus we have: 




























++∇−⋅∇−

⋅∇−++∇−
=Ψ

nb

na

nG

nG

n

UE
m

p
m

i

p
m

iUE
m

H
,

,

0

22

0

00

22

2

2
][

ψ
ψ









   

(7.2.3) 



 

 

78 

 

Now the wavefunction, nΨ , is dependent on the position, n.  We also added a spatially varying 

potential Un At this point we need to define a lattice on which the wavefunction is defined as 
shown in Figure 7.1.  Each lattice point has two orbitals for each band.  The spatial derivatives 
can now be converted to discrete derivatives: 

)(
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              (7.2.4) 
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           (7.2.5) 

Plugging these back into the Hamiltonian gives us a recursive equation linking the different 
wavefunctions.  To simplify the equation we can define the following two constants: 
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Using these, the Hamiltonian for the first three atoms is: 
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 (7.2.8) 

We can use this Hamiltonian to plot the band structure by assuming the potential is zero.  To find 
the band structure, we should define: 
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nΨ 1+Ψn1−Ψn

Figure 7.1: Consider a chain of 1d atoms 
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The bandstructure can be found by assuming a periodic wavefunction and finding the 
eigenvalues of the following equation[63]: 

)exp(][)exp(][][][ 0 ikaikaHH k −⋅+⋅+= +ττ
     (7.2.11) 

This gives the bandstructure shown in Figure 7.2.  Near k=0 the band structure is correct. 
However, the band structure is very wrong at large k values and there are states in the band gap.  
This is because our model is based on a k.p Hamiltonian which only designed to be accurate in 
the zone center.  This means that we need to somehow modify our Hamiltonian to eliminate the 
spurious states that exist in the band gap.  The way to do this is to refine one of the derivatives to 
use next nearest neighbors as follows: 
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(7.2.12) 

This gives the following Hamiltonian for the first three atoms: 

Figure 7.2: The band structure using nearest neighbor coupling is incorrect at large k
values 
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Using this Hamiltonian gives the band structure shown in Figure 7.3.  All the spurious solutions 
have been eliminated.  However, by requiring next nearest neighbor coupling we have 
effectively created a four band basis. 

 Now that we have a Hamiltonian that can describe our system, our next step is to find the 
electron density.   The electron density can be represented by a sum of delta functions: 

 −=
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Next we can express the delta function as a limit: 

+→
+









−−

−
+−

=
−

=−×
→

0

11

)(

2
)(2

0

2

η

ηεηεε
ηεδπ

ααηα
α iEiE

i
E

E

       

 (7.2.15) 

Figure 7.3: The band structure using next nearest neighbor coupling
eliminates all spurious states in the band gap. 
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Next we can convert this into a matrix equation by replacing E with [H].  The validity of this 
substitution can be seen by considering the eigenstates of [H] as the basis.  We now have: 

[ ])()(][ EGEGiA +−=                     (7.2.16) 
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][

1
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(7.2.17) 

Thus we have now defined the Greens function for the system. 

 The next step is to find the greens function if we have a contact connected to our device.  
To analyze this consider a larger system that is divided into two parts, a channel and a 
contact/reservoir as shown in Figure 7.4.  Next we need to accordingly divide our Hamiltonian: 
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We are only interested in the electron density in the channel and so we only need to find the top 
left part of the matrix, [G].  Using the properties of matrix inversion we now have: 

111 ])0[(][][ −+−− Σ−−+=−= HIiECBDAG       (7.2.20) 
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By doing this we have abstracted the effect of the large contact into a self-energy term, [Σ].  If 
we had some way of finding [Σ], calculating [G] is easy. 
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Figure 7.4: A larger system can be divided in to contact part and device or channel
part 
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 The key to finding the self-energy is to assume an infinite contact where every atom is 
identical.  In this case, the green’s function at each atom will be identical.  This means that we 
can set [GR]=[G] in  Eqn (7.2.21)  and solve for [G] self consistently in Eqn (7.2.20) [68]. Thus 
we now have the electron density for an infinite contact. 

 Finally, to find the current we need to weight the electron density from the left contact by 
f1, weight he electron density from the right contact by f2 and evaluate:  

ψψ +=
dt

d
I

                             
(7.2.22) 

Using 
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d
i =

                      
(7.2.23) 

The details of how to find the current are worked out nicely in Datta’s book [63].  Thus we have 
completed the two band k.p NEGF model. 

7.3 2D 8 BAND K.P NEGF MODEL 

 In order to model the dimensionality effects a two dimensional simulation is needed.  
However, when moving to two dimensions a simple two band model cannot reproduce the two 
dimensional band structure.  Consequently we need to move to a more realistic band structure 
and use a 4 band or and 8 band k.p model.  In our case we need to include the spin orbit coupling 
and use an 8 band model because we need to have the correct density of states to model the 
dimensionality effects.  The 8 band k.p model is defined by the following equations [67, 70, 71]: 
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In this model we neglected Kane’s B parameter which effectively means that we have assumed 
inversion symmetry and ignored the Dresselhaus effect. 

 oP  is the momentum matrix element and is given by: 
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Given this we can define an energy EP: 
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The constants L’, M and N’ can be defined in terms of the Luttinger parameters: 
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At this point if we continued with the usual definitions for A’ and P0 we would end up with 
spurious solutions at large k and have states in the band gap as was the case in the two band 
model.  Consequently we need to follow the methods in [66] to eliminate the spurious solutions.  
Essentially this means setting A’ to zero and solving for P such that we get the correct effective 
mass.  The main justification for this model is simply that it still reproduces the correct band 
structure at the gamma point.  Unfortunately this only works for certain material parameters and 
so it is essential to check that the band structure is in fact correct when using a new material.  
The new fitted definition of EP is: 
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 Now we have finished defining the band structure we need to convert the k- vectors into 
discrete spatial derivatives.  At each lattice point there are four orbitals, S, X, Y, and Z to give a 
wavefunction of: 
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To show how to convert the k vectors to discrete differences we will give a few illustrative 
examples: 
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Using this discretization method we can now define a spatially varying Hamiltonian as done in 
the previous section.  Since we are working in two dimensions we can leave kz as a constant.  In 
fact, now that the basis set is fully defined, the rest of the analysis is identical to that in the 
previous section.  

7.4 NEGF SIMULATION RESULTS 

 Now that NEGF Model is fully defined we can apply it to simulate 1d-1dedge junction.  
All the of the material parameters used are listed at the end of the chapter in Section 7.5 
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Figure 7.5: Fig 1: (a) No current can flow when the bands do not overlap. (b) Once
the bands overlap, current can flow.  The applied potential is dropped entirely 
across the AlSb barrier. 
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 One of the byproducts of pn-junction dimensionality analysis is that quantum 
confinement in the tunneling direction on either side of a tunnel junction greatly increases the 
tunneling current!  This arises analytically, but here we derive added insights into the benefit of 
quantum confined tunneling through numerical simulation.  This broadly validates the great 
increase in tunneling current, but reveals some new oscillatory features in the I-V curve that were 
previously unnoticed. 

 We compute the small bias conductance using 2d ballistic transport simulations within 
the nonequilibrium green’s function (NEGF) formalism.  We model the bandstructure using an 
8×8 k.p Hamiltonian described in the previous section and ignore the effects of strain.  We take 
the electronic potential to be dropped entirely across the tunneling barrier and plot the 
conductance as a function of the overlap potential, VOL, as shown in Figure 7.5.  

 First we consider the tunneling between GaSb/InAs quantum wires (1d-1dedge) pn 
junctions as shown in Figure 7.6.  We choose the GaSb/InAs system because it has become 
accepted as the preferred material platform since it doesn’t require heavy doping and has a 
favorable Type III, broken gap, band alignment.  Gate electrodes can be added to the nanowires 

Figure 7.6: (a) We model tunneling between two coupled nanowires (1d-1dedge)
(b)  Gates can be attached to each wire 

Figure 7.7: The 1d-1dedge conductance in is plotted as a function of VOL.  We see
that it is 10 times larger than the 2d-2dedge conductance and that numerical
calculation oscillates as a function of VOL. 
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to control the overlap voltage VOL. Assuming a continuum density of states model, the current 
should diverge upwards and then fall off as OLV/1  as shown by the dotted line in Figure 7.7. 

Conservation of energy and transverse momentum only allows current to flow at a single energy 
as shown in Figure 7.8a.  This causes the shape of the conductivity curve to represent the 1d 
density of states (DOS) at the tunneling energy as shown in Figure 7.8b.  However, in small 
devices, the 1d DOS does not form a continuum, but rather a series of individual levels as shown 
in Figure 7.8c.  This is because the transmission probability is maximized when matching wave  
vectors fit in the 40 nm overlap on each side of the junction.  This is illustrated in Figure 7.9.  As 
seen in Figure 7.7, this causes the actual shape of the conductivity to be dominated by an 
oscillatory behavior, but only the first peak is relevant in a switching device.  Except for the 
conductivity oscillations, the analytical continuum approximation and the more exact numerical 
1d-1dedge curves in Figure 7.7 are similar.  

 Increasing the length of the overlap causes the distance between the conductance peaks to 
decrease as shown in Figure 7.10.  In this plot we assumed ky=0.  This will change the band 
structure but the qualitative results should be the same. 

 Now we introduce the 2d-2dedge pn junction which simply eliminates the quantum 
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Figure 7.8: (a) There is only a single tunneling energy because of the conservation
of energy and momentum. (b) The 1d density of states at the tunneling energy is
different at different overlap voltages.  (c) In small devices the 1d DOS is actually a
series of individual states. 

Figure 7.9: (a) When the transverse momentum, kX, is the same in both nanowires,
the transverse overlap integral is 1 and the conductivity is high (b) When kX is
slightly different on each side the transverse overlap integral starts to fall (c) When
the k vectors differ by a multiple of  π/LX the overlap integral drops all the way to
zero 
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confinement in the tunneling direction as shown in Figure 7.11.  Once again gates can be added 
on top of the quantum wells to control the overlap potential VOL. We see in Figure 7.7 that 
without quantum confinement in the tunneling direction (2d-2dedge junction) the magnitude of the 
conductivity is 10 times lower than the 1d-1dedge!  Counter-intuitively, shrinking the device and 
truncating the quantum wells increases the conductivity.  This is because the quantum 
confinement increases the rate of tunneling attempts on both sides of the junction and improves 
the wavefunction overlap between each side of the junction.   

 By using quantum confinement along the tunneling direction, the conductivity of TFET’s 
is significantly increased. This will help overcome the limited current drive capability of 
TFET’s.   

7.5 APPENDIX A: NEGF MODEL PARAMETERS 

The material constants used are tabulated in Table 7.1.  The band gaps (EG) and valence band 
alignments relative to InAs (ΔEV) are taken from [72].  The material constants from InAs are 
from [67].  The parameters for GaSb and AlSb are from [73].  In order to use the 8 band k.p 
model presented in Section 7.3, we assumed the AlSb had a direct band gap.  This will not cause 
a significant error as the tunneling mostly occurs through the valence band due to the band 

Figure 7.11: (a) We model tunneling between two quantum wells (2d-2dedge) with
the same AlSb barrier as the 1d-1dedge nanowires.  Except for the added
confinement along z, the nanowires are identical to the quantum wells. (b) A
possible scheme for attaching gates to the quantum wells is shown. 

Figure 7.10: Increasing the overlap between the nanowires causes the spacing
between the conductance peaks to decrease 
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alignments.  The oxide is an artificial material used to block current and is based on the AlSb 
material parameters with a much larger band gap.  Hetero-junctions are treated using average 
material parameters as appropriate. 

 

 InAs GaSb AlSb Oxide 

EG (eV) 0.354 0.78 1.61 12 

γ1 19.67 13.4 5.18 5.18 

γ2 8.37 4.7 1.19 1.19 

γ3 9.29 6.0 1.97 1.97 

Δ (eV) 0.371 0.76 0.676 0.676 

me/m0 0.023 0.039 0.27 0.27 

a0 (A) 6.06 6.10 6.14 6.1355 

ΔEV (eV) 0 0.51 0.1 -6 

Table 7.1: Material parameters used in the NEGF calculation 
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Chapter 8: Future Directions 

 Now that we have gone through everything that is needed to design a good tunneling 
switch, we present a few ideas that use this understanding to design new devices.  

8.1 INAS / GASB QUANTUM WELL BASED STRUCTURES 

 As the preferred tunneling geometry is tunneling between two quantum wells, we could 
design a structure to do exactly that.  Since InAs and GaSb have very favorable band alignments, 
we should use that material system to design the tunneling structure.  First we consider a diode 
structure and then we consider a full transistor structure based on the InAs/GaSb backward diode 
structure. 

8.1.1 InAs/GaSb Quantum Well Diode 

 The basic structure behind a one dimensional quantum well tunneling structure is shown 
in Figure 8.1.  Since the current is flowing in one dimension the carriers need to drop into the 
quantum wells.  This means that the device will operate best in forward bias.  In reverse bias 
carriers will need to be thermally excited out of the quantum wells and so the current will be 
suppressed.  A possible implementation in the InAs/GaSb system is shown in Figure 8.2(a).  
Here an implementation using a GaInAsSb quaternary alloy is shown.  Using the quaternary 
alloy allows for favorable band alignments and allows carriers to easily fall into the quantum 
wells.  The quantum wells are undoped to eliminate the doping band tails.  In order to get carriers 
into the wells modulation doping is used.  The first two nanometers of the AlGaSb and 
GaInAsSb cladding layers are nominally undoped to allow for dopants to diffuse.  The rest of the 
cladding is heavily doped.  After the annealing steps some dopants will diffuse into the undoped 

Figure 8.1: A one dimensional diode based on quantum well tunneling is shown.  In
forward bias carriers fall into the quantum wells and tunnel 
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regions, but the quantum wells will have a very low dopant concentration.  Figure 8.2(b) shows a 
similar structure that is implemented using binary and ternary alloys.  This structure is far easier 
to grow.  However, It will be more difficult for electrons from the GaSb to enter the InAs 
quantum well as they need to overcome the triangular barrier between 90 and 95 nm on the 
figure. 

 Using this structure one should be able to demonstrate the 2d-2dface conductance increase 
as well as the steeper turn on. 

8.1.2 InAs/GaSb Quantum Well Transistor 

 If we want to have reverse bias operation or if we want to design a three terminal device 
we need to directly contact each quantum well.  This is shown in Figure 8.3(a).  The current path 
is shown in Figure 8.3(b).  The GaSb quantum well is directly contacted, current tunnels through 
an optional AlSb barrier into the InAs and to the contact.  The Fermi level in the InAs is set by 

Figure 8.2: A 1d quantum well diode based on (a) quaternary (b) ternary materials
is shown.  The quaternary structure has more favorable band alignments, but is
harder to grow. 
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Figure 8.3: A three terminal transistor structure based on the InAs /GaSb 2d-2dface

structure is shown. (a) The layer structure is shown (b) The current path is shown. 
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the gate work function and bias.  The GaSb Fermi level is set by modulation doping in the lower 
AlSb barrier layer.  Direct conduction through the GaSb layer is suppressed by forming a reverse 
biased PN junction between the source and drain contacts.  Direct conduction in the InAs is 
suppressed by etching away the InAs prior to forming the source contact.  This type of a 
quantum well structure should result in a high performance TFET. 

8.2 RESONANT INTERBAND TUNNELING BACKWARD DIODES 

 So far, our quantum well structures have relied on either directly contacting the quantum 
wells or allowing carriers to scatter into the quantum wells.  However, it is possible to also have 
a tunneling contact into the quantum wells.  This would result is would result in a resonant 
interband tunneling diode (RITD) [65, 74, 75].  These devices have given record peak to valley 
current ratios as high as 144 [74]in Esaki diodes.  The band diagram of an RITD is shown in 
Figure 8.4. 

 Since the tunneling occurs between two quantum wells the same conductance boost 
predicted for a 2d-2dface junction should occur.  It is also possible that the resonant tunneling 
provides an added benefit and should be investigated further. 

8.3 2D-2D WORK-FUNCTION CONTROLLED TUNNELING FIELD EFFECT TRANSISTOR 

 It is also possible to take advantage of the benefits of quantum well tunneling by using a 
homojunction and gate workfunctions to get the desired band alignment.  A basic 2d-2d work-
function controlled TFET is illustrated in Figure 8.5.  Figure 8.5 shows a FinFET structure and 
Figure 8.6 shows a layered structure.  The direction of current flow is given in Figure 8.7.  There 
are many different ways to physically implement this type of structure [76-84].  It is possible to 
create a variety of layered structures [76-78]  or it can be made as a variation of a FinFET or 
tri-gate structure [79-84].  To create a TFET the source needs to be doped p-type and the drain  

Figure 8.4: (from Tsai 1994) The band diagram of a resonant interband tunneling
diode is shown 
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needs to be doped n type.  The N-Channel Gate is composed of a metal and high-k dielectric 
with a low work function such that the surface of the channel becomes n-type.  The P-Channel  
Gate has a large work function such that the surface of the channel near the P Channel Gate 
becomes p-type.  To create a complementary device for CMOS logic the control gate simply 
needs to be reversed.  Figure 8.8 shows the resulting band diagram across the channel along the 
y-direction.  The channel should be undoped to allow gate work function control to form an 
n-channel and a p-channel on opposite faces.  This is very different from previous double gate 
proposals[85], as both the n and p channels are needed simultaneously.  Leaving the channel 
undoped also preserves the material quality which results in sharper band edges and allows the 

Figure 8.5: A double gate dual channel TFET in a FinFET configuration is shown.
The gates should have different work functions to induce both an n and a p
channel. 

Figure 8.6: A double gate dual channel TFET is shown.  It is turned on its side to
make a layered structure. 
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potential for the device to have a sharper, lower voltage, turn-on.  Tunneling will occur over the 
broad area of overlap between the two gates resulting in an increased face-to-face conductivity. 

 Any semiconductor can be used for the channel, source and drain.  Possibilities include 
silicon, germanium, GaAs, InAs, GaSb and so on.  Using silicon or germanium would make the 
structure compatible with current CMOS processes.  The FinFET geometry is particularly 
attractive, in that the main change would be opposite “gate stacks” on either side of the Fin, 
versus identical stacks on either side as we have for conventional FinFET’s.  The channel 
thickness, tC, should be thin enough to allow tunneling from face-to-face.  The channel length, 
LC, can be varied based on the desired device area.  The gate oxide must be part of a “gate stack” 
that includes Work Function control, so that one face is n-type and the other face is p-type. 

 It’s also possible to use a heterojunction in the channel to increase the tunneling 

Figure 8.7: The direction of current flow is shown.  The current flows along the -x
direction but tunnels along the -y-direction. 
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Figure 8.8: The band diagram across the channel is shown.  Work Function
control tilts the bands as shown.  Tunneling occurs across the channel along the y
direction. 

Figure 8.9: The channel can incorporate a semiconductor heterojunction. 
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probability and decrease the required workfunction difference.  This is shown in Figure 8.9.  For 
instance, semiconductor 1 could be silicon and semiconductor 2 could be germanium. 

8.3.1 Using Source/Drain Extensions to Suppress Unwanted Tunneling 

 In order to suppress unwanted tunneling and have a sharper low voltage turn-on, it is 
possible to use source/drain extensions as shown in Figure 8.10.  The two optional extension 
regions (Ext.) shown in Figure 8.10 should be undoped or lightly doped.  The source extension 
can be lightly p doped and the drain extension can be lightly n doped, and can be produced as 
part of a self-aligned process, if desired.  These extensions eliminate any direct tunneling to the 
source or drain and ensure that the tunneling occurs in the channel region.  

8.3.2 Using Semiconductor Contact for the P Channel Gate 

 An alternative to the gate stack is the use of a semiconductor heterostructure on one or 
both sides of the undoped semiconductor film as shown in Figure 8.11.  The band diagram across 
the channel along the y-direction is shown in Figure 8.12.  The basic idea is to replace the P-
Channel Gate with a HEMT (High Electron Mobility Transistor) style gate contact.  The 
cladding layer should be a different semiconductor than the channel with large valence band 
offset as shown in Figure 8.12.  The optional source drain extensions can be formed by using 
standard processing techniques such as depositing spacers prior to implanting the source and 
drain.  Any dielectric such as silicon nitride can be used for the spacers. 

 One possible material system is to use germanium for the channel/source/drain and 
silicon for the cladding layer.  The large band offsets between silicon and germanium prevent 
tunneling between the cladding layer and the drain and ensures that the current conduction 
occurs entirely within the germanium.  To further suppress unwanted tunneling the portion of the 
cladding layer under the drain can be left undoped or lightly doped. 

Figure 8.10: Unwanted tunneling can be suppressed by including lightly doped
source and drain extensions 
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 If the film structure has a “gate-stack” on one side, and a semiconductor heterostructure 
on the other side, the complementary device will require a different set of materials as shown in 
Figure 8.13.  In this case a gate metal with a high work function should be used.  The channel 
could be silicon and the cladding layer could be germanium or a silicon-germanium alloy 

 

8.3.3 Conclusion 

 These structures overcome the limitations of previous TFET designs by taking advantage 
of a large tunneling area, the unique physics of 2d-2dface tunneling and an undoped junction to 
provide a high on current and potentially steep turn-on.  Depending on the materials chosen, 
these designs are compatible with current CMOS process technology.  This will allow for the 
easy adoption by industry and result in a reduction in the power consumption of current 
electronics. 

Figure 8.11: A P+ cladding layer can be used in place of a second gate to induce a
p+ channel 

Figure 8.12: The band diagram including a cladding layer is shown.  The cladding
layer has a large valence band offset and uses modulation doping to induce a p-
type channel near the cladding layer. 
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8.4 CONCLUSION 

 As we have seen, there are a variety of possible devices that need to be investigated 
further and that may enable the tunneling switch to fulfill its promise.  Throughout this 
dissertation we have seen all of the various effects that can both limit and enhance the 
performance of a tunneling switch.  By combining these ideas and creating a device such as 
those suggested in this section, TFETs may be able to revolutionize electronics. 

  

Figure 8.13: The band diagram of the complementary device is shown.  To form a
complementary device the cladding layer should have a large conduction band
offset and be doped n-type.  The gate should also have a large work function to
induce a p-type channel near the gate 
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