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ABSTRACT OF THE DISSERTATION

Modification of spontaneous emission in photonic crystals

by

Mikhail Boroditsky

Doctor of Philosophy in Physics

University of California, Los Angeles, 1999

Professor Eli Yablonovitch, Co-chair

Professor Stewart Brown, Co-Chair

The modification of spontaneous emission in a semiconductor photonic crystal

and in a semiconductor microcavity at room temperature is the subject of this thesis. The

broad spectral linewidth of semiconductors together with large surface recombination

velocities make the observation of these effects an interesting and challenging task.

A quantum electrodynamical model is used to estimate enhancement of

spontaneous radiation rates in photonic crystals and microcavities. Extensive numerical

computations were employed to calculate the band structure of thin slab photonic crystals

and the properties of microcavities. The minimal achievable effective mode volume, a
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crucial parameter for cavity enhancement of spontaneous emission was shown to be

§��λ/2n)3 where λ is the resonant wavelength and n is the refractive index. Five-fold

enhancement of spontaneous emission was shown to be physically possible in InGaAs

nanocavities.

Photoluminescence measurements of surface recombination velocity were used in

the search of material system most suitable for fabrication of such a photonic crystal. The

InGaAs and InGaN material systems were shown to be good candidates for luminescent

photonic bandgap structures.

Angular resolved photoluminescence measurements were used to experimentally

measure the band structure of so-called electromagnetic conduction bands of such a

photonic crystal.

The enhancement of spontaneous emission extraction from a thin slab photonic

crystal was demonstrated. It was shown that emission into the leaky bands of the

photonic crystal has the same benefit as cavity-enhanced spontaneous emission, provided

these bands are flat enough relatively to the spectral emission bandwidth of the material.

Recommendations for novel LED designs were worked out based on the results of this

study.
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1. Introduction

For a long time the spontaneous emission rates were believed to be an intrinsic

property of a material. It was later understood that spontaneous emission also depends

strongly on the surrounding environment through the density of states and local strength

of the electromagnetic modes1. First works on enhancement and suppression of

spontaneous emission in the microwave regime were performed in 1980’s by Haroche

and Kleppner2.

It was predicted by Purcell3 that an atom in a wavelength-size cavity can radiate much

faster than in the free space. This effect was measured in a cavity formed by two parallel

mirrors by Haroche et al.4. All these measurements were performed on single atoms. A

similar effect can be observed in semiconductor materials, even though a smallest chunk

of the semiconductor we can imagine consists of thousands of atoms. Enhancement of the

spontaneous emission rate was recently observed at low temperature in Vertcal Cavity

Surface Emittin Laser (VCSEL) structures of small lateral dimensions5.

Photonic crystals, artificially created, multi-dimensionally periodic structures are

known for a forbidden electromagnetic bandgap. For that reason, they can be used to

modify spontaneous emission. Initially, it was proposed to use photonic crystals to inhibit

spontaneous emission6, but they can be employed to enhance it as well.

Modification of spontaneous emission in photonic crystal and enhancement of

spontaneous emission in a semiconductor microcavity making use of photonic crystal at

room temperature is the subject of this thesis.
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In the second chapter the quantum theory of spontaneous emission will be

presented. The behavior of an atom in a cavity will be discussed, and Purcell's

enhancement factor will be re-derived for the particular case of the quantum well active

material in a microcavity.

Electromagnetic simulations of photonic bandgap materials will be discussed in

the third chapter including band structure calculations and the study of defect modes.

Enhancement of the spontaneous emission rate in the resonant mode of a microcavity is

inversely proportional to the volume occupied by this mode. This makes cavity

optimization an important part of this project, requiring extensive numerical work. It will

be shown that a single-mode nanocavity can be built with semiconductor material with

cavity volume as low as ≈2(λ/2n)3, where n is the refractive index of the semiconductor,

and λ is the resonant wavelength.

Observation of spontaneous emission from such cavities require relatively low

non-radiative surface recombination. Identification of suitable material systems using

photoluminescence measurements on samples with exposed edges is described in detail

in the fourth chapter.

Chapter five of the thesis is about photoluminescence from photonic crystals

without nanocavities. The relative frequency of the photonic and electron bandgap is

shown to change the photoluminescence spectrum and directionality of the spontaneous

emission from the sample compared to an unetched reference sample.
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The results of photoluminescence measurements on thin film photonic crystal will

be presented in the chapter five. In this way, the band structure of the photonic crystal can

be directly measured.

Enhancement of spontaneous emission from the nanocavities is of considerable

practical interest. Indeed, Light-Emitting Diodes (LED's) are a class of opto-electronic

devices based on spontaneous electron-hole recombination in semiconductors. The

biggest problem in design of such a device is the difficulty of extracting light from the

high-refractive index material. The principle of resonant-cavity enhancement can be used

to enhance light emission. The use of one-dimensional Distributed Bragg Reflectors to

realize high efficiency planar microcavity LEDs was proposed by F. Schubert et al .7, and

was most successfully realized by De Neve et al.8. However, only three-dimensional

cavities can provide a really significant improvement in the light extraction. We will

show in chapter five that even though a five-fold spontaneous emission enhancement is

possible in a 3-d nanocavity, a similar enhancement can be obtained from a thin slab

photonic crystal, if the spontaneous emission from the active material is tuned to the

leaky conduction bands of the photonic crystal.

Thin film photonic crystals are also a possible tool for efficient light extraction.

We studied the external scattering of guided waves by photonic crystal and their potential

application in the light-emitting diodes in the chapter six.
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2.  Theory

2.1.  Two-level systems

Spontaneous recombination in semiconductors is a complicated process. The

consideration of a simple two level system gives many good insights into this process.

Downward transition in a simple two-level system can be spontaneous or stimulated. It is

easy to see that spontaneous emission accounts for most of the radiative recombination in

thermal equilibrium at room temperature. Indeed, the detailed balance for such a system

is:

0)()( 221022101121 =++−= NANBNBN ωρωρ� . (1)

A12 and B21 and are Einstein's coefficients and ρ(ω) is the density of electromagnetic

modes.

Using B12=B21 and Te
N

N /

2

1 ω!−=  we get

30
/

221

0221 ~
1

1)(

sSpontaneou

Stimulated −

−
== e

eNA

NB
Tω

ωρ
!

, (2)

with kT=0.27eV and hω=1eV. So the world we live in is mostly the world of

spontaneous emission and it is interesting to see if we can tailor the properties of this

process according to our needs.

2.2.  Quantization of the electromagnetic field

Quantization of the electromagnetic field is necessary for a correct understanding

of the nature or spontaneous emission and its engineering. The quantization procedure in
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the case of a media with a non-uniform distribution of the dielectric constant ε(r) is the

same as for the free space, but the vector potential operator A(r,t) does not consist of

plane waves anymore.

The classical Maxwell equations

0
1

0
1

0))()((

0

=
∂
∂−∂×∇

=
∂
∂+×∇

=⋅∇

=⋅∇

t
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c
E

rEr

B

&
&

&
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&&&

*

ε

(3)

can be transformed by introduction of a vector-potential A
&

 such that 
t

A

c
E

∂
∂−=
&

& 1
 and

AB
&&

×∇= . It yields the wave equation in the form of

0)( 2 =−∇−∇∇ AkAA
&&&

ε (4)

In the case of the uniform dielectric constant, its solutions are plane waves, however,

these solutions can be quite complicated function in the arbitrary cases. Nonetheless, the

canonical quantization procedure still can be applied by the introduction of operators

satisfying the commutation relations.

Then, the operator of the vector-potential for a given mode becomes

)]()()()([
2

),( *
00

2 2
1

rAtarAta
c

trA
&&&&!&&

++





=

ω
π

(5)

where operators a(t) and a+(t) are photon annihilation and creation operators

correspondingly, and A0(r) describes the spatial distribution of the classical eigenmode of
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frequency ω. Operators of electric and magnetic fields are readily derived from the

definition of A(r,t):

( )
)(),(

.].)()([2),(

0

0
2

1

rAtrB

ccrAtaitrE
&&&&

&
!

&&

×∇=

−= ωπ
. (6)

Obviously, for any state with n photons the diagonal matrix elements of the

electromagnetic field operators are equal to zero:

0)()( == nrBnnrEn
&&&&

(7)

While diagonal matrix elements of the square of the electric field is

)()(4)( 2
1

2

0
2 += nrAnrEn

&&
!

&&
ωπ , (8)

and can be rewritten as a sum of a classical part, corresponding to n photons in the mode

and a purely quantum mechanical contribution, called also zero-point fluctuations of the

field:

0

2
2

0
2 )()(4)( rEnrAnrEn

&&&&
!

&&
+= ωπ . (9)

That means that even when the system is in the state with no photons, the net mean

square fluctuations of the electric field are not zero.

The Hamiltonian HF of the electromagnetic field becomes that of a harmonic oscillator

after we plug Eq (6) into )(
8

1 ++ += HHEEH
π

:

)( 2
1+= +aaH F ω! . (10)

If we work with a classical multi-mode system, its quantum Hamiltonian is just a sum

over allowed electromagnetic modes, including the polarization:
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∑ ++





=

n
nn rAtarAta

c
trA )]()()()([

2
),( *

2 2
1
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ω
π

(11)

In this way the Hamiltonian of the field becomes a sum of the photon energy in all

modes. Importantly, from the viewpoint of spontaneous emission, even when the average

electric field is zero when there are no photons in the mode, the mean square of the

electric field is not zero but equals to 
2

02
12 )(4)( rAnrEn

&
!

&&
ωπ= . That is we can say

that fluctuations in the mean square of the field are distributed in the same way as the

classical field.

Many important features of spontaneous emission in semiconductors can be obtained

from the analysis of a two level system coupled to one or many electromagnetic mode(s).

For a single mode system:

],][[02
1 +++ −+++= σσωσω aaCiaaH z !!! (12)

The coupling constant 12

2
1

12

2
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0

2ˆ2
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
=

ω
π

ω
πω  is Rabi frequency and it

sets an important time scale in the atom-light interaction.

For the near-resonant interactions, the rotating wave approximation can be used. The

higher order terms (the ones that do not explicitly preserve the energy of the system) are

omitted and the Hamiltonian can then be diagonalized:

],[02
1 +++ −++= σσωσω aaCiaaH z !!! (13)

The solution for the simplest case when ω=ω0 is so-called vacuum Rabi oscillations, that

is a photon is emitted into the modes and then reabsorbed and re-emitted again.
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When the atom is coupled to a continuum of modes, so that the interaction Hamiltonian is

,][
,

,,int ,∑ ++ −=
λ

λλ σσ
λ

k
kk aaCiH

k
!  then the exited state 0002  ,..,,  shows exponential

decay 
3

2

12
3
0

212 3

4
     where,)( 21

c

d
AetP tA

!

&
ω

== − , which is exactly the classical expression

for the spontaneous emission rate. It's interesting to see that this emission rate can be

found approximately from dimensional considerations as A21~C2ρ(ω).

For a dipole located at the arbitrary point r of the mode, the transition rate would be

VrA
c

dn
rA

2

03

32

12 )(
3

4
)(

&

!

& ω
= (14)

with normaization  1)()( 3
2

0 =∫ rdrAr
&

ε .

Placing an atom in a lossy (leaking or absorbing) cavity can produce different

effect on the spontaneous emission process. The cavity by itself brings in another time

scale 
0ω

τ Q
av =  describing the photon lifetime in the cavity, with Q being the quality

factor of the cavity and ω0 being its resonant frequency. Depending on the relation

between the cavity lifetime, and the vacuum Rabi oscillations period in the same cavity

without losses there can be two simple extreme cases:

τ>>tR  Damped Rabi oscillations

Leakage from the cavity is much slower then the Rabi oscillation so that the exponential

decay is an envelope for the Rabi oscillations: CeP
t

Q
2

2 cosω
−

=
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τ<<tR Overdamped cavity (E.Purcell, 1946)

This case is of special interest for us, so we will derive recombination rate below and

then will apply the results to the semiconductor's emission in order to estimate the

maximum achievable spontaneous emission enhancement in a dielectric microcavity.

2.3.  Purcell effect

The Purcell enhancement factor2 needs to be modified when considering generation of

light in semiconductor quantum well (QW) structures.

The classical electric field of the cavity mode)(rE  has to be normalized EE α→

with the normalization factor α so that

( )
2

)()(
4
1 032 ωαε
π

!=∫ rrEr d , (15)

where ε is the material dielectric constant and ω0 is the resonant frequency of the cavity.

This gives the normalization factor

∫
=

rrEr 32
02

)()(

2

dε
ωπα !

(16)

In the above equations the integration extends over the quantization volume. The

spontaneous emission rate at frequency ω, into the resonant mode cantered at ω0, at a

given point r , follows from Fermi’s golden rule and equals to

( )
))2/()((2

)(
2

)( 22
0

2

ωωωπ
ωαπ

∆

∆

+−
⋅=Γ

!!

g
rEdr , (17)
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where d denotes the atomic moment dipole, ∆ω is the cavity linewidth, and g is the

degeneracy of the cavity mode. The last term in Equation (17) represents the Lorentzian

lineshape of electromagnetic modes – there are g modes in the frequency range ∆ω. The

dot product (d⋅αE(r )) has to be averaged over the possible orientations of the atomic

dipole moment. At this point we need to take the specific account of optical transition in

semiconductor quantum wells. First, electron-heavy hole transitions are the major

contributor to the spontaneous emission. Second, these transitions are only allowed if the

dipole moment of the transition lies in the plane of the quantum well, so that

<dx
2>=<dy

2>=d2/2, <dz
2>=0. Then, if the mode’s electric field is also in the QW plane, as

happens for TE modes, the average ( ) 222
))(()2/1()( rEdrEd αα =⋅ . Note that in the

case of bulk semiconductor, or for interaction with random modes, the pre-factor above

would have been 1/3.

If the active material is placed in the point of maximum electric field of the mode,

the emission rate is

( )
))2/()((22

2
22

0

2
max

2

ωωωπ
ωαπ

∆

∆

+−
=Γ

!!

g
E

d
(18)

If the linewidth of the cavity ∆ω is much smaller than emission spectrum width of

the active material ∆ωm, integration over the frequencies leads to

( )
m

g

ω
απ

∆
=Γ

!!

2
max

2

2

2
E

d
         (19)

Plugging in the value of the normalization factor α2 gives
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∫∆
=Γ

rrEr

Ed
32

2
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d

g

m ε
π

ω
ω

!
                     (20)

The unenhanced spontaneous emission rate in the bulk can be calculated using the

classical formula9

3

32

3

32

0
3

84

3

4

λ
πω

!!

dd n

c

n ==Γ                            (21)

Thus, the overall enhancement factor, which can be used as a figure of merit for

optimization of a resonant-cavity structure becomes

∫
=

Γ
Γ

rrEr

E
32

2
max

3

0 )()(16

3

dn
gQm επ

λ
, (22)

where we call
m

mQ
ω
ω

∆
= 0  is the material quality factor. Introducing the mode volume Veff

( )max
2

32

)()(

)()(

rEr

rrEr

ε

ε∫=
d

Veff
, (23)

the enhancement of spontaneous emission rate can be recast in the following form:

( )
eff

m

V

ngQ

π
λ

2

2/3 3

0

=
Γ
Γ

(24)

This expression differs from the one originally derived by Purcell by a degeneracy factor

g and a factor of π/4 which follows from integrating over the Lorentzian cavity lineshape,

and polarization averaging in the quantum well structures.

It will be shown in chapter 5, surprisingly, that a plain photonic crystal without any

nanocavities gives rise to the same effect. This requires weak dispersion of the photonic

conduction bands, and their coupling of spontaneous emission to external plane waves.
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3. Electromagnetic computations

The spontaneous emission rate of an atom can be increased or decreased by changing its

environment. It has been known since 1946 that the enhancement of spontaneous

emission rate, or Purcell effect, can be achieved in very tiny electromagnetic cavities10. It

is tempting to apply the Purcell effect to the spontaneous emission of opto-electronic

materials11, such as III-IV semiconductors. Several examples has recently appeared: a

five-fold increase in the radiative rate was demonstrated at low temperatures in VCSEL-

type micro-cavities by Gerard et al5.  Likewise, layered 1-dimensional Bragg micro-

cavities increase the efficiency of planar light emitting diodes (LED’s) as proposed by F.

Schubert et al .7, and most successfully realized by De Neve et al8. It was shown in the

chapter 2 that the enhancement of spontaneous emission rate in a semiconductor

nanocavity structure with a quantum well active region is:

( )
effV

nQg
π
λ

2
2/3 3

0

=
Γ
Γ

, (25)

where Q is the quality factor of the cavity, n is the refractive index of the semiconductor,

λ is the mode’s wavelength, g is the mode degeneracy factor, and Veff is the mode

volume defined as

( )max
2

32

)()(

)()(

rEr

rrEr

ε

ε∫=
d

Veff
. (26)

The integration in Equation (26) is performed over the quantization volume.
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It is possible to build a very high Q dielectric cavity using photonic crystals, but once the

spectral width ∆ν= ν/Q of a resonant cavity is smaller than the spontaneous emission

linedwidth ∆νm there is no further significant increase in the spectrally integrated

spontaneous emission rate. The normal spontaneous emission bandwidth of opto-

electronic semiconductors at room temperature limits the useable cavity Q to Q>10 or

Q>40 depending on the specific material. Looking at Equation (26), a significant

enhancement of spontaneous emission rate in semiconductors at room temperature

requires building the smallest possible electromagnetic cavities, or, in other words,

reducing the effective volume Veff . This makes the search for the smallest mode volume

achievable with the dielectric material an important question. The value of

Veff=2.55(λ/2n)3 was previously reported by Foresi et al.12,13 for a 1-dimensional bridge

photonic crystal. Is it possible to do better?

The minimal size of a dielectric cavity mode is the subject of this chapter. We have used

the Finite Difference Time Domain (FDTD) method to compute the smallest achievable

effective volume. The FDTD method has been chosen, among the many available,

because of its capability to deal with complicated structures such as those analyzed here.

Using different kinds of boundary conditions, the method allows one to deal with many

different types of problems: computation of the dispersion diagram, computation of

resonant frequency, effective mode volume, Q, and mode pattern in the nanocavity.

FDTD was used by Sakoda14 to study modal properties of defects in infinite 2D photonic

crystals without considering mode volume.  Indeed, the method proved to be very

effective in this calculation because it provides a wealth of data from which it is possible
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to derive all the quantities of interest for the design of nanocavities. The code

implemented in our work has been extensively tested against data available in the

literature. Using this valuable numerical tool, we will show that an effective volume as

low as Veff ≈2(λ/2n)3 is achievable. As a complementary result, Painter et al.15 have

demonstrated that very high Q≈4000 can be achieved in similar thin-slab PBG cavities at

the price of slightly larger mode volume.

We have thoroughly analyzed numerous possible configurations of the dielectric cavity

created by introduction of a defect into a 2-dimensional photonic crystal. Our baseline

2-D photonic crystal consisted of a thin slab with a triangular array of holes. Our choice

of such a structure in Fig. 1(a) is justified by the following considerations: This type of

2-D photonic crystal structure shows a large bandgap for TE polarization, providing good

horizontal confinement. Guided modes in such a structure are well confined vertically by

the slab refractive index and total internal reflection, so the vertical dimension of the

mode is small. This structure is much easier to fabricate at the optical wavelength scale

than three-dimensional photonic crystals.

We have considered only donor modes, that is modes created by adding some

extra material to the photonic crystal. In such donor mode cavities, the electromagnetic

field tends to be concentrated in the regions where dielectric material has been added. For

spontaneous emission there has to be a good overlap between the electromagnetic field

and the semiconductor light emitter. Thus donor mode cavities are preferred. In all our

computations we considered a thin semiconductor slab with refractive index 3.5 bonded

on a glass substrate with refractive index 1.5.
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In the following Section we will consider the problem of computing the

dispersion diagram frequency, ν versus wave vector k of the structure shown in Figure

1(a). In Section 3 we will show how, by introducing a defect, we can create a nanocavity

whose resonant frequency is in the forbidden gap of the photonic crystal structure.

Conclusions are drawn in Section 4.

3.1. Numerical Results: Dispersion Diagram

Computation of the dispersion diagram of the photonic crystal shown in Figure 1(a)

requires electromagnetic wave propagation in the infinite space, tiled with identical cells

in the xy-plane. The solution of Maxwell’s equations must satisfy Bloch periodic

conditions:

akrEarE ⋅=+ iett ),(),( akrHarH ⋅=+ iett ),(),( (27)

with a standing for a primitive lattice vector, and k  denoting the wave vector. At any

instant of time, the phase shift eik⋅a is the only difference between the eigenmode’s fields

at corresponding points in different cells. Consequently, the computational domain for

the analysis may be restricted to a single unit cell of the crystal, delimited by the constant

coordinate surfaces 2/ax ±= , 0=y , and 2/3ay =  (Fig. 1b). At those surfaces, the

periodic Bloch boundary conditions (27) must be applied to the tangential component of

the electric and magnetic fields, where now the lattice vector a connects corresponding

points at the opposite sides of the unit cell. The thin dielectric film with a triangular

lattice of holes (Fig. 1a), is infinite in the vertical direction. To simulate that, the
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computational domain shown in Fig. 1(b) is terminated using Absorbing Boundary

Conditions (ABC) at the surfaces dz ±= . Both Mur’s first order boundary conditions16

and Anisotropic Perfectly Matched Layer absorbing boundary conditions17,18 (PML) have

been used in this work.

The structure can be excited either with some initial electromagnetic field

distribution or with one or mutiple arbitrarily oriented dipoles using a Gaussian pulse in

time. If a localized source is used to excite the structure, its spectrum must be wide

enough to cover the frequency range of interest. The Finite Difference Time Domain

(FDTD) marching-in-time scheme is applied to compute the electromagnetic field in the

computational domain. Because of the Bloch periodic boundary conditions (27), the

electromagnetic field will reach a steady state after all radiative modes are absorbed by

the ABC’s. For each value of the wave vector k , the Maxwell’s equations are solved and

the field is observed at certain points in the unit cell. These are chosen away from the

Figure 1. (a) A small section of an infinite dielectric slab with a triangular

array of through holes resting on a glass substrate; (b) Unit cell used for

the computation of the frequency ν vs. wave-vector k dispersion

relationship of the infinite photonic crystal corresponding to (a).
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symmetry planes of the lattice, (unless some particular symmetry class of the modes is

under consideration,) to avoid the possibility of probing the field in the node of a mode.

The Fourier Transform of the computed signal has peaks at frequencies of the vertically

confined modes that can propagate in the structure with the given wave vector k . The

computational time must be long enough to allow the desired frequency resolution.

We have computed the dispersion diagram ν versus k, of a perforated dielectric

slab (ε=12) sitting on a glass substrates (ε=2.25) sketched in Fig. 1(a) using this

technique. Wave propagation in a similar freestanding structure was previously

calculated using the plane wave expansion method with the super-cell approach19.

                                           ΓΓ
0

0.1

0.2

0.3

0.4

0.5

0.6
F

re
qu

en
cy

 in
 u

ni
ts

 o
f (

c/
a)

M             K

Figure 2. Dispersion diagram of TE-like modes of the infinite photonic crystal

shown in Fig. 1(a). To set the horizontal scale, 
a3

2π=ΓΜ .  The dashed line

represents the upper limit to the modes which are confined to the slab and can

not leak into the glass substrate.
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Figure 2 shows the dispersion diagram for the TE-like guided modes of the structure

when the propagation vector k  lies in the x-y plane. The ratio between the thickness t of

the slab and the lattice constant a was chosen to be t/a = 0.333, while the radius r of the

holes was chosen to be r = 0.40a. These parameters seem to give the smallest possible

mode volume. A wide forbidden gap for the TE-like modes exists in the range of

normalized frequencies 0.33c/a≤ν≤0.43c/a. As will be shown below, this 2-dimensional

photonic band-structure can be used as a reflecting medium to create a cavity with a very

small mode volume.

Another important feature of the band structure is that all upper bands are

relatively flat. We can say that modes with different values of the wave vector are have

limited disperison. As will be discussed in the Chapter 5, this leads to the angle-

integrated resonant enhancement of the emission into the leaky modes.

3.2.  Numerical Results: Investigation of candidate nano-cavities

Introduction of an irregularity in the periodic structure of a photonic crystal, often

referred to as a defect, may cause localization of one or more electromagnetic modes

around the defect itself. To completely characterize these localized resonant modes, we

have considered a finite sized photonic crystal with a defect close to its center, and we

have employed the FDTD using absorbing boundary conditions on all boundaries of the

computational domain.

The Fourier Transform of the electromagnetic field at observation points inside the

cavity gives the resonant frequencies of the cavity, while the Q of each mode can be
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estimated from the decay rate of the energy stored in the cavity. It must be noted that the

numerical computation of the cavity Q is very sensitive to several parameters. In

particular, to the value of the dielectric material, the kind of absorbing boundary

conditions used to terminate the computational domain, and to the distance between the

open dielectric cavity and the boundary of the computational domain.

As was mentioned before, to achieve high enhancement of spontaneous emission

rate the resonant mode of a cavity must have the smallest possible volume while its Q

must be larger than Qm=νm/∆νm of the active material20, where νm and ∆νm are the

frequency and linewidth of the material transition. A Figure-of-Merit for the cavity

optimization is the mode’s effective volume normalized to the cubic half wavelength of

the resonant mode (λ/2n)3 in the medium of refractive index n:

( )max
23

32

3 )()()2/(

)()(

)2/( rEr

rrEr

ελ

ε

λ n

d

n

Veff ∫= (28)

The FDTD algorithm allows the computation of the effective volume either in the time

domain or in the frequency domain by post-processing the computed data. Particular care

must be exercised to deal with some numerical issues when computing the effective

mode volume. The integration in equation (28) must be performed over a volume

enclosing the geometrical defect and large enough to enclose also the mode’s

electromagnetic energy that spills outside the slab. Also, the search for the maximum

value of the electric energy must be carried out in the same volume and preferably along

the symmetry planes of the structure. This is to avoid the numerical artifact of high
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electric field at certain dielectric interfaces

due to the discretization of geometry

necessary for the Finite Difference

computation.

When these considerations are kept

in mind, the FDTD technique is a flexible

tool to calculate resonant frequencies, field

and energy distribution of resonant modes,

as well as their Q and effective volume.

All this information is necessary for a

proper design of  efficient cavity-enhanced

light-emitting diodes.

3.3.  Analyzed structures

A traditional way of creating a donor

defect mode is to fill one hole with semiconductor material. However, there are two other

high-symmetry points in the Wigner-Seitz cell in addition to the center of a hole that may

be a good location for a defect. We studied modes created by adding some extra material

in the middle of the bridge between two holes, in the spot between three holes, and in the

center of a hole, as shown in Figure 3(a),(b),(c). Those Figures also show the finite lateral

size of the photonic crystal in the actual structures investigated. For comparison, we have

also studied the properties of the fundamental mode of a single dielectric cylinder (ε=12)

Figure 3. Four different cavity configurations

in the finite size photonic crystal were

analyzed: (a) A defect is introduced by

adding extra material to the bridge between

two holes; (b) A defect is introduced in the

spot between three holes; (c) The defect

consists of added material in the center of a

hole; (d) A dielectric cylinder resting on a

glass slab (for comparison).
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located on the same glass substrate (ε=2.25) supporting the 2-D photonic crystal (Figure

3d). These structures can be described by three independent dimensionless parameters:

normalized thickness t/a, normalized radius of the holes r/a and normalized radius of the
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Figure 4. Evolution of the localized mode frequency, effective

volume and cavity Q for the defect placed on the bridge between two

holes: (a) Resonant frequency of the mode; (b) Effective mode

volume in units of (λ/2n)3; (c) Cavity Q-factor
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defect rd/a. Therefore, optimization of the dimensionless effective volume f has to be

performed in the three-dimensional parameter space.
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Figure 5. Same as Fig. 4 for the defect placed between three holes.
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3.4. Cavity Characteristics

Relative thickness, t/a, of the structure did not influence the mode volume results

much. For all the studied geometries, the best effective volume was achieved at t/a~1/3.

For technological reasons, the walls between holes should not be too thin. We have

chosen r/a=0.4, even though larger values of r/a may produce slightly better results.

Figures 4, 5 and 6 show the variation of frequency, the normalized effective volume, and

the Q of the lowest order resonant modes versus the defect size for the different cavity

geometries. Typically for all donor modes, the frequency of the mode emerges from the

conduction band-edge at 0.43c/a and decreases towards the frequency of 0.33c/a of the

valence band. As can be seen from these Figures, the resonant frequencies of all

structures with the same defect size are roughly the same. This suggests an alternative

viewpoint: The defect mode is the mode of a single cylindrical resonator “tuned” to the

forbidden gap of the photonic crystal, to provide additional mode confinement and higher

Q. For small defect size, quality factors are normally on the order of 10. As the mode

volume reaches its minimum, Q goes up to 40 or even up 90 as in the case of the bridge

defects. It is typical for all modes to have cavity Q increasing as mode volume goes

down. Indeed, the more tightly localized the mode, the smaller its tails outside of a finite

sized photonic crystal. By comparison, the cavity Q of an isolated cylinder21 is

0.016×n3≈7 and mode volume is 4.52(λ/2n)3, under our conditions. Probably the most

interesting feature is that the minimum of the effective volumes is about Veff≈2(λ/2n)3 for

all three defect types. This make us wonder if there is a fundamental lower limit on the

volume size achievable with a certain dielectric material! We believe the mode volume
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results for 3-d photonic crystal structures with full 3-d confinement would actually be

quite similar, since index guiding provides commensurate vertical confinement. In

addition, the case of 1-d periodicity with index guiding in the other two dimensions leads

to a volume only 25% higher than 2(λ/2n)3. Computation of the flux of the Poynting
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Figure 6. Evolution of the localized mode frequency, effective volume and

cavity Q for the defect placed on the center of a hole: (a) Resonant frequency

of the mode; (b) Effective mode volume in units of (λ/2n)3; (c) Cavity Q-

factor.
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vector through a surface enclosing the slab reveals that most of the energy of the defect

mode leaks in the vertical direction, rather than being guided by the slab. Therefore

increasing the lateral size of the crystal is not likely to increase the cavity Q by much.

(a)
(b)

(c) (d)

Figure 7. Mode pattern of resonant modes, in the plane of the structure, for the modes with

the smallest effective mode volume. Energy density distribution in the xy plane is coded with

colors, in-plane electric field is shown as a vector plot. In all cases the concentration of

electric energy happens in those regions where some material was added: (a) Added material

in the bridge between two holes; (b) Added dielectric material in the spot between three

holes; (c) A hole plugged up with dielectric material; (d) A single dielectric cylinder on a

glass substrate. The cavity Q~7 and the effective mode volume ~4.5(λ/2n)3 for a cylinder

with the same dimensions as defects in Figs. 7(a,b).
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The limited required size is a valuable feature in view of possible applications of this type

of resonant cavity in light emitting diode, where many such cavities might need to be

crowded together.

Figure 7 shows the electric field and energy density distribution of the modes with

the smallest effective volumes for all studied configurations, along a z=const plane in the

middle of the slab. The electric energy density reaches its maximum almost in the center

of the dielectric slab. Electric energy density is coded with colors in Fig. 7, and the

corresponding projection of the electric field onto the horizontal plane is shown as a

vector plot. All these modes are predominantly TE, that is electric field mostly oscillates

in the xy plane. Due to different locations of the defect, these modes have different

symmetries. Structures with a defect introduced into the bridge between two and tree

holes, have C2v and C3v symmetry respectively, and their resonant modes are not

degenerate. These modes bear close resemblance with the “donut” mode TE01δ of a

cylindrical cavity, shown in Figure 7d.

Considering the case of a defect created by adding material to the center of a hole,

the smallest effective mode volume is surprisingly achieved for rd/a=0.4, that is when the

hole is completely plugged. The electric energy distribution of the resonant mode (Figure

7c) has a maximum in the center, which makes the mode a prospective candidate for use

in resonant-cavity LED applications, where the active material is placed in the center of

the filled hole. Moreover, since this structure has C6v symmetry, the resonant mode is

doubly degenerate. According to Equation (25), this fact implies g=2 into the formula of

the enhancement factor. For example, in the semiconductor light emitter In0.53Ga0.47As,
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with Qm=10 at room temperature, plugging Veff=2(λ/2n)3 into Equation (25) gives a five-

fold spontaneous emission enhancement Γ/Γ0=5.

3.5. Summary of numerical results

In this chapter we have described how the band structure of the thin slab photonic

crystal was calculated. It was shown that the photonic conduction bands of the photonic

crystal are above the light cone and are relatively flat. The defect modes in a dielectric

slab photonic crystal have been numerically optimized with respect to the mode volume

using the Finite Difference Time Domain algorithm. A record low value of only 2(λ/2n)3

is shown to be achievable in either of three different configurations. This small mode

volume can lead to a significant enhancement of spontaneous emission rates in

semiconductor nano-cavities due to the Purcell effect. As will be shown later, a similar

effect can be achieved in a perfectly periodic photonic crystal without defects when the

emission line of the material is tuned to the leaky conduction bands above the photonic

bandgap.
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4. Surface Recombination Measurements on Candidate Materials

for Nano-cavity Light Emitting Diodes

As the size of opto-electronic devices becomes smaller, surface effects begin to

influence their performance. Surface recombination imposes limitations on the efficiency

of nanocavity light-emitting diodes, VCSEL’s with oxidized apertures, and other devices

which require the size of the active region to be comparable to the diffusion length of

minority carriers. In this study we concentrated on surface characterization of different

material systems, and we identified those suitable for the fabrication of active opto-

electronic devices. This chapter is organized as follows: first we describe the

experimental setup and the absolute calibration technique, then we introduce the

recombination properties we are measuring or modeling. A radiative transport model

based on the photon gas22 approximation is used to extract internal quantum efficiency

from the photoluminescence measurements in the context of an InxGa1-xN sample. The

same model with slight modification was used for two other systems - In0.5(Ga1-xAl x)0.5P

and InxGa1-xAs. Gallium nitride and chemically passivated InGaAs will be shown to

possess a relatively low surface recombination velocity (on the order of 104cm/s) while

the InGaAlP material system has surface recombination velocity an order of magnitude

higher. We show also that surface damage produced by chemically-assisted ion beam

etching can be cured by a gentle wet etching and chemical passivation.
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4.1.  Experimental setup

Values of surface recombination velocity were determined by absolute

photoluminescence efficiency measuremets, using a setup as shown in Figure 8. Samples

are optically pumped with the appropriate laser photon energy above the bandgap. The

absolute external quantum efficiency is calibrated by referencing the measured

photoluminescence against the scattered light reading from a perfect white Lambertian

reflector25. In this way, the collection cone of the photodetector is identical in both

measurements. Corrections are made for different transmission through the optical setup

and the detector quantum efficiency ratio at the photoluminescence and pump

                  

Figure 8. Experimental setup for photoluminescence measurements. The

absolute external quantum efficiency is measured by calibrating the measured

photoluminescence from the sample against the reading measured from the

laser scattered off a perfect white Lambertian reflector. The collection cone is

the same for both measurements, so that only a correction for the system

wavelength dependence of detector quantum efficiency has to be taken into

account.
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wavelengths. A radiative transport model is used to obtain the internal quantum

efficiency of the active material from the measured external quantum efficiency.

Furthermore, comparison of the internal quantum efficiency from double heterostructure

samples against that from the samples with an exposed active region provides

information on the surface recombination velocity of exposed surfaces.

4.2. Radiative transport model

We begin with some definitions:

1) External quantum efficiency ηext is defined as a ratio of the number of PL photons

coming out of the sample to the number of photons absorbed in the sample. This is a

quantity we can measure.

2) Internal quantum efficiency ηint is the probability that an electron-hole pair created in

the active region will recombine radiatively. Internal radiative quantum efficiency is a

Figure-of-merit for an opto-electronic material.

3) Light extraction efficiency ηextraction is the fraction of internally generated PL photons

that manage to escape from the sample. It depends strongly on the geometry of the

sample. It also depends on the internal quantum efficiency if reabsorption in the active

region has to be taken into account. For certain simple geometries, light extraction

efficiency can be easily calculated.

4) Finally, if optical pumping creates electron-hole pairs outside of the active region, we

define collection efficiency ηcoll as a fraction of carriers that diffuse to the active region.
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If all carriers are collected in the active region ηcoll =1.

Combining all these definitions, external quantum efficiency can be expressed in terms of

three other quantities, which can be measured or calculated:

extractcollexternal ηηηη int= (29)

Initially we will describe radiative transport model used to calculate internal

quantum efficiency in GaN. (For InGaAlP and InGaAs the models employed are almost

identical, except they take into account sample’s structure such as an absorbing substrate

in the case of InGaAlP.) As can be seen from the Figure 9a, the InGaN model considers a

film of (refractive index nGaN=2.3) grown on the sapphire substrate with refractive index

nS=1.8 . There are two critical angles and two escape cones associated with them: total

2θc2

2θc1

Sapphire
n=1.8

InGaN
n=2.3

Air, n=1

White reflector or black wax

MQW region

Figure 9a. The semicinductor structure corresponding to the radiative

transport model consists of a thin semiconductor film sitting on a sapphire

substrate.
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internal reflection at the semiconductor-air interface θc1=arcsin(1/nGaN) and at the

semiconductor-sapphire interface θc2=arcsin(nS/nGaN). We employ geometrical optics to

calculate escape and re-absorption probabilities. Spontaneous emission is assumed to

have an isotropic angular distribution. Since the GaN film is relatively thick compared to

the wavelength of light in material, a statistical ray optics model22 is justified and the

calculation of emission into individual modes23 is not necessary.

Suppose Ninc photons are incident on the sample. NincTinc electron-hole pairs are

created in the cap layer of the sample, where Tinc is Fresnel transmission for the incident

wave. N1=NincTincηcoll of them will reach the active region. If the material’s internal

efficiency is ηint, then ηintN1 photons are emitted, EηintN1 photons escape, and ZηintN1

photons are reabsorbed, where E is the escape probability of an emitted photon and Z is

the re-absorption probability. Then re-absorbed photons are re-emitted in the amount

Zηint
2N1. Absorption and re-emission continues leading to a number of escaped photons

NESC given by the sum of a geometric series:

int

1int
1intintint1intint1int 1

...))(()(
η

ηηηηηηη
Z

NE
NZZENZENENesc −

=+++= (30)

It is clear from the Eq. (30) that re-absorption plays a significant role only if

internal quantum efficiency is high.

Keeping in mind that external quantum efficiency ηext , the quantity that we

measure, is the ratio of the number of escaped photons to the number of photons incident

on the sample, i.e. ηext=Nesc/Ninc, we can invert Equation (30) and solve it for ηint:
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The escape probability, E, is given by the fraction of the escape cone in 4π steradian and

Fresnel transmission probablility T(θ):
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where <T> stands for the transmission coefficient averaged over the escape cone. Now

we will address the re-absorption probability Z.

The diameter of the pump laser beam is about 50 microns, which is much larger

than thickness of the InGaN film (2 microns) and both much less thick than the sapphire

substrate. We will show that photons reabsorbed outside of the optically pumped region

are re-emitted very inefficiently. Therefore, absorption and re-emission is a factor only

for photons bouncing inside the thin InGaN film, while photons reflected from the bottom

sapphire surface can not be recycled. Then the fraction Z of reabsorbed photons becomes

the sum of three terms:
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representing 3 cone angle zones 10 cθ→ , 21 cc θθ → , and )( 22 cc θπθ −→ . The photons

beyond )( 2cθπ −  transmit to the bottom of the sapphire substrate and are assumed not to

contribute to the re-emission and not to reach the photodetector. In Eq. (33), R(θ) is

polarization-averaged reflectivity of the GaN-air interface, α is re-absorption coefficient

of the active region material at the photoluminescence wavelength, and d is the overall
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thickness of the absorbing quantum wells. The first term in Eq. (33) describes to the re-

absorption within the inner escape cone θc1. The second term corresponds to re-

absorption of photons emitted within the second escape cone θc2 but outside of the first.

These photons cross the active region once before they go into the substrate. The third

term refers to re-absorption of totally internally reflected light in the semiconductor film.

This last term dominates re-absorption and is simply Znn GaNs ≈≅− 62.0/1 22 , while the

two other terms are merely corrections. In this analysis we have assumed that light

reflected from the sapphire-air interface is re-absorbed outside of the optically pumped

region and does not contribute efficiently to further photoluminescence.

There is a problem with Eq. (31), since the ηcoll on the right hand side is not exactly

known, but is surely less then 1. Therefore Eq. (31) is merely a lower limit to ηint:

,
)/(1

)/(
int

incext

incext

ETZ

ET

η
η

η
+

≥ (34)

Likewise, Eq. (31) can be solved for the collection efficiency ηcoll:

,
)1)(/(

int
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η
ηη

η
ZETincext

coll

−
= (35)

Once again, ηint on the right hand side of Eq. (35) is not exactly known, but it’s surely

less then 1. Therefore Eq. (35) places a lower limit on carrier collection efficiency:
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)1)(/( ZETincextcoll −≥ ηη (36)

Thus a measurement of ηext can place a lower limit on ηint through Eq. (34) and a lower

limit on ηcoll through Eq. (36). This procedure will be useful if the experimental results

for ηext point to limits on ηint and ηcoll that are reasonably close to 1. For InGaN for

example, the limits are 0.87<ηint <1 and 0.87<ηcoll<1, constraining the experimental

values very tightly.

Al 0.05Ga0.95N  Cap

In0.23Ga0.77N/GaN MQW

GaN

Sapphire Substrate

Al0.05Ga0.95N Cladding

100nm

80nm

25nm

2µm

200µm

Figure 9b. The schematics of the AlGaN/InGaN MQW structure grown by

MOCVD on a C-plane sapphire substrate.
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4.3.  Gallium Nitride

The InGaN MQW structure schematically shown in the Figure 9b was grown using

MOCVD on a C-plane sapphire substrate.24 It was optically pumped using the 325nm line

of a continuous wave HeCd laser.25 The lower limit on internal quantum efficiency, ηint,

measured and analyzed by Eq. (34) ranges from 40 to 87% for different samples.

Variation in the sample quality was correlated with the number of quantum wells in the

InGaN MQW region and was not attributed to the properties of the GaN cap layer. Such

high internal quantum efficiencies allowed us to calculate the upper limit on the surface

recombination at GaN surface using the following considerations:

The optical absorption length for the 325nm wavelength in the GaN cap layer is only

80nm26. It is comparable to the cap layer thickness. Therefore all pump light is absorbed

everywhere throughout the cap layer of the GaN, and all electron-hole pairs generated

near this surface need to diffuse into the quantum well region, as shown in Figure 9b to

contribute to photoluminescence. Since the observed collection efficiency ηcoll is

reasonably good, the diffusion length Ld in GaN must be greater than the cap thickness

Lcap=100nm.That means that the carrier distribution in the sample in vertical direction

can be approximated as )/1(0 capLznn −= , providing that all carriers recombine quickly

enough in the quantum well. The upper limit on collection efficiency is:


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where s is the surface recombination velocity and D is the ambipolar diffusion constant,

the diffusion constant of the slower species, which are holes. If the absorption length was



37

smaller than the cap thickness, that is αLcapI1 this equation would reduce to a simpler

expression corresponding to having all carriers generated at the surface:

sLD

LD

CAP

CAP
COLLECT +

≤
/

/η

Combining Eqs. (33) and (37) yields an upper limit on the surface recombination velocity

in GaN to be S<0.28D/L~28000 cm/s with diffusion constant assumed27 to be 1 cm2/s in

undoped InGaN.

The optical model described above neglects reflections from the bottom surface of the

sapphire substrate since most of those photons are reflected and absorbed outside of the

optically pumped region, and can not be re-emitted. To verify this assumption we

compared photoluminescence from a sample with the bottom surface and edges coated

with the absorbing black wax to that of the same sample sitting on the white reflecting

surface. As expected, results of these measurements did not differ.

The pump level for these experiments was 10mW onto a 25µm diameter spot, or

~1000A/cm2. At lower pumping intensities the internal photoluminescence goes down,

explaining why absorption and emission outside of the pumped region is so inefficient

and can be neglected.

Fabrication of the miniature devices often involves dry etching. To see the effect of the

dry etching on the surface recombination velocity we exposed the top surface of the one

of the best samples to chemically assisted ion beam etching (Ar+ + Cl2). After etching

about 10 nanometers of the cap layer away, the measured quantum efficiency dropped by

a factor of 5, which corresponds to the surface recombination velocity s=105cm/s on the
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damaged surface. However, subsequent short wet etch cleaning in the hot KOH which

removed another 5-10nm of the AlGaN cap brought the sample’s efficiency back to about

80% of the initial efficiency. That indicates that ion damage in nitride materials

introduced by the dry etching can be effectively removed.

4.4.  InGaAlP

In this case we studied samples consisting of 0.75µm thick In0.5(Ga1-xAl x)0.5P (λ=615nm,

λ=630nm) active region doped at n=1017cm-3 level sandwiched between n-type InAlP

cladding layers grown on an absorbing GaAs substrate (Figure 10a). The sample was

optically pumped with the CW 568nm argon-krypton laser which is not absorbed by the

InAlP cladding layer. The iso-type double hetero-structure allowed us to be un-concerned

about effects related to a p-n junction. Internal quantum efficiency of the as-grown

double hetero-structure sample was measured to be 80%. After the top cladding was

removed with the H3PO4:H2O2:H2O(5:1:1), as shown in Fig. 10b, the surface of the active

region was exposed to air. The PL signal, and hence internal quantum efficiency, dropped

by a factor of 30. Since thickness of the active region is less than the typical diffusion

length in this material system, and there is a potential barrier at the bottom of the active

layer, the carrier density distribution is constant, even though electron-hole generation

occurs mostly at the top interface (see Appendix). For that reason internal quantum

efficiency or an as-grown structure and a structure with an exposed active region is

simply determined by competition between the rates of radiative and non-radiative

recombination. The efficiency of intact double hetero-structure is:
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The efficiency when the InAlP cap of the double hetero-structure is etched away is:
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where τR and τNR are radiative and non-radiative minority carrier lifetimes and L is the

thickness of the active region. We can estimate the surface recombination velocity from

the doping level of the active region ND=1017cm-3 and a typical value of the radiative

recombination constant28 B~4⋅10-10 cm3/s using the Equation (38). The recombination

rates would be 1/τR=BND=4⋅107s-1, 1/ τNR=107 s-1. Surface recombination velocity is

easily obtained from (39) and equals to s=105cm/s. This is about twice the surface

Laser

700nm

Exposed surface
200nm InAlP  Cap

InAlP Cladding

InGaAlP

GaAs Substrate

InAlP Cladding

InGaAlP (n=1017cm-3)

GaAs Substrate

0.2µm

0.75µm

1µm

250µm

Figure 10. a) The InGaAlP sample consists of 0.7µm thick In0.5(Ga0.92Al 0.08)0.5P

(λ=630nm) active region doped at n=1017cm-3 level sandwiched between n-

type InAlP cladding layers grown on absorbing GaAs substrate.b) When the

top InAlP cladding layer is etched away, the nonradiative surface

recombination on the exposed surface of the active region becomes the

dominant recombination process.
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recombination velocity previously reported for InGaP29. Surface treatment with

ammonium sulfide used in Ref. 29 did not show any increase in PL signal. The poor

surface properties could be attributed to the presence of aluminum and its oxidation.

Measured surface recombination velocity, although significantly higher than in GaN, is

still an order of magnitude lower than that of a GaAs surface. Still there is a chance that

some chemical treatment or re-growth technique might be established for the InGaAlP

material system. Increasing the doping level may increase radiative recombination, thus

making spontaneous emission more competitive with non-radiative recombination, as

necessary for fabrication of microcavity LED’s. In our PL measurements on the exposed

active region, the surface degraded over a 30s period for an 8mW laser beam focussed in

a 50µm diameter spot. Every time the laser beam was moved to a new location on the

sample, PL refreshed, and then decayed again. At lower pump power, the surface

degraded more slowly. This observation suggests a possibility of sealing or passivation of

the surface before it gets oxidized.

4.5.  InGaAs

Surface recombination velocity was studied on a 20nm n-type In0.53Ga0.47As

single quantum well (QW) structure with InP cladding layers grown on an InP substrate

and separated from the substrate by an undoped 1µm InGaAs stop-etch layer as shown in

Figure 11a. The quantum well donor impurity concentration was n~1018cm-3. This

structure was designed for the fabrication of a thin-film cavity-enhanced light-emitting

diode, a process that involves making an array of holes in the QW structure and bonding
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it on the glass slide30. We were interested in measurements of surface recombination

velocity on the vertical walls produced by chemically assisted ion beam etching (CAIBE)

and in finding chemical treatments in order to minimize it. A set of mesas with widths

ranging from 0.12 to 2µm was etched as shown in Figure 11b so that edges of the active

region were exposed. The overall double heterostructure was bonded to a glass slide after

a total substrate removal process, as shown in Figure 4b. Internal quantum efficiency of

the as-grown double hetero-structure sample was nearly 100%. Ratio of the

photoluminescence from the mesa etched sample to the PL signal of intact double hetero-

structure depends on the surface recombination velocity and the width of the mesa. As in

350 nm InP  Cladding

1µm InGaAs stop etch

InP Substrate

InP Cladding

Laser

20 nm InGaAs 1018cm-3 420nm

Glass Slide

300nm

50nm  InP  Cap

L
d

a) b)

Figure 11. a) An n-type In0.53Ga0.47As single quantum well structure with InP

cladding layers was grown on a InP substrate and separated from the substrate

by an undoped InGaAs stop-etch layer. b) A set of mesas of widths ranging

from 0.12 to 2µm was etched so that the edges of the active region were

exposed. The structure was bonded to a glass slide after the substrate removal

process.



42

the InGaAlP case, the width of all mesas was smaller than a diffusion length, and the

carrier density was uniform across the mesa. In this case the expression for quantum

efficiency of the etched samples is very similar to that used for InGaAlP:

wsR

R

/2/1

/1

+
=

τ
τη , (40)

where w is the mesa width. The factor of two in the denominator comes from two

exposed surfaces instead of one for the InGaAlP case. Also, we neglected non-radiative

recombination in the bulk since the PL measurements of the unetched material showed

internal quantum efficiency of the sample to be close to 100%. Equation (40) can be

transformed into
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Figure 12. Inverse quantum efficiency plotted versus inverse mesa width.

The slope of the fitted line is equal to 2sτR.
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so that slope of the 1/η vs. 1/w gives value of 2sτR as shown in Figure 12. Fitting data

into the equation is straightforward since the intercept in the Eq. (41) is fixed and equals

to one. The value of the radiative constant “B” was assumed the same as in the InGaAlP

case. We observed surface recombination velocity equal to 4.5⋅104cm/s after the mesas

were etched using CAIBE technique (shown in circles in Fig. 12). After the surface

damage was removed using the gentle wet etch in H2SO4:H2O2:H2O=1:8:5000 solution

(triangles in Fig. 12) SRV decreased to 1.7⋅104cm/s. Further improvement was observed

after the 5 minute long passivation in a solution of ammonium sulfide (NH4)2S (squares,

SRV=1.5⋅104cm/s). It turned out that surface damage depends on the ion energy of the

etching process. The reported results correspond to 500V Ar+ accelerating potential in

CAIBE process. The ion damage seems to be significantly deeper when 1500V voltage is

employed, resulting in larger surface recombination velocities and requiring more

intensive cleaning.

4.6. Summary of material properties

In this chapter we studied surface recombination velocities in InGaN, InGaAlP

and InGaAs material systems using absolute calibration photoluminescence

measurements. Surface recombination velocity is shown to be less than 28000 cm/s in

GaN, 15000cm/s in passivated InGaAs and 105cm/s in InGaAlP. We also showed that

residual surface damage caused by dry etching could be removed by proper surface
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treatment. These results suggested InGaAs to be the most favorable material system for

nanofabrication of active devices based on photonic crystals.
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5. Photoluminescence measurements on photonic crystals

5.1.  Fabrication of thin film photonic crystals

Two MOCVD-grown In0.47Ga0.53As/InP single quantum well double hetero-structures of

same composition but different thickness were used for these experiments. The samples’

dimensions are shown in the table below.

Structure 1 Structure 2

InP top cladding layer 200nm 90nm

In0.47Ga0.53As, n=1018cm-3 , active region 20nm 60nm

InP bottom cladding layer 200nm 90nm

InGaAs stop etch layer 1000nm 1000nm

InP substrate 300µm 300µm

A standard substrate removal technique was used to fabricate thin films for the

photoluminescence experiments:

The wafer was cleaved in square pieces about 5mm×5mm, and glued to the glass slide

upside down using the UV-curable optical adhesive (Norland 73). The samples were

etched with 70% hydrochloric acid for approximately 2 hours to remove the InP
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substrate. HCl is a selective etchant for InP with respect to InGaAs. However a special

care should be exercised in order to protect edges of the sample and prevent the etchant

from attacking the InP cladding layer. For this reason it is better to remove the sample

from the solution as soon as the active reaction ceases.

After the InP substrate is removed, the H2SO4:H2O2:H2O (1:8:500) is used to remove the

1µm thick InGaAs stop etch layer. This solution is selective with respect to InP and does

not attack the cladding layer. Its etching rate of InGaAs is approximately 15A per second,

and it takes about 10 minlutes to remove it.

After the substrate removal is complete the sample’s PL is tested using the setup

described in the chapter on surface recombination velocity. Normally the quantum

Figure 13. A triangular array of holes in the thin film on InGaAs/InP double

hetero-structure. The spongy gray substance inside the holes is the optical glue.

Lattice spacing is 720nm, film thickness is 420nm and hole diameter is 550nm.
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efficiency of the material does not change during the substrate removal procedure and we

end up with a less than half a micron thick, semitransparent film, reliably bonded to the

glass slide. It would be useful to bond the sample to sapphire instead of glass for heat-

sinking considerations, but that would be limited by the thermal conductivity ot the

adhesive in any case.

A set of photonic crystal structures was etched into the thin film samples using

electron-beam lithography and ion beam etching. Normally, each sample had numerous

structures spanning a lattice constant range sufficient for the spontaneous emission band

to overlap with both the photonic bandgap and with conduction band modes. In our case

of emission wavelength centered at λ=1650nm, the photonic crystal’s lattice constant was

made to vary from a=550nm to a=900nm. Correspondingly, the center of the photon band

gap varied from λ=1300nm to λ=1900nm. An SEM picture of a typical structure with

a=720nm, t=420nm and r/a=0.4 is shown in Figure 13.

The etching is performed as follows: A layer of SiO2 is deposited on the sample surface

using plasma chemical vapor deposition. This will be the mask. Next a PMMA resist

(350K molecular weight) for e-beam lithography is spun to a 200nm thickness, and a

desired pattern is written using a Leika EBPG5 e-beam writer running at approximately

5MHz. The pattern is transferred from photoresist to SiO2 mask using directional

chemically assisted ion beam etching (CAIBE) with CHF3 for 6 minute. Finally, the

pattern is transferred into the semiconductor in the same CAIBE machine using CCl4 at

200oC with 200nm/min etch rate. The residual ion damage is cleaned, as discussed in the

chapter 4 by a gentle wet etching in H2SO4:H2O2:H2O (1:8:500) and subsequent surface
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passivation in a stinking (NH4)2S solution. The effect of passivation on the surface

recombination velocity of InGaAs was discussed in the Chapter 4.
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5.2.  Experimental Setup for angle-resolved photoluminescence:

The setup used in our measurements is shown in Figures 14 and 15. A sample is

pumped with a 780nm AlGaAs laser. A laser beam is focussed onto a photonic crystal by

a microscope objective. Since InP is absorptive at the 780nm laser wavelength, about

60% of the light is absorbed in InP cap layers. All our photonic crystals were at least

70µm×70µm in area and 10X magnification objective focussed the beam on the sample.

The same objective was used for imaging the sample by means of a beam-splitter (BS).

The photoluminescence signal was collected on the oppposite side of the sample. A

780nm
AlGaAs
laser

CCD

BS

Focussing
objective

Sample
Hemispherical
lens

Collecting
lens

Focussing
lens

Spatial 
mask

Monochromator
slit

Chopper
wheel

Figure 14.  Experimental setup for angle resolved photoluminescence

measurements. The sample is pumped with the 780 AlGaAs laser and

spontaneous emission is collected on the opposite side. A spatial mask is used to

select the emission at the desired angle.
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sample was attached to a hemispherical lens to allow extraction of the photoluminescence

signal from the glass at beyond the normal total internal reflection angle. Indeed, since all

rays originating in the center of the hemisphere hit its surface at normal incidence, the

rays are not refracted and transmission is maximized. A lens configuration shown in the

Figure 14 was used to measure PL at angles closer than 45o to normal. The PL signal was

collected by a collimating lens, and, for angle-resolved measurements, was passed

through the spatial mask shown in the Fig. 14. Only beams going in one particular

direction are allowed to go through. As can be seen from the Figure, this direction is

uniquely defined by the distance r between the slit and the optical axis of the system. In

this way we can sample different angles and different directions of the escaping light.

The selected fraction of photoluminescence is focused on the entrance slit of a SPEX

Minimate 1681B monochromator controlled by SpectraMax spectrometer software. A

nitrogen cooled germanium detector was used to measure the output signal in a standard

lock-in amplifier configuration. This detector provided excellent sensitivity, and we had

to attenuate the signal even after the it was resolved in wavelength and in angle. A

modification of this setup shown in Figure 15 was used to make measurements of the PL

at angles farther than 45o from normal. An ellipsoidal reflector with 140mm and 70mm

half-axes is used to collect the light and a focussing lens matches it to the f=3.9

monochromator. A full set of masks was used to select different angles and different

directions of the Brillouin zone.
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The described experimentsl setup allows for measurements of the

dispersion diagram of a photonic crystal’s leaky modes, that is modes with frequencies

lying above the light cone in glass indicated as a broken line in the band structure in

Figure 2 in Chapter 3. Indeed, as discussed above, any eigenmode of a thin slab photonic

crystal with the in-plane wave vector k || must satisfy Bloch condition for in-plane

propagation

RkrUrE ⋅−= ||),(),( iett , (42)
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Figure 15. Experimental setup for angle resolved photoluminescence

measurements. The sample is pumped with the 780 AlGaAs laser and emission

is collected by an elliptical reflector. A spatial mask is used to select the

emission at the desired angle.
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where U(r) has the periodicity of a crystal. On the other hand, the wave function of the

mode outside of the slab, in the air or in the glass must be asymptotically a plane wave.

)( ||~),( rkRkrE ⋅+⋅− ⊥iet , (43)

where ||k is the out-of-plane component of the wavevector, so that the propagation angle

is )/arctan( || ⊥= kkα . Then, keeping in mind that for the modes above the line light

cn/)( |||| kk >ω , we conclude that relation
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can not be satisfied for real ω and k. Thus the modes in the region above the light line

have to be leaking and hence detectable. From the information on frequency versus

emission angle we are able to reconstruct the band structure of the leaking modes.

In our setup the emission angle, α, into the glass is found and as α=atan(r/f),

where r is the radius of the slits of the mask and f is the focal length of the collecting lens.

Then, from the wavelength λ of the PL peak we can obtain the dimensionless frequency

(i.e. frequency in units of c/a, a being the lattice constant and c being the speed of light)

simply as a/λ and the value of ||k  in units of π/a as
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A similar geometrical consideration allows the extraction of data from

measurements with the elliptic mirror with the use of the ellipse property
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where α and β are polar angles at focal points and e =F/a=0.85 is the excentricity

parameter of the ellipse, with 22 baF −= being its focal length as shown in Figure 16.

Equation (46) allows us to find the emission angle β from the collection angle α. 

In the following sections, this method of calculation was applied to all data obtained

using the angle-resolved PL measurement setup from Figures 14 and 15.

x

y

F a-a

b

-b

-F
α β

Figure 16. The angle of the incoming beam allows us to calculate the emission

angle from geometrical properties of the ellipse
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5.3.  Overall photoluminescence measurements

All fields of a thin slab photonic crystal were measured using the PL setup

described in chapter 4. This gave a quick way of estimating overall photoluminescence

efficiency. Two sets of photonic crystals were studied: a triangular array of holes r/a=0.4

and triangular array of holes with a small round defect in each every hole with a radius of

a plug rd/a=0.25 . The latter was chosen for study as a of a di-atomic photonic crystal

with a correspondingly complicated mode structure. Samples with lattice constant

spanning the range from a=550nm to a=900nm were fabricated. The results of

measurements for these lattices are shown in Fig 17. As one can see from the Figure 17,

the photoluminescence efficiency increases with lattice constant. The pumping conditions

were fixed and the results did not depend on orientation of the pumping beam with

respect to samples. The dependence in Figure 17 represents exactly the behavior one
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Figure 17. Photoluminescence from a thin slab photonic crystal with a

triangular lattice. Thickness of a crystal is t=0.42nm.
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would expect for emission into the leaking conduction band modes. Indeed, at small

lattice constant, the semiconductor emission falls into the forbidden TE gap of the

photonic crystal. The light is emitted into the TM guided modes and it can not be

efficiently detected. When the spontaneous emission band overlaps with the forbidden TE

gap for guided modes, emission rate is so small. However, as lattice constant of a

photonic crystal becomes larger, the frequency of the photonic bandgap slides down and

emission band starts to overlap with the leaking conduction band modes. Most of the

photons are emitted into these guided modes of the crystal and then leak into the free

space.

The photonic bandgap is at lower frequencies for the type of the crystal with plugs

shown in Figure 18, since it has larger effective refractive index. For that reason, as can
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Figure 18. Photoluminescence from a thin slab photonic crystal with a

triangular lattice with a small round defect in each every hole with a radius of

a plug rd/a=0.25. Thickness of a crystal is t=0.42nm.
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be seen from the Figure 18, the onset of a strong spontaneous emission happens at a

smaller value of lattice constant a~640nm. The behavior of such photonic crystals was

predicted by S.Fan et al. 19 for larger lattice constants but influence of non-radiative

recombination, a factor crucial for the analyses at small lattice constants, was not taken

into account in their work.

Since, as will be discussed later, the number of modes in our 420nm thick samples

turned out to be too large to resolve, a thinner sample based on the same InGaAs/InP

material system was fabricated. As can be seen from the Figure 19, the same trend is

observed for a 240nm thick sample. The lattice constant spanned the range from 650 to

920nm. Since a thinner sample has lower effective refractive index, the increase of the

photoluminescence intensity occurs at a larger lattice constant a~780nm. The dip at
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Figure 19. Photoluminescence from a thin slab photonic crystal with a

triangular lattice. Thickness of the photonic crystal is t=240nm.
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a=670nm is most probably a fabrication defect. It’s worth noting however that the slight

increase in the PL efficiency at smallest lattice constants is repeatable. We attribute it to

external scattering of the guided modes at the interface between the photonic crystal and

the surrounding unetched area of the experimental film.
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5.4.  Spectral properties of PL from Photonic Crystals

Spectra of both types of photonic crystals were measured using the experimental setup

shown in Figure 14. A lens with a numerical aperture N.A.=0.2 was used to collect light

escaping close to normal and no masks were used. A set of typical angle-integrated

photoluminescence spectra is shown in Figure 20. One can see the specific “peaky”

features in the spectrum shown blue-shifting as lattice constant decreases. The same

behavior is present in the Figure 21 for the second type of a lattice with plugged holes. It

is typical for this second type of lattice to have more peaks in the spectrum. This is

consistent with the denset band structure of this sample.
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Figure 20: Angle-averaged photoluminescence of the bare lattice is

considerably different from that of the reference sample. PL peaks are shifted

according to the lattice constant.
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It is worth noting also that these peaks are getting blue-shifted as lattice constant

decreases. It is especially clear for the sample with plugged holes from Figure 21. The
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Figure 21: Evolution of the spectra of the lattice with a defect in every hole.
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wavelengths of the major PL peaks for this sample set are plotted versus lattice constant

in Figure 22. The wavelengths versus lattice constant nearly follow a straight line. It can

be seen also that the spectral shape evolves gradually, with respect to the lattice constant.

The complicated structure of the PL spectra in Figures 20 and 21 is a good evidence of

the spontaneous emission modification.
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Lattice a=720nm, G-K direction
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Figure 23: Spectra of photoluminescence corresponding to sequential masks.

5.5.  Band structure measurements on photonic crystals.

The 420nm thick sample was the first successfully fabricated photonic crystal

with significant photoluminescence efficiency on which angular resolved spectral

measurements were performed. We used the spontaneous emission spectral peaks versus

angle to study the bandstructure of the photonic crystal. A typical sequence of spectrum

corresponding to the various angles of emission with respect to the normal axis is shown

in Figure 23 for masks selecting emission at 20, 24 and 28 degrees. Plotting values of the

spectral peak positions versus angle mask allows us to re-plot the graph (see Figure 24)

on the frequency versus in-plane k|| using expressions derived earlier in the chapter. The

dashed line represents the light line of the glass substrate. Naturally, all detectable bands
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above the light line correspond to leaky modes, and that permits us to measure them. All

bands of this sample are consistently about 10% below their calculated frequencies. We

attribute it to a discrepancy between the geometrical sizes assumed in the calculations

and those of the samples. Also, the ion beam etching procedure normally produces

slightly tapered holes. In this case that would also increase the effective refractive index

of the structure and bring the bands of the dispersion diagram down. The recorded

spectrum of the photoluminescence consists of the peaks corresponding to the leaky

modes and a broad bell-shaped background corresponding to the emission into the 3D
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Figure 24. The measured bandstructure of  thin slab photonic crystal with lattice constant

a=720nm and thickness t=420nm.
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continuum of extended modes. Coupling of

the leaky modes, that is modes we are

interested in, with the active region of the

photonic crystal is determined by the internal

structure of the mode. The farther is the mode

from the light line the easier it is to detect.

Also, some of the conduction band modes of

the photonic crystal have their electric field

concentrated in the air regions. Thus,

electron-hole pairs can not emit efficiently

into these modes and it is difficult to observe

them.

Our electromagnetic simulations
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Figure 25. Some modes are well polarized while others are of mixed polarization.
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showed also, that, even though the modes of a thin film photonic crystal can not be

classified as pure TE or pure TM, some of them have strongly dominating TE or TM

components, while others are truly mixed. If so, the photoluminescence at large angles

must be polarized depending on the dominant polarization of a corresponding leaky

mode. We used a polarizing beam-splitter to select the different polarizations. As can be

seen from Figures 25 and 26, the resolving ability of the setup increased considerably and

the broad background turned out to be the consisting of a few clearly polarized (or

sometimes mixed) peaks.

Samples with plugged holes presented another interesting subject of study. While

the electromagnetic modes of a “traditional” photonic crystal can be subdivided into “air”

modes and “material” modes, the plugged holes structure is somewhat analogous to a

KΓΚ, in units π/a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

f i
n 

un
its

 c
/a

0.00

0.10

0.20

0.30

0.40

0.50

GK and GM branches of the plugged lattice, a=675nm

KΓΜ, in units π/a

0.00.20.40.60.81.0

f i
n 

un
its

 c
/a

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Figure 27. The band  structure of a plugged lattice shows peaks evolving nicely

with angle, which are nonetheless very difficult to match with the theory.
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diatomic crystal with an extra degree of freedom. It’s interesting to see that modes in this

crystal can be categorized as “vein”, “plug” or “air” modes. For this reason the modal

structure of these samples was considerably more complicated as can be seen from its

partially measured band structure in Fig 27.

 At this point it became clear that thick structures, as well as the structure with the

plugged holes whose measured dispersion diagram is shown in Fig. 27 have very dense

and complicated band structures. To compute the corresponding theoretical band

structure with necessary resolution an enormous amount of computations time would be

needed. Furthermore, the actual geometry of the experimental sample would have to be

known with great accuracy. Instead, we decided to concentrate our study on the 240nm

thick structure. As can be seen from the Figure 28, its dispersion diagram is much
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Figure 28. Experimentally measured bandstructure of a photonic crystal. Lattice constant

a=783nm, radius of the holes r=260nm, thickness of the slab t=240nm.
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sparser, hence facilitating both theoretical and experimental identification of modes.

Comparing Figure 28 with the computed dispersion diagram for this structure shown in

Figure 29, we see a good agreement in the shape of the curves as well as in their

polarization. A triangle formed by the crossing of the lowest TE and TM conduction

bands is a typical and repeatable feature in a several samples with different lattice

constants. This is the first, to our knowledge, demonstration of the spontaneous emission

directly into the photonic bands and a first measurement thereof. The fact that the

measured band structure lies 3-4% below the computed values can be attributed to a

slightly thicker film and the tapering of holes during the chemically assisted ion beam

etching process, which were not taken into account in the computation. Measurements on

the thinner structure revealed some very sharp peaks (compared to the emission linewidth
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of the InGaAs, with a Q between 100 and 30, a feature that was not present in previous

experiments. Typical spectra for such a structure are shown in Figure 30. Besides Q~50,

another important feature of the figure is a very high peak to background ratio (around

15). In the following section we will argue that these are signatures of the Purcell

enhancement realized without a cavity.
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Figure 30. Measured angularly resolved spectra have relatively high Q
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5.6.  Resonant enhancement in thin-slab photonic crystals

It was shown in the chapter 2 that spontaneous emission in a small cavity happens faster

than in the bulk material. Crucial parameters for the speedup were cavity Q and effective

volume Veff of the resonant mode:

( )
eff

m

V

ngQ

π
λ

2

2/3 3

0

=
Γ
Γ

(47)

In the photonic crystals studied in the previous section, the measured Q’s of modes were

comparable to that of a dielectric cavity. Since these modes are large in volume, local

field enhancement is much smaller. But since the band structure of upper modes is nearly

flat as can be seen from both theoretical and experimental results (Figures 28 and 29),

these modes pick up a large degeneracy factor, g, compensating the loss in the local field

enhancement.

Now we will derive the enhancement of spontaneous emission in a particular direction:

Suppose we have selected a narrow solid angle sinθdθdφ and a frequency range dω.

Then, similarly to the derivation in Chapter 3, we have to compare the density of modes

and local fields of the emission into a 3-d continuum of modes to that of the emission into

the leaky guided modes.

The spontaneous emission rate is proportional to the local field of the mode E2(r )

(normalized to hν/2) and to the number of modes ∆N emitting into the given solid angle

in given frequency range.

For emission into the 3-d continuum of modes,
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nV2
)(2 ω!=rE , (48)

And number of modes emitting into the given solid angle is given by

( )
V

ddkdk
N d 3

2

3
2
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2

π
φθθ

=∆ , (49)

where k=ω/c is a corresponding wavevector and V=L3 is the quantization volume.

For the case of emission into the leaky modes, the local field depends on the position of

the emission dipole in the active region. We can assume that vertical distribution of the

electric field is concentrated in a slab waveguide. Then, the average square of the electric

field normalized by a single quantum in a given point is given by
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where t is the slab’s effective thickness and E0 is the non-normalized electric field

distribution of the mode. Integration in the last expression is performed over the center

plane of the slab.

The number of modes emitting at this angle is given by a projection of the three-

dimensional k-space onto the plane of guided mode wave vectors:

( ) A
ddkk

N d 2

||||
3

2
2

π
φ

=∆ , (51)

where k||=ksinθ, dk||=kcosθdθ and A=L2 is the area of the slab.

Averaging over the active region Aactive in a unit cell would give the total radiation rate in

a given direction. However, since the line width of the leaky mode ∆ω is much larger
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than specified spectral resolution dω, only 
ω
ω

π ∆
d2

 of the radiation will be in the spectral

range. The 2/π pre-factor comes from the Lorentzian lineshape of the leaky mode, similar

to the derivation in Chapter 3.

Thus, rate of background radiation would be given by
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And, in the same way, emission into the leaky modes is
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Taking a ratio and simplifying we get:
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Introducing mode’s Q=ω/∆ω, and a parameter γ to characterize electric energy overlap

with the active region:
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enhancement of spontaneous emission rate at a given frequency can be transformed into a

familiar structure of a Purcell number in 1 dimension:
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In semiconductors, the emission band is normaly wider than the cavity linewidth. For that

reason Lorentizan in Equation  (56) has to be convolved with the semiconductor emission

spectrum, as it was done in derivation of Equation (24). This integrates out the 2/π in the

Lorentzian and substitutes Q with the material’s Qm (10 for InGaAs in our case). Then

spectrally integrated enhancement in a given direction becomes

θλγ cos
23

2

nt
Qm

d

d ⋅=
Γ
Γ

(57)

In the structure we have studied, the active region covers approximately half of the

sample area. In the optimal case, when all electric energy of the mode is concentrated in

the semiconductor, the overlap parameter is simpl y γ≈2. This happens close to the Γ

point of the Brillouin zone, as can be seen from the computed energy distribution plot in

Figure 31. Then, expected peak enhancement, i.e the peak to background ratio of the

spectra in Figure 30, in a direction close to the normal would be QQ
d

d ≈
⋅

⋅⋅≤
Γ
Γ

2407

16502
2

3

2

π ,

i.e.  approximately the modal Q. The

observed peak to background ratio is

smaller, about 15 to 20. We attribute

this discrepancy to two factors: First,

the background may be higher due to

the contribution of other modal peaks,

and, second, the structure

imperfections may cause some

Figure 31. Electric energy distribution in the Γ

point of the Brillouin zone. All energy is

concentrated in the dielectric veins.
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additional scattering of the mode.

If the photonic bands could be engineered to be flat compared to the frequency variation

across the Brillouin zone, this enhancement would be almost the same for all directions.

As can be seen from the experimental and theoretical band structures of the photonic

crystal that we considered, the variation of the lowest “conduction” band is

approximately twice the spontaneous emission band. Then intergrated over all the angles,

the enhancement becomes much smaller, between 3 and five. If the band can be made

flat, the radiative lifetime can be made substantially shorter.

In the best of the thin slab photonic crystals, the photoluminescence efficiency

was considerably greater than in unpatterned samples. Absolute efficiency calibration can

be made by referencing the emission to the reflection (100%) froom a white surface.

Such calibration generally show that InGaAs double heterostructures grown by raj Bhat,

have an internal quantum efficiency near 100%.

An unpatterned thin film between two glass hemispheres has an optical escape

probability of 11.0~
)/(4

1
2

2
gf nn , where nf=3.2 and ng=1.5 are refractive indices of the

semiconductor film and glass correspondingly. In our ultra-thin films, the effective

refractive index is probably slightly smaller than that of the bulk material. Also, the high

internal efficiency of the InGaAs active layer allows the photon recycling to boost the

external efficiency of the film even higher. With all these benefits combined, we

conservatively estimate that a thin film, when encapsulated in glass, can have 12-14%

external efficiency. This sets an absolute efficiency scale for the photonic crystal samples

shown in the Figure 32b, which were all measured under identical pump and collection
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conditions. The experimental photoluminescence signal versus lattice spacing is shown in

Figure 32a .  As can be seen from the graph, the PL strength from the photonic crystal

samples with lattice constant ~900nm, where conduction band modes match the InGaAs
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Figure 32. (a)Photoluminescence from a thin slab photonic crystal with a

triangular lattice (raw data). Thickness of the photonic crystal is t=240nm.

(b) the  same with efficiency calibrated to the  reference sample
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emission frequency, is twice as large as that from an unpatterned sample. Taking into

account that there is only half as much surface area in the patterned PBG samples to

absorb light (at least in the geometrical optics approximation), this gives the external

efficiency of 48-56%.There are three factors influencing the measured external quantum

efficiency of photonic crystal samples:

1. In principle, the extraction efficiency can be unity since all modes are leaky.

2. By drilling the holes through the active region, we introduce a non-radiative

recombination. We will show below that non-radiative recombination rate N is

comparable to the radiative emission rate R:  N/R~1, where R is the radiative emission

rate in bulk semiconductor material in which there is no Purcell effect.

3. The radiative emission rate in the patterned film is enhanced by the Purcell

factor F, a quantity we would like to determine:  R→FR.

Then, the external quantum efficiency of the sample emitting into the conduction

band modes of the photonic crystal would be given by the fractional rates:

RNF

F

NFR

FR

/+
=

+
=η , (58)

which can be solved for the Purcell enhancement factor F:

R

N
F ⋅

−
=

η
η

1 (59)

It follows from the Equation (59) that the knowledge of non-radiative

recombination rate is necessary to determine the Purcell factor.

We can use the 600-700nm samples emitting into the forbidden photonic bandgap

to estimate the non-radiative recombination rate. Indeed, as can be seen from the
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Figure 18, the total photoluminescence signal is 5 times lower than in the unpatterned

sample. Correcting for pumped area ratio, a factor of 2 as before, gives us 2.5 times drop

in the external efficiency compared to the unpatterned continuous film, as shown if Fig

18a. Using a conservative assumption that the escape probability is the same as in

unpatterned film, we obtain an estimate on non-radiative recombination rate N in terms of

the radiation recombination rate R:

4.0<
+ NR

R
(60)
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Figure 33. Dependence of the Purcell enhancement factor on the value of the

non-radiative recombination rate N/R for different values of external efficiency

η=45, 50, 55%. The shaded area limits the possible values of the Purcell

enhancement factor. The Purcell factor is constrained by the lower limit on

N/R=1.5 from the left, and by the maximum Purcell factor 3 in this kind of

structure from the top.
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from which follows N/R>1.5. This implies a nonradiative recombination velocity

S>20000cm/s, since the absolute rate R is known to be R=1/τ=Bn with B=5 10-10cm3/s

and n=1018cm-3, which is consistent with out previous measurement on surface

recombination velocity.

The factor 1.5 is a lower limit on the non-radiative/radiative recombination rate because

the extraction efficiency of the sample with holes is more likely to increase due to the

presence of additional surfaces. Plotted in Figure 33, is a family of curves showing the

dependence of Purcell enhancement factor versus (N/R) for different efficiencies from

Eqn. (59). As one can see from the Figure 33, the Purcell factor is constrained by our

measurements to be above 1.5 but less than the ideal Purcell factor 3 which would occur

in the ideal case.

Certainly, we will need to perform lifetime measurements on our samples to verfy

the exact value of the Purcell factor for spontaneous emission into conduction band

modes.

The expressions for Purcell factor obtained in this section resemble the results for

the VCSEL-type structures, the only difference is in the number of resonant modes. In the

VCSEL structures the resonator is comprised of a pair of mirrors while in our case the

structure provides a standing wave due to its periodicity. Unlike the microcavities with

tiny mode volume and correspondingly small active region that we considered in the

Chapter 3, the flat photonic conduction bands relatively to the broad emission spectra at

room temperature, makes the control over spontaneous emission technologically possible.
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5.7. Summary of the photoluminescence measurements.

The results of the photoluminescence measurements on thin slab photonic crystals

were presented in this chapter. The angle dependence of the PL spectral peaks was shown

to follow the photonic bands of the structures. The band structure of the upper bands was

measured using the angular resolved measurements. Up to 15-fold enhancement of the

emission in a given direction was observed and explained in terms of the Purcell

enhancement.
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6. Thin slab photonic crystals for LED applications.

There is a significant gap between the high internal efficiency and poor external

efficiency of light emitting diodes, (LED’s).  Depending on the optical design, the

efficiency ratio can be as poor as 4n2≈50, (where n=3.5 is the semiconductor refractive

index). One may try to implement some new LED design features, that would allow a

greater fraction of the internal light to escape.  By reducing the parasitic internal optical

absorption in LED’s, one can extrapolate to an external efficiency >50%.  Among the

new features that have proved to help external efficiency are: epitaxial liftoff to separate

the active epi-layers from optically absorbing substrates and surface nano-structures to

induce a chaotic internal light-ray dynamics.  Our previous work on LED’s efficiency

improvement is described in appendix A. It consisted of numerical simulation and

optimization of photon escape probability in existing commercial LED structures, and the

enhancement of light output from thin film InGaAlP LED structures using texturing. As a

complementary study, enhancement of light absorption due to texturing of ultra-thin film

solar cells is outlined in Appendix B.

In this chapter we will make an attempt to apply the properties of thin slab photonic

crystals, as learned in the previous chapters, towards light-emitting diode design. It has

been shown that all modes with frequencies above the light-cone are leaky. Certainly it is

tempting to use this property to extract light from the high-refractive index material. In

principle one can think of using the bare photonic crystal as a light emitting diode.

However it will be difficult to attach contacts to such a delicate structure. Also, even
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though the photoluminescence from the photonic crystals studied in Chapter 5 is larger

than in a planar sample, it would be much better to have an active region free from the

non-radiative surface recombination losses. In other words, it is a reasonable idea to

separate regions where the light is extracted from those where the light is generated. The

structure shown in Fig. 34 is a hexagon of unetched material surrounded by the photonic

crystal. The light is generated in the center region, small 1/2n2 fraction of it is emitted and

the rest is trapped in the waveguide. It is easy to estimate that the re-absorption length in

the 0.4µm thick film, with a 200Å active region, is about 15µm. In high-quality

materials, this length can be even larger due to the re-emission process. If the dimensions

of the photonic crystal are chosen such that spontaneous emission band of the active

Figure 34. A schematic of an LED structures. The structure consists of an

unetched region surrounded by a thin slab photonic crystal, which scatters

guided light. into the space.
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material overlaps with the leaking modes of the photonic conduction band the light can

be efficiently scattered out of the semiconductor. The leakage length of the guided modes

has to be shorter than re-absorption length in the photonic crystal. Voids reduce the

effective absorption of the photonic crystal, and the leakage length of conduction band

modes decreases as the bands move up away from the escape cone. Thus, for sufficiently

large lattice spacing guided modes can escape before being re-absorbed.

In these experiments, we compared spontaneous emission from an unpatterned

optically pumped region surrounded by a few rows of photonic crystal. The lattice

spacing, a, of the photonic crystal was 600, 760 or 900nm. According to our band
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structure calculations, in the a=600nm sample, guided TM modes overlap with the

emission band. For the a=760nm sample the emission band overlaps with both guided

TM and leaking conduction band modes of the photonic crystal. For the a=900nm sample

all spontaneous emission should couple to the leaky modes, and thus to free space. The

PL spectra of these samples are shown in Fig. 35 along with the spectrum of an unetched

reference sample. The photoluminescence acceptance angle was 0 to 45o in the air.

The spectrum of the a=600nm sample resembles that of an unetched thin film and has

almost the same intensity. Indeed, even though emission is into guided TM modes, there

is no way for the light to escape.  The PL signal from the sample with a=760nm is about

4 times larger. Shape of the spectrum is different, there are two distinct shoulders. This

Photoluminescence from LED structures
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Figure 36. Comparison of PL efficiencies from LED structures with different

lattice constants.
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measurement was done without angular resolution, so some finer spectral features may be

missing.

Finally, the sample with the a=900nm hole spacing showed even higher overall

efficiency. It is worth noting, that in this measurement, only the unpatterned center area

was pumped, and thus pumping condition remained identical for all samples. The

spectrally integrated areas are summarized in Figure 36. More than six-fold improvement

in light extraction was achieved using the photonic crystal around the edges of an active

semiconductor film. This result on periodic structures complements the previous work on

random texturing described in Appendix B. One of the advantages of photonic crystals is

that, due to the coherent scattering, they provide a shorter escape length. That means that

this method can be used in materials with internal quantum efficiencies too low to

tolerate re-absorption.
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7. Summary

Let me summarize the work described in this thesis:

We studied experimentally and theoretically the modification of spontaneous

emission in semiconductor photonic crystals at room temperature. Small material Qm of

semiconductors together with the large surface recombination velocities make

observation of these effects an interesting and challenging task.

A quantum electro-dynamical model was developed to estimate enhancement of

spontaneous radiation rates in photonic crystals and microcavities. Extensive numerical

computations were employed to calculate the band structure of thin slab photonic crystals

and modal properties of microcavities. The minimal effective mode volume, a parameter

crucial for cavity enhancement of spontaneous emission was found to be 2(λ/2n)3 where

λ is the resonant wavelength and n is the refractive index. A possible 5-fold enhancement

of spontaneous emission rate (Purcell effect) was shown to be possible in InGaAs

microcavities at room temperature under the most optimistic conditions.

Photoluminescence measurements were used in the search of the material system

most suitable for fabrication of such a photonic crystal. It was shown that the InGaAs/InP

and InGaN material systems are good candidates for opto-electronically active photonic

bandgap structures.

Angularly resolved photoluminescence measurements were used to measure

experimentally the band structure of conductions band of such a photonic crystal and

overall enhancement of spontaneous emission.
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Spontaneous emission enhancement in thin slab photonic crystals was

demonstrated. It was shown that emission into the leaky conduction bands of the crystal

has the same effect as cavity-enhanced spontaneous emission provided these bands are

flat enough relative to the emission band of the material.

Structures described in Chapters 5 and 6 have a good potential to be used in real-

world light-emitting diode designs. Issues of ohmic contacts and packaging were not

addressed in this work, although these are important aspects of a final product

fabrication.

Recommendations for novel LED designs were worked out based on the results of

this study.
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Appendix A: Modeling of Light-Extraction Efficiency of Light-

Emitting diodes

This appendix concerns itself with device design and fabrication concepts which

increase the efficiency of a light-emitting diode (LED), a performance parameter of quite

general importance especially in portable applications.  This sub-project was initiated at

the request of the Hewlett-Packard opto-electronic division. Good efficiency potential is

already present in these materials.  In terms of luminescent quantum efficiency, at room

temperature, direct gap double hetero-structures are rather unique substances.  It has been

known31 for almost 20 years that good quality III-V double heterostructures can have

high internal quantum yields, well over 90% efficient.  Indeed, it had been recently

shown32 that these internal quantum yields can sometimes exceed 99% efficiency.  The

main problem in LED design has always been to convert the impressive internal quantum

yields to external efficiency.

The reason for the discrepancy between internal and external efficiencies is the

difficulty for light to escape from high refractive index semiconductors as illustrated in

Fig. 1(a).  The escape cone for internal light in a semiconductor of refractive index n=3.5

is only 16°, as imposed by Snell's Law.  This narrow escape cone for spontaneous

emission covers a solid angle of ≈(1/4n2)×4π steradians.  Thus a mere 2% of the

internally generated light can escape into free space, the rest suffering total internal
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reflection and risking re-absorption.  An unsophisticated LED design would be only 2%

externally efficient, even when the internal efficiency is 100%.

There is no easy solution to the total internal reflection problem.  For example, if

an anti-reflection coating is applied to the semiconductor surface, then the escape cone

would apparently be broadened.  But then

there would be a second escape cone from

the coating material into free space as

illustrated in Fig. 1(b).  Some of the rays

would escape from the semiconductor only

to be trapped by the anti-reflection coating.

The net effect of a 2-fold hierarchy of

escape cones is that the same fraction

(1/4n2)×4π steradians of the light manages

to escape.  The determining parameter is

the overall refractive index ratio (n÷1)

between medium in which the light is

generated, and the medium where we want

the light to end up, (free space).

It is paradoxical that total internal

reflection can co-exist with an anti-

reflection coating.  Indeed the anti-

reflection coating has no net effect on the

Figure A1: (a) Transmission of light within

the escape cone.     (b) In the presence of an

anti-reflection coating, there are two

successive escape cones, but net escape

angle is the same as in (a).
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overall total internal reflection.  An anti-reflection coating merely reduces the Fresnel

reflectivity for those rays inside the narrow escape cone, rays which are capable of

escaping in any case.  On the other hand, those rays outside the escape cone are totally

internally reflected irrespective of any thin coating on the surface.

To effectively address the problem of the narrow escape cone requires a change in

the geometry of the high index material.  Early on, it was recognized that a hemispherical

dome33 made of high index semiconductor material, centered on the LED, would allow

all the light to exit the surface at normal incidence.  Unfortunately, a lens made of low

index material such as epoxy, is only partially and incompletely effective.

Until now, the cost of a hemispherical semiconductor lens has been such that they

have not been used commercially.  Instead, a different physical principle allows light to

escape from inside an LED.  This principle, of chaotic propagation of light, is illustrated

in Fig. 2.  The idea is that a light ray experiencing chaotic dynamics inside a

semiconductor will eventually find the escape cone.  Sometimes this form of optics34 is

called “Statistical Ray Optics”, and it was originally developed for understanding the

trapping of light inside solar cells.  Today, all record-breaking solar cells make use35 of

this concept.  An LED is an inverse solar cell, and similar ideas were put forth for LED’s

by Joyce et al36 over two decades ago.

In a plane parallel semiconductor sheet light is spontaneously emitted beyond the

angle of total internal reflection.  Such internally reflected light bounces back and forth

endlessly between the two surfaces, never escaping.  If one of the surfaces is textured, the

light ray direction is randomized with each reflection off the textured surface.  Each such
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random reflection allows a 2% probability that the light will happen to catch the escape

cone on the next pass.  In this way the light eventually escapes. Chaotic dynamics is

simply restored by a deviation from perfect symmetry, allowing internally generated light

to escape! The lesson is break the symmetry and you will help the LED efficiency.  An

intentional texture on the semiconductor surfaces of the LED is one of the simplest ways

of helping the light to escape.

1. Statement of Problem.

The chaotic dynamics approach for allowing light to escape from an LED imposes

certain design requirements.  The most important is, the long internal path length

required, before the light escapes.  Given the (1/4n2)≈1/50 probability of escaping per

surface reflection, the internal path length is required to be at least 50 times larger than

the thickness of the semiconductor.  Thus the main requirement for high LED efficiency,

once chaotic dynamics is achieved, is a very low parasitic absorption as the light scatters

around internally in the device.  Optical design for low parasitics emerges as one of the

main requirements for LED efficiency.  Indeed one of the worst practices is to build an

LED on optically absorbing substrate, e.g. a visible LED on a GaAs substrate.  There is a

current trend toward transparent superstrates and transparent substrates, by strained

hetero-epitaxy37 and by wafer bonding38 respectively.

The leading manufacturers such as HP have commercialized red LED’s having

external efficiencies above 20%, and occasionally reaching 30%.  These high brightness

LED’s represent a major improvement over the original generation of LED’s, but there is

room for further optical sophistication in getting the light out of these materials.
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2. Photon gas simulations

A model of optical processes in LED’s was created that takes into account device

geometry, light absorption in contacts and cladding layers, photon recycling, light

randomization due to surface scattering and the benefit from encapsulation of the device

into epoxy. Here we report results of the light extraction efficiency modeling using the

photon gas method and Monte-Carlo simulations.

Based on the results of our modeling, an optimized LED design was proposed.

Also, to determine parameters for the model, photoluminescence measurements of

internal quantum efficiency were performed on the epi-layers used for LED fabrication.

A photon gas model37 based on the statistical properties of the completely

randomized photons in the semiconductor device, allows one to make estimates of the

dependence of the LED light extraction efficiency. This will depend on quality of the

active layer material and geometric parameters such as aspect ratio and thickness of

active layer. We consider a square chip with dimensions width L and height H, with the

active layer of thickness d in the middle and reflecting electrical contacts on the top and

bottom surfaces covering area Acontact. Top and bottom surfaces are assumed to be

polished while four side edges are rough saw-cut. This design is similar to that used by

HP Opto-Electronics Division in fabrication of visible LED’s based on InGaAlP

quaternary alloys38, with L~200µm, H~250µm and d~1µm.

The photon flux inside the LED is:

I=[Density of photons inside LED]⋅
c

n
,
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where n is the refractive index of the semiconductor,

There are four ways for a photon to disappear from an LED:

a) For the portion of photon whose direction falls in the escape cone, the escape rate will

be proportional to the surface area and the escape fraction 1/(4n2):

A(λ)= +( )
( )

2 4

4

2

2

L LH T
n

I λ

b) There is a chance that photon traveling in the bulk of the device is absorbed in the

cladding layers or in the current spreading window due to free carrier absorption in the

volume:

 B(λ) = L H I2 α λ λ( ) ( ) ,

Where αfc is free carrier absorption coefficient in the bulk

c) Some of the photons can be reabsorbed in the active region. Some part of the photons,

proportional to the internal quantum efficiency, can be re-emitted. The balance produces

electron hole-pairs  which recombine non-radiatively:

C(λ) = − − ⋅
−

∫L
d e I

d2

4
1 1

π
θ η θ λ

α
θΩ( ) cos ( ) sin ( )cos

int

where T is average transmission coefficient (within the escape cone), α(λ) - absorption

coefficient of the active layer and ηint - internal quantum efficiency.

d). Finally, since contacts are not very good reflectors, there will be losses due to

absorption in contacts. The absorption rate due to this process is:

D(λ) = − ⋅∫A
d R Icontact

contact4
1

π
θ θ λΩcos ( ) sin ( )
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The light extraction efficiency ηextr(λ) is

the ratio of the desired rate to the sum of

all rates.

ηextr(λ) =
+ + +

A

A B C D

( )

( ) ( ) ( ) ( )

λ
λ λ λ λ

In a given device, different wavelengths

have different escape probabilities, which

means that result must be weighted by

spontaneous emission spectrum R(λ)

which can be derived from the absorption

spectrum using the Shockley-van

Roosbroeck relation39. Thus extraction

efficiency is given by

Extraction Efficiency =
∫

∫
R E d

R d

( ) ( )

( )

λ λ λ

λ λ
.

Simulation, using second method, the Monte-Carlo approach, takes into account

details of the LED design, such as the properties of the surfaces of the device, position of

the active layer within a device, reflectivity and configuration of contacts, etc.

Furthermore, the second method allows determination of the light distribution pattern

over the facets of the LED.

Analysis of the results of our modeling leads us to a number of conclusions:

 Light Extraction Efficiency vs. Internal Quantum Efficiency
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Figure A2: The total efficiency is the product of

the internal quantum efficiency times the light

extraction efficiency.  However the light extraction

efficiency is itself dependent on the internal

quantum efficiency due to the inevitable re-

absorption of some of the light.  In thin LED’s the

re-absorption effect is less severe.
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Thinning down the active layer reduces considerably the re-absorption losses in

the active layer, especially in material with low internal quantum efficiency (see Fig. 2).

This can also shift the operating point of the device towards the high-level injection

regime. However a thin active layer suffers if the double hetero-structure barriers are low

as in InGaAlP. That effect was not taken into account in this model.

Quality of the active layer material determines whether the preferred device

design should be thick or thin (see Fig. 3).  For a high internal quantum efficiency device

(>90%), one should minimize bulk absorption by making the device as thin as possible.

(This requires that a light randomization mechanism such as nano-texturing be

incorporated in the device, or that photon recycling be used for additional randomization

Light Extraction Efficiency vs. Height of the Chip
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Figure A3: The extraction efficiency versus LED chip height.  For the highest internal quantum

efficiency (IQE) material, the LED should be a thin film, but for lower quality material a thick

LED is better because the light escapes more readily from the edges.
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of light.).  On the other hand, if the

active layer has a low (<90%)

internal efficiency, it’s better to

make a thick substrate device which

allows the photons to see the device

edges where four additional escape

cones are present. This increases the

photon to escape probability from

the semiconductor on the very first

surface bounce.

3. Monte-Carlo Simulations of light extraction efficiency

The photon gas model is a good

approximation when the average

photon path consists of many bounces

inside the LED. When low quality

contacts are introduced on the top and

bottom surfaces of the LED, a

comparison of the photon gas model

with the Monte-Carlo simulation

shows a difference (Fig. 4).

Nonetheless the qualitative scaling

Scaling Properties of Light Extraction Efficiency (air interface)
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Figure A4: Scaling properties of the light extraction

efficiency. When imperfect contacts are introduced

into the LED design, photon gas model gives
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properties of the LED’s light extraction efficiency

is calculated correctly. From the point of view of

light extraction efficiency, a smaller device area is

preferable, since light randomization occurs only

on the edges of the device.

Even though contacts cover only about 15% of the

area of the device under consideration, the

dependence of light extraction efficiency on the

contact reflectivity is strong (Fig 5). Indeed, for a

50% reflective sheet contact, every probability of

contact absorption causes ~7% loss, which is

comparable with 6x(1/n2)~ 12%.

We considered the optimal position of the

active layer for the device with sheet contact on

the bottom and small circular contact on the top

surface. Modeling (Fig 6) show that bringing the active region closer to the smaller

contacts results in up to 6% improvement in the extraction efficiency. Of course, we can

not make the active layer too close to the top surface, since we use that upper layer for

current spreading.

Light Distribution over Surfaces

Top surface

(white - brightest point)

Side surface

Center of

the top edge

Center of
the side edge

L/2

L/2

H/2

L/2

Figure A6:  Monte-Carlo results.  Top and side

views of light escaping from an LED. The white

areas have more light emission than the dark

ones.
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Light output is higher near

the edges of the surfaces

adjacent to the roughened

sides of the device. This is

due to the fact that the

texturing at the edges

scatters some of the light

directly into the escape

cone. Obviously, better

performance would be

achieved if all the surfaces were textured, not only the edge surfaces. Obviously, one

should go to great pains to design no optical obstructions anywhere near the edges and

corners of the LED’s facets because that’s where the light is getting out.

The Monte Carlo simulation program was modified later to allow modeling of

light extraction efficiency associated with additional texturing of the top and bottom

surfaces of the LED and due to the introduction of the blocking layers under the top

contact.       Additional calculations were done to optimize the light extraction with

respect to small variations of the device dimensions around their commercial values.

Also, the results of measured internal quantum efficiency, presented earlier, were

corrected to account for photon recycling.

Figure 7 represents the results of modeling light extraction efficiency of an epoxy

encapsulated LED in the parameter plane of dice size and chip height. Calculations were
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done for an LED with internal quantum efficiency 0.7, with circular top contact of radius

55 microns and reflectivity 0.6 and sheet bottom contact with reflectivity 0.5. Bulk

absorption was taken to be 6

cm-1 and absorption in the

active layer was taken to be

104 cm-1. One can see that

light extraction efficiency

increases monotonically with

the height of the chip and

decreases with the length.

Figures 9a and 9b show the

effect of additional texturing

on the light extraction

efficiency. If light can be

scattered from the top and

bottom surfaces of the

device, it may significantly

increase escape probability

of photons. According to our

modeling, this texturing can

boost device efficiency by

10-15% of its initial value.
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Finally, we studied the possible change in LED performance due to incorporation of

current blocking layer under the top contact. However, modeling did not show any

significant improvement in the light extraction efficiency if blocking layers can absorb

light.

4. Conclusions

Light extraction efficiency of LED’s were calculated using photon gas model and Monte-

Carlo simulations. Recommendations were made to HP’s Opto-electrocnic division for

the design optimization, based on the results of the modeling.
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Appendix B: Absorption Enhancement in Textured AlGaAs

Films for Solar Cells

Introduction:

We have studied light randomization and the absorption enhancement in textured ultra-

thin AlxGa1-xAs films, with a thickness corresponding to a few optical wavelengths. We

call this the “wave limit” of light trapping as opposed to the geometrical optics limit

that was studied before. A correlation between the degree of light randomization and

trapping, with the scale length of the texturization geometry was found. The observed

absorption enhancement corresponds to 90% randomization, or 90% of the best

possible theoretical value. A modified photon gas model is proposed to calculate the

light trapping and absorption at the band edge in the textured ultra-thin films.

It was proposed in late 1970s and early 1980’s that light trapping by total

internal reflection could be used to increase light absorption in semiconductor wafers.

Several techniques were developed, such as natural lithography40, metal islands41 and

anodical etch of the porous silicon42 to texturize thin silicon sheets for light trapping.

Yablonovitch34 showed, that in the low absorption limit, total randomization of the light

leads to the enhancement of absorption by the factor of 2nf
2, where nf is film’s

refractive index. These results were confirmed experimentally by Deckman et al43 by

applying the natural lithography technique to amorphous silicon films. However, at the

moment there is no theory for angular dependence of light scattering from surfaces
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produced by this process because perturbation methods require that the ratio of

roughness height to the wavelength be small44 while the quasi-classical small slope

approximation45 require a relatively smooth surface.

In this paper we report results of our study of light randomization and

absorption enhancement in ultra-thin GaAs/AlGaAs films with a thickness of only a

few optical wavelength. This is the first study of light trapping in a direct gap

semiconductor in the wave limit, where geometrical optics does not apply. The ultra-

thin films were textured using the natural lithography while varying the density of

cylindrical surface structures. A modified photon gas model, which successfully

describes the absorption at the band edge will be presented.

The sample preparation method is by Natural Lithography: A GaAs/AlGaAs

double hetero-structure wafer (see Table B1) is patterned with commercially available

carboxylate modified 0.95µm polystyrene spheres. The sphere solution is first diluted

with methanol to 1% concentration by weight and then surface deposited by dropping a

small solution

 Table B1. Structure of the GaAs/AlGaAs quantum well wafer

   GaAlAs 0.32 µm window layer

   GaAs 0.20 µm active layer

   GaAlAs 0.44 µm window layer



100

   AlAs 0.05 µm sacrificial layer

   GaAs >100 µm substrate
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D.C.

A. B.

Figure B1: Variation of sphere density with angular velocity. The concentration of

polystyrene spheres solution in methanol solution is 1.5% by weight. The darker area

represents spheres. The spheres tend to cluster at higher surface concentrations.

A) Sphere distribution for 1800 rpm; B) Sphere distribution for 1700 rpm; C) Sphere

distribution for 1600 rpm; D) Sphere distribution for 1550 rpm.
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droplet on the wafer and spinning the wafer at 1500-2000 rpm. The wafer is spun to

distribute the spheres across the surface, and to allow the methanol to evaporate. The

sphere solution concentration and the revolution speed were varied until the conditions

were found such that approximately 50% of the wafer area is covered by spheres. From

Figure 1a-d, the effect of varying the angular velocity on sphere areal density can be

seen (while holding constant the sphere concentration in solution). The resultant sphere

density distribution does not vary significantly across the surface of a given sample.

The key point is to avoid building up multiple layers of sphere, which totally coat the

surface and provide no patterning. When the desired sphere distribution is obtained, the

sample is etched using the chemically assisted ion beam etching process to transfer a

glass

film

incident light

white  surface

fΨ(θ)
fΘ (θ)

gΘ (θ)

gΨ(θ)

θ

Figure B2: Experimental configuration and definition of the variables used in the

modeling.
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pattern, using the spheres as a lithographic mask. In our work the transferred pattern

consists of 0.25µm high mesas, which is approximately 3/4 of the thickness of the top

AlGaAs layer. Following etching, the top three epitaxial layers (~1µm) of the wafer,

containing the active layer of the device, are removed from the substrate using the

epitaxial lift-off procedure (ELO)46. The wax supported sample is then bonded to a

glass slide with the untextured side against the glass by using a UV curable

polyurethane adhesive. The spectral reflectance, R(λ), of the textured and untextured

film was measured over a white surface using a standard integrating sphere setup. Then,

absorbance of the sample simply becomes:

A(λ)=1-R(λ), (1)

since there is no transmission outside of the sphere. Samples were held horizontally by

gravity so that no optically absorbing adhesive materials were necessary inside the

sphere. In all our measurements, the probe beam was incident on the glass side with the

semiconductor film on the rear, as shown in Figure 2. In this configuration specular

reflections from the glass-air and the semiconductor/glass interfaces were identical for

the textured and untextured samples. Thus, reflectivity at the front surface was

unchanged, since the texturing was at the rear surface. In all the textured samples,

an increase in absorption was measured in comparison with the untextured films (see

Figures 3&4). The maximum theoretical absorption, which can be attained is ≈80% due

to incident beam reflectivity from the glass/air (4%) and semiconductor/glass (16%)

interfaces. The best results were attained for samples, which were coated by

approximately 50% area coverage of polystyrene spheres and the corresponding
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0.25µm high mesas. An absorbance increase from 45% up to ≈75% of a maximally

achievable result occurs for the sample in Figure 4 near the band edge. In our best

samples, the experimental value nearly reaches the maximum absorbance predicted by

theory, as can be seen in Figure 5. The absorbance oscillations, which occur for photon

energies above the bandgap, are due to Fabry-Perot fringes. The damping of these

Fabry-Perot oscillations in the textured film is an additional evidence of light

randomization produced through surface texturization. At energies below the bandgap,

free carrier absorption is enhanced from <1% up to the level of ≈20%. Unfortunately,

this produces heat rather then electron-hole pairs.We now describe the photon gas

model:

Consider a system consisting of the semiconductor film of thickness d with absorption

coefficient α and refractive index nf attached to a glass slide with the index of

refraction ng (as in Fig. 2 ). One surface of the film (opposite to the glass) is textured

and lies adjacent to the white reflecting surface so that incident monochromatic light

enters the film after passing through the glass slide. We assume that all photons which

reach the textured surface and white backing are scattered in all upward directions with

distribution function S(θ), where θ is the polar angle. If scattering is perfectly

Lambertian, S(θ)∝cosθ. Further, let us call f↑(θ) the flux density of photons in the film

near the textured surface, which are traveling up at angle θ. Due to symmetry, f↑

depends only on θ. Also, let f↓(θ) be a flux of photons in the film near the film/glass

interface, which are traveling down at angle θ. In the same manner, g↑(χ) and g↓(χ) are

defined as the photon flux densities in the glass at the film/glass interface going up and
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at the glass/air interface going down, respectively (Fig. 2). Reflection at the glass/air

boundary gives a relation between g↑(χ) and g↓(χ):

g↓(χ)=Rag(χ)g↑(χ) , (2)

where Rag(χ) is the reflection coefficient at the glass/air boundary given by the Fresnel

formulae. Detailed balance at the glass/film interfaces results in the following relation:

 )()()()cos/exp()()( θχθθαθχ fgfg RgTdfg ↓↑↑ +−=  , (3)

where χ and θ are related by Snell’s law. This formula simply states that flux aimed

upward in the glass is formed by reflection of photons in the glass from the film/glass
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Figure B3: Sample with the sparse distribution of spheres. The light trapping

absorption enhancement effect is minimal.
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boundary and by transmission of the film photon flux, attenuated in the absorbing film,

through the same boundary. The same reasoning provides another relation for f↓(θ) in

the semiconductor film: )()()()cos/exp()()( θχθθαθθ fgfg TgRdff ↓↑↓ +−= .

(4)

Also, the upward photon flux at the bottom surface is formed by the scattering of

incoming flux and the downward flux of photons on the textured surface. If a

monochromatic photon flux of intensity I is incident on the glass surface, to a good

approximation IT T R Rag fg fg ag( ) ( )( ( ) ( ))0 0 1 0 0+  is transmitted into the semiconductor, and

photon flux that reaches the textured surface has intensity
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Figure B4: Sample with 50% of the surface area covered with spheres. A large

absorption enhancement is obtained near the band edge.
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)cos/exp())0()0(1)(0()0( θαdRRTITI agfgfgagtx −+= ,

(5)

Since there is no absorption on the bottom surface, the incoming flux must totally

balance the outgoing flux. This gives the final equation for the system:

∫∫ Ω−+=Ω ↓↑ ddfIdf tx θθαθθθ cos)cos/exp()(cos)( , 

(6)

where integration is performed over 2π steradian. These equations can be solved for

any assumed angular distribution of light scattering f↑(θ)=S(θ) by integration of Eq. 6
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Figure B5: Comparison between the theoretical absorption for an optically

textured film and the best values obtained experimentally.



108

over the solid angles. In the photon gas model in the work of Deckman et al43, an

average Lambertian length for absorption is used. This is not valid for the strongly

nonlinear dependence of absorption on the propagation angle. Our theory, being more

general, explicitly takes into account absorption of photons scattered at different angles.

Instead of assumption of totally randomized photons, the model can deal with any

angular dependence of scattering, such as Lambertian in this paper. It can also

accommodate a dependence on incoming beam incidence angle. Instead of treating the

freestanding film, the sample is treated as bonded on the glass or sapphire slide, thus

taking into account a practical problem of the light trapping in the supporting slide.

Given this photon gas model, the amounts of reflected and absorbed light can be

calculated. Knowing the absorption spectrum of the film and its dispersion, one can

obtain the full spectral dependence of absorbance of the textured semiconductor film

bonded to a glass slide. Since the samples we studied contained various AlxGa1-xAs

alloy layers, the absorption coefficient α and the refractive index nf in the above

formulas are average values weighted by the thickness of the corresponding layers. The

calculated absorbance dependence for perfect Lambertian texturing is presented in

Figure 5 along with the experimental curve. Two curves show good agreement leading

us to believe that in the samples which have approximately 50% of the surface area

covered by 0.25µm high mesas at least 90% perfect light randomization has been

achieved.

We have studied light randomization and absorption in AlGaAs films textured by

means of natural lithography. A reproducible thin film fabrication process was
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developed that provides 90% of ideally predicted band-edge absorption relative to our

theoretical model. Since the 1µm diameter spheres are visible in the optical microscope,

natural lithography with this sphere size is easy to monitor and optimize. Our technique

is applicable for fabrication of thin film solar cells and LED’s based on III-V

compounds. Epitaxial lift-off technology allows us to fabricate very thin AlGaAs solar

cells47, making them lighter and cheaper and providing higher operating point voltages.
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Apendix C: Some solutions of the diffusion equation.

We list here solutions of the diffusion equation, which we used to model carrier

distribution profile in different configurations.

I. Collection efficiency. We consider a case when the incident light with photon flux

density J is all absorbed in the cap region close to the surface characterized by the surface

recombination velocity S and has to diffuse into the active region as in Fig C1. A

situation like that takes place in the GaN experiment with a thin cap layer. The cap

thickness is L, diffusion constant in the cap layer is D and recombination constant in the

cap is τ. We define the diffusion length DLd τ= and diffusion velocity τ/Dvd = .

The table below summarizes carrier distribution profiles and collection efficiency for

some simple yet important cases:

C
ol

le
ct

io
n

(q
ua

nt
um

 w
el

l)

S
ur

fa
ce

 S

L

Figure C1: The carriers are generated close to the surface with surface recombination

velocity S and diffuse towards the quantum well
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L>>Ld L<<Ld

S<<vd ηcoll∼0

dd

coll

v

S

L

L+
=

1

1η

S>>vd ηcoll∼0

dd

coll

v

S

L

L+
=

1

1η

Table C1: Carrier distribution profiles n(x) and the corresponding collection

efficiencies corresponding to the flux J absorbed close to the surface with surface

recombination velocity S. The cap layer of thickness L is characterized by the

lifetime τ and diffusion constant D. We introduce diffusion length DLd τ=  and

diffusion velocity τ/Dvd = .

II Internal Quantum Efficiency. We consider a case when the incident light with

uniform photon flux density J is all absorbed in the active region as shown in figure C2.

The photo-induced electron-hole pairs can either recombine radiatively at the exposed

surface characterized by the surface recombination velocity S or radiatively in the active

region. The active region thickness is L, the diffusion constant in the cap layer is D and

the radiative recombination lifetime in the active region is τ. As before, we define the

n
(J/vd)(L/Ld

0 L

n

SvL
L

J

d
d +

0 L

n

J/S

0 L

0

n
J/vd

L
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diffusion length DLd τ= and diffusion velocity τ/Dvd = . Carrier distribution

profiles and corresponding internal quantum efficiencies are summarizes in the table C2

on the following page. All results can be readily used for the case with two open surfaces,

e.g. InGaAs experiment, if surface recombination velocity S is substituted by 2S to reflect

the presence of two open surfaces.

Surface S

L
Figure C2: Carrier are injected uniformly, and can either recombine radiatively in the

bulk or non-radiatively at the surface.
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Table C2 L>>Ld L<<Ld

S<<vd η ∼1

dd v

S

L

L+
=

1

1η

S>>vd

L

Ld+
=

1

1η

dd v

S

L

L+
=

1

1η

Table C2: Carrier distribution profiles n(x) and the corresponding collection

efficiencies corresponding to the flux J absorbed uniformly in the active region

with an open surface with surface recombination velocity S. The cap layer of

thickness L is characterized by the lifetime τ and diffusion constant D. We

introduce diffusion length DLd τ=  and diffusion velocity τ/Dvd = .

n

0 L

n

SvL
L

J

d
d +

0 L

n

J/vd

0 L

0

n
J/vd

L

J/S
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