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ABSTRACT OF THE DISSERTATION 

 
 

Efficient Optical Coupling to the Nanoscale 

 

by 

 

Josh Conway 

Doctor of Philosophy in Electrical Engineering 

University of California Los Angeles, 2006 

Professor Eli Yablonovitch, Chair 

 

 

Efficient confinement of the optical field to nanometer dimensions will enable an entire 

new class of low power optical devices. The range of devices that could be created is 

staggering. In addition to greatly enhancing microscopy and optical lithography, such an 

advance would allow for optical non-linearities with only a few photons. While the 

technological impetus is great, there is currently no device in the prior art which can 

achieve nanoscale optical focusing with any degree of efficiency. This dissertation 

presents the analysis and simulation of a novel plasmonic lens which can confine the 

optical field with astonishing efficiency. The key to the function of the device is the use 

of surface plasmons in a Metal-Insulator-Metal slab geometry. The unique dispersion of 

these modes allows for very large wave-vectors, achieving X-ray wavelengths with 



 xv

visible frequencies. This effect is exploited to achieve enhancements of the square of the 

electric field which are greater than 105 compared to that of the focus of a microscope 

objective. Through the use of extensive analysis and electromagnetic simulations, this 

novel device is demonstrated to have less than 10dB of loss when focusing the field of a 

visible photon to 3nm by 7nm. 
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CHAPTER 1 INTRODUCTION 
 

The charm of history and its enigmatic lesson consist in the fact that, from age to age, 

nothing changes and yet everything is completely different.   

-Aldous Huxley 

 

 This dissertation presents a novel plasmonic lens for efficiently coupling the 

optical field to the nanoscale. Through analysis, electromagnetic simulation and basic 

proof-of-concept experiments, the design presented herein is demonstrated to have higher 

energy concentration and greater efficiency than the prior art. To convey these results to 

the reader, the material is presented as follows. Chapter 1 gives the motivation and 

elementary background on optical focusing and surface plasmons. Chapter 2 details the 

precise design considerations of this plasmonic lens. Chapter 3 lays out the 

electromagnetic simulation results. Chapters 4-6 present more advanced topics and 

analyses of various applications. 

 

1.1 Motivation 

The ability to focus the optical field to deeply sub-wavelength dimensions opens 

the door to an entirely new class of photonic devices. If one could combine the imaging 

powers of X-ray wavelengths with the economy and maturity of visible light sources, one 

could greatly broaden the practical engineering toolbox. Imagine focusing visible photons 

to spatial dimensions less than ten nanometers. By doing so, electron beam microscopy is 
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immediately displaced by optical microscopy, replacing expensive electron beam sources 

with inexpensive visible lasers. Beyond simple economics, though, this achievement 

would extend the range of nanometer scale microscopy to living biological samples and 

highly insulating surfaces.  

In addition to the goal of nanoscale optical energy concentration and focusing, we 

add the constraint of efficiency. It is not sufficient to simply deliver optical energy to a 

nanoscale spatial regime. This coupling must be done efficiently, making this the 

watchword of this dissertation. Such powerful focusing could then be used to generate 

optical nonlinearities with very low photon counts. Enabling a suite of novel non-linear 

devices in passive optical geometries, this leads to novel optical switches, all-optical 

logic and highly sensitive detector arrays. All of these reasons compel us to address the 

physical and engineering principles that determine the smallest volume to which light can 

be efficiently focused. 

A simple thought experiment can clarify some of the ramifications of efficient 

optical coupling to the nanoscale. Consider the energy of a single visible photon. For the 

sake of quantitative discussion, a red photon is chosen at 2eV, yielding a free space 

wavelength of 620nm. The reader is now asked to forego the objections of the 

Heisenberg Uncertainty Principle or the classical diffraction limit, and simply consider 

the energetic implications of confining the photon to a volume of 1nm3. The details as to 

how we will arrive at such confinement are postponed until after the motivation has been 

established. This geometric scheme is illustrated in Figure 1-1. 
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Figure 1-1: A single red photon confined to 1nm3 

 

Computing the optical energy density is now trivial. The energy of the photon is a 

known quantity, as is the volume. Turning the crank on this transparent equation yields  

 ( )
19

8 3
39

2 1.6 10 3 10 /
10

eV JEnergy Density J m
eVm

−

−

×
= = ×  (1-1) 

Optical energy density is not a standard figure of merit for most photonics engineers. To 

connect our humble photon to some standard of optical energy density we consider the 

sun. As the reader is well aware all life on earth, as well as most of the heat in our solar 

system, is powered by the optical energy radiating from the surface of the sun. The sun 

can be modeled as an ideal black body, which permits the use of a variation of the 

Stefan’s law1 to determine the radiant intensity over all wavelengths emanating from the 

1nm 

1nm

1nm 
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sun’s surface. Dividing the intensity by velocity yields the optical energy density, which 

is computed below, assuming a black body temperature of 5,400K. 

 
4 3/ 0.2 /Energy Density T c J mσ= =  (1-2) 

The discrepancy between the energy densities of these systems is startling. The 

optical energy density, summed over all of the frequencies emanating from the sun, is 

more than a billion times smaller than that of a single red photon focused to the 

nanoscale. Clearly, compressed optical modes have enormous energy densities. In fact, 

the electric field of our nano-focused photon is on the order of 1010 V/m.  

These levels of optical compression are great enough to achieve optical non-

linearities in common materials with very low photon counts. For instance, Silica glass2 

has a non-linear index coefficient (n2) of approximately 6 x 10-23 m2/V2. Achieving a 1% 

change in refractive index, then, requires only 8 photons. Employing more exotic 

nonlinear materials, such as lead-silicate or chalcogenides, will increase the changes in 

refractive index by orders of magnitude. Thus, focusing to the nanoscale will allow for a 

new regime of low-power nonlinear optics.  

 

1.2 Nanoscale Focusing in a Diffractive World 

 There are, of course, several problems implicit in focusing light to deeply sub-

wavelength dimensions. These limits for homogenous media come directly from 

Maxwell’s Equations. We begin with Maxwell’s Equations in differential form3 

 dHE
dt

µ∇× = −  (1-3) 
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 f
dDH J
dt

∇× = +  (1-4) 

These equations can be simplified for very high frequency fields. The magnetic response 

of a material involves currents which generally cannot respond at optical frequencies4. 

Although there are numerous magnetic dipole transitions for many natural media at 

optical frequencies5,6, these tend to be very weak and are negligible for the materials in 

this thesis, making 0µ µ= . Likewise the free currents, represented by Jf, cannot respond 

at these frequencies, and they too are zero. The assumption of homogenous, isotropic 

linear media then allows us to eliminate the auxiliary field H. After some simplification, 

we arrive at the wave equation. 

 
2 2

2
2

nE E
c
ω

−∇ =  (1-5) 

In the equation above, n represents the index of refraction which is equal to the square 

root of the relative dielectric constant (ε) of the medium. The electric field may now be 

decomposed into a complete basis set of plane waves7, with ki representing the spatial 

frequency in the direction i. 

 

2 2
2 2 2

2x y z
nk k k

c
ω

+ + =  (1-6) 

 
0

2
i

n nk
c
ω π

λ
≤ =  (1-7) 

This puts a fundamental limit on the achievable spatial wave-vector, which is constrained 

principally by the low indices of refraction in conventional optical materials. In the 

regime of low loss in the visible band of the spectrum, indices of refraction top out 
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around 1.9 with flint glass8. This limits the maximum wave-vector to a spatial frequency 

of 
0

4π
λ . As is known in the art, the spot focus in the image plane can be represented as 

a Fourier transform of spatial frequencies. The above equations then set an upper limit on 

the frequency which thereby determines the minimum pitch at the image to be greater 

than 0 / 2λ . 

The use of focusing optics in the regime of Fraunhoffer diffraction9 drastically 

worsens the situation. As is typically the case with diffractive optics, a circular lens is 

used as the focusing element. This lens forms a circular aperture which acts as a low pass 

spatial filter with a maximum spatial frequency of
02 i

nD
dλ

. Here D represents the diameter 

of the lens and di is the distance from the lens to the image plane. With the high spatial 

frequencies cut-off, the circular optic creates an Airy disk10 in the image plane, as 

illustrated in Figures 1-2(a) and 1-2(b). The diffraction limited spot is now limited to a 

minimum diameter of approximately 01.22
NA
λ , where the numerical aperture (NA) is 

defined as sinn θ . Although typically worse in practice, this then sets the minimum pitch 

to greater than 0.65 λ0. Clearly, focusing to 1nm spot sizes is not possible using 

conventional focusing techniques at visible frequencies. To fulfill the promise of 

advanced microscopy and low-power non-linear optics, then, a new solution is needed. 
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Figure 1-2: (a) Illustrates the diffraction limited spot size due to the clipping of the higher spatial 
frequencies. (b) shows the field pattern of an Airy disk. 

          

1.3 Surface Plasmons, the Key to Optical Confinement 

 It is evident that deeply sub-wavelength focal spots cannot be formed through 

conventional focusing using a lens system or microscope objective. This is due, 

primarily, to the lack of high-index media at visible frequencies. What if, however, one 

was able to achieve a high effective index with conventional optical materials? That is the 

potential of surface plasmon optics. By employing geometries of conductors (such as 

metals or doped semiconductors) with dielectrics (such as air or glass), modes at optical 

frequencies can be created with effective indices of refraction that are orders of 

magnitude higher than those of the constituent materials. In fact, these indices can be so 

high as to create X-ray wavelengths (less than 10nm) with visible frequencies.  

(a) (b)
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Figure 1-3: Geometry for single interface Surface Plasmon 

 
 The reason surface plasmon modes can achieve anomalously high wave-vectors at 

visible frequencies is because they are mediated by electrons rather than free space 

optical fields11. Surface plasmons are electron oscillations12,13 at optical frequencies 

which are localized to the interface of a material with a positive dielectric constant and 

that of a negative dielectric constant (as illustrated in Figure 1-3). At wave-vectors much 

smaller than the Fermi wave-vector12 of the conductor, these modes can be well described 

by Maxwell’s Equations. Quantum mechanical considerations only become necessary at 

very short plasmon wavelengths, beyond the scope of this dissertation and are not 

required for determining the limits of efficient focusing. At low wave-vectors, the 

behavior of these surface modes can be understood intuitively. In this regime, they are 

essentially transverse in character, although strictly speaking they have a small 

longitudinal component. These transverse fields generate a polarization in the dielectric 

Metal

Dielectric x 

ε2 < 0 Metal

Dielectric x 
ε1 < 0 

z
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which is aligned with the stimulating field. In the metal, however, the polarization will be 

in the opposite direction of the applied field owing to its negative dielectric constant. 

Now we have a situation where the stimulating field is creating equal and opposite 

electric displacements (D), in phase with each other across an interface. These opposing 

electric displacements serve to attract and confine the current to this interface, thus 

generating the collective electron oscillations of the surface plasmon.  

 Starting from Maxwell’s Equations, it is valuable to derive the characteristics of 

this simple plasmonic system. Again we take the free current to be zero and the relative 

permeability (µr) of all media to be unity. Following Economou14, we will assume 

translational symmetry and homogeneity in the ŷ direction (following the axes of Figure 

1-3) and propagation with wave-vector k in the ẑ direction. The behavior in the x̂  

direction is taken to be exponentially decaying away from the interface. Derived above in 

Equation (1-6), the wave equation tells us that the exponential decay constant in medium 

i must be 

 
2

2 2
2

i
i

wK k
c
ε

= −  (1-8) 

We now have enough information to determine the fields to within a scale factor. In the 

dielectric (medium 1), we define 

 1 ( )
1

K x i kz t
xE Ae e ω− −=  (1-9) 

The scalar quantity A represents a scale factor to be determined. From Gauss’s Law we 

may derive Ez 
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 1 ( )1 1
1 1

K x i kz t
z x

K KE E A e e
ik ik

ω− −= =  (1-10) 

Likewise for the conductor, we may derive Ex and Ez. In this case, we set the scale factor 

to unity, as only the relative scale factor carries importance. 

 2 ( )
2

K x i kz t
xE e e ω−=  (1-11) 

 2 ( )2
2

K x i kz t
z

KE e e
ik

ω−= −  (1-12) 

Applying the electromagnetic boundary conditions at the interface allows one to then 

solve for A. The continuity of Ez and Dx yield 

 2 2

1 1

KA
K

ε
ε

= = −  (1-13) 

Some simple algebra may then be used to solve for k, finally generating the dispersion 

relation for these simple surface plasmon modes15. 

 1 2

1 2

k
c

ε εω
ε ε

=
+

 (1-14) 

The wave-vector is no longer a linear function of permittivity as in standard dielectrics. 

Because we have the sum of dielectrics of opposite sign in the denominator, very large 

wave-vectors are possible.  

These wave-vectors, of course, are intimately tied to the dispersion of the 

constituent materials. One cannot discuss the plasmon dispersion relations without a 

model for the relative permittivities. Dielectric materials tend to have fairly constant 

permittivities over large bandwidths, while conductors tend to be very dispersive. To 

illustrate the dispersion relations of a typical material system, a Drude model16 serves as a 
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simple approximation for a metal. Here we will assume a lossless Drude metal and 

denote the plasma frequency as ωp. 

 

2

21 p
m

ω
ε

ω
= −  (1-15) 

Taking free space as the dielectric material allows us to generate a dispersion relation, 

plotted in Figure 1-4. For generality, the frequency is plotted in units of the plasma 

frequency (ωp) and the wave-vector in units of ωp/c. As a point of reference, the light line 

is plotted as a grey dashed line and represents the dispersion relation of an optical field 

propagating in the dielectric medium along the same direction as the surface plasmon.  

 While this is a very simplified material system, there are two important 

characteristics of surface plasmons which are evident in this model. The first is that the 

dispersion relation always lies at higher wave-vectors than the light line. Due to the 

difference in wave-vector, then, the plasmon field cannot efficiently couple to radiating 

optical modes. Conversely, free-space optical fields cannot directly stimulate surface 

plasmons unless a mechanism introduces additional momentum. Of course, this result is 

to be expected from our initial assumptions. By defining the mode to have an exponential 

decay normal to the surface, we assured an imaginary wave-vector in this dimension. The 

absolute square of this positive quantity then adds to the light-line wave-vector to 

determine k2 (as in Equation (1-6)), hence k must always be greater than that of the free 

space field. 



 12

ksp(ωp/c)
0 1 2 3 4 5 6 7 8 9 10

ω
( ω

p)

0.0

0.5

1.0

 
Figure 1-4: Dispersion relation for a Drude Metal plotted in units of the plasma frequency. The 

dashed line represents the light line. 

 

 The second defining feature of this dispersion relation occurs as the frequency 

approaches 0.7 ωp. Here the wave-vector grows very large, orders of magnitude larger 

than the light line. It is precisely this feature which we will exploit to allow efficient 

focusing to the nanoscale. Although the permittivities of these materials may be modest, 

their geometry and interactions create an effective index much larger than that available 

from conventional transparent media. The reader may observe that these wave-vectors 

seem to violate Heisenberg’s Uncertainty Principle17 for optical fields in these materials. 

One resolution of this lies in the charge carrying fluid of electrons. Because these modes 

are mediated by collective electron oscillations with sub-Angstrom wavelengths, they 

may achieve very large optical wave-vectors. In the parlance of plasma physics, the 

Drude 
Metal 

Vacuum 

light 
line 
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energy is in the form of oscillating charge separations between the negative electrons and 

the positive ionic background of the metal, waves that extend to large wave-vectors.  

 

1.4 Surface Enhanced Raman Scattering, a Proof of Principle 

 A proof of concept for the dramatic focusing powers of surface plasmons lies in 

the serendipitous discovery of Surface Enhanced Raman Scattering (SERS) more than 30 

years ago18. In the original experiment, an optical field irradiated an electrochemical cell 

containing aqueous pyridine19. The spontaneous Raman intensity emanating from the cell 

was found to be enhanced by six orders of magnitude compared to that of aqueous 

pyridine without the presence of the cell20. Since that time, Raman enhancements of 

approximately 15 orders of magnitude21,22 have been reported and it is now known that 

this enhancement is due to the interaction of the surface with the optical energy and the 

adsorbed particle. This effect has proved invaluable in chemical spectroscopy. Making 

the Raman Spectra detectable with less than 100µW of optical input power23, this 

technique allows for the rapid identification of trace molecules by their unique Raman 

signature24.  

 The basic geometry for SERS is simple. A molecule is adsorbed onto a rough 

metallic surface. For the metallic substrate, silver tends to show the greatest 

enhancement, although the other coinage metals have large enhancements as well. Most 

conductors, in fact, will show some enhancement25. The substrate is illuminated and the 

scattered light is collected. Besides collected radiation at the probe frequency, various 

other spectral lines are present. These are generated by the process of Raman scattering, 
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and are due to the interaction of the probe radiation and the vibrational states of the 

adsorbed molecule. Because this scattering is so intimately related to the structure of the 

molecule, Raman scattering produces a unique distinguishing spectrum.  

While clearly useful, SERS has proven difficult to pin down theoretically. In the 

time since its initial discovery, there has been little agreement as to the precise 

mechanisms responsible for this massive enhancement of the Raman process26. This is 

due to the combination of electromagnetic effects of the plasmon modes on the metallic 

surface as well as the chemical effects of the adsorbed particle interacting with the 

metallic surface. One certainty is that electromagnetic effects account for a significant 

part of the Raman intensity enhancement. This is due to the generation of localized 

surface plasmons. As mentioned in the previous sections, light cannot generate surface 

plasmons on planar surfaces. Rough surfaces, on the other hand, can add the missing 

momentum to create plasmons directly from the free-space optical field. These plasmons 

then have fields highly localized to the surface, precisely at the location of the adsorbed 

molecule. Various simulations27 and analyses25 have shown that these modes can account 

for at least six orders of magnitude of enhancement. Such a mode is shown in Figure 1-5, 

which plots the electric field in a 2D simulation of a nano-structured silver substrate 

illuminated from above with 2.6eV photons. The structure creates a 10x field 

enhancement near the adsorbed molecule.  
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Figure 1-5: 2-d electromagnetic simulation showing the optical field enhancement on a rough silver 
surface 

 

The reader will now wonder how these modes, with field enhancements of 

approximately one order of magnitude, can account for Raman intensity enhancements of 

six orders of magnitude. This can be explained by the enhancement of the scattered 

field25. The same mechanism which enhances the incident field will, by reciprocity, 

enhance the out-coupling and directionality of the scattered field. This gain is then 

squared again to account for the detected intensity, giving an approximate Raman gain of 

the field enhancement raised to the fourth power. Even greater Raman enhancements can 
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Ag 
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be achieved when the rough metallic surface focuses the plasmons to localized hot-spots. 

This suggests that far greater enhancements may be attained by optimized structures in 

superior geometries. Engineering such controlled structures is the subject of this 

dissertation. 

 

1.5 The Prior Art: Photo-assisted STM and Tapered Plasmonic Wires 
 

As demonstrated by the incredible enhancements seen in Surface Enhanced 

Raman Scattering, even random roughness can lead to sharp focusing and localization of 

the optical field. It then falls to the engineer to construct optimized and reproducible 

devices which will fulfill the greater potential of surface plasmons. Because the benefits 

are so far-reaching, the pursuit of optical confinement at deeply sub-wavelength 

dimensions employing plasmons is a not new one. Most prominently, photo-assisted 

Scanning-Tunneling Microscopy (STM) has shown a great deal of success in the 

laboratory28,29. The scheme employs standard laboratory equipment to achieve very high 

field concentration in a controlled volume localized to the nanometer regime. 

As illustrated in Figure 1-6, the technique involves a sharp metallic tip positioned 

nanometers above a conductive surface. This small gap between the two conductors is 

then illuminated with laser radiation polarized along the axis of the STM tip. The electric 

field of the optical beam drives oscillations of the free electron gas in the metal, which 

peaks at the tip. These plasmon oscillations propagate down the conical geometry, toward 

the apex and account for the very high field enhancements which occur even without the 

substrate. It must be noted that the field enhancements are far greater in the presence of 



 17

the conducting surface, and this enhancement is very sensitive to the spacing between the 

tip and conductor30. A zeroeth order explanation for this effect can be understood by 

considering the gap as a very small capacitor. As the spacing is sub-wavelength, all of the 

optical voltage is across this gap. Thus, smaller gaps create larger fields. Theory has 

shown that this can lead to very large enhancements of the square of the electric 

field28,31,32. The greatest measured enhancement (known to the author) using a gold tip 

showed only a factor of 50 intensity enhancement33. This technique has proven itself very 

valuable in the laboratory environment. By combining high optical power with nanometer 

positioning, this technology has enabled a host of applications from optically trapping 

particles28, to the nano-machining of metals34. 

Moving forward to higher field enhancements, greater efficiencies and robust 

construction will extend the range of previous applications and enable entirely new 

technologies. This, however, will require a large step forward in design. Photo-assisted 

STM is impeded by two fundamental problems. First is the delicacy of the tip. The 

atomically sharp tip resting nanometers above a substrate is not suitable for any 

applications outside of the controlled lab environment. Second is the intrinsic size 

mismatch between the free space beam and the nanoscale enhanced region. As discussed 

previously, the optical beam is diffraction limited to dimensions on the order of a micron. 

The intersection of the micron focal spot and nanometer tip creates an implicit loss 

mechanism in the design. Thus, Photo-assisted STM is inherently inefficient.  



 18

 
Figure 1-6: Technique for Photoassisted STM 

 

A key physical process which contributes to the enhancement of the Photo-

assisted STM is the propagation of plasmons down a tapered metallic wire. Although 

analogous to the geometry described above, this tends to be treated separately in the 

literature and is known as the Negative Dielectric (ND) pin35. This design is characterized 

by a solid cylinder of negative dielectric surrounded by a positive dielectric medium 

which extends to infinity. This geometry has the advantageous feature of a monotonically 

increasing k-vector with decreasing pin radius36. Classical calculations using bulk 

dielectric constants show no minimum cut-off radius. Therefore the pin has the capacity 

to focus the energy in both the transverse and longitudinal dimensions. Building on this, a 

cylindrical cone structure has been analyzed37,38,39, creating a tapered plasmonic wire (see 

Figure 1-7). These analyses showed an E2 enhancement on the order of thousands as the 

silver wire adiabatically tapers from 50nm to 2nm radius. Illustrating the potential of 
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plasmonic focusing, the structure achieved these results because it not only confines the 

mode geometrically, but also temporally via reductions in the group velocity.  

 

Figure 1-7: Tapered ND Pin Geometry 

 

Calculations show that the adiabatically tapered pin yields large confinement and 

field enhancement, but it, too, is not a practical technique for achieving these results. It 

must be noted that the E2 enhancement described above was calculated by ignoring the 

absorption effects of silver. We repeated the analysis of this device using the complex 

dielectric constant of silver, not merely the real part. When we include even optimistic 

numbers for the imaginary component of epsilon, our calculations yield an E2 

enhancement of approximately 40. As opposed to an enhancement on the order of 

thousands which was achieved in a lossless medium, the more realistic case is much less 

impressive. Reference 38 took the effects of electron scattering at the surface into account 

through the use of the Hydrodynamic Model40, but ignored the more basic first order 

absorption effects. Clearly the previously published analyses are incomplete without 

thorough investigation of these effects and when taken into account, the adiabatic tapered 
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pin is very inefficient. This design, while promising on paper, will not achieve efficient 

coupling to the nanoscale. 

 

1.6 The Prior Art: Enhanced Transmission Apertures and Tapered Fiber Probes 

Eliminating inefficiency is essential to the operation of low power devices. 

Various methods have been proposed to address these issues. Receiving the most press is 

the enhanced transmission effect through sub-wavelength apertures41,42 which sparked a 

renewed wave of research in surface plasmons43,44,45,46. In this method, a free space 

optical field irradiates a metal film, typically 60-100nm thick. The film has a small 

cylindrical hole, generally with a grating47 or hole array around it. Both the grating and 

array act to add the missing momentum to the free space beam, allowing surface 

plasmons to couple to the top side of the metal film (see Figure 1-8). These surface 

plasmons are loosely bound to a single side of the film but can evanescently couple to the 

opposite side of the film. Once propagating on the opposite side of the film, these 

plasmons will then out-couple at the hole to both the near and far field. The optical 

energy which transmits through the hole is then ‘enhanced’ compared to that which 

would be transmitted by strict diffraction in a non-conducting occluding film. 

As a focusing method, this technique is fundamentally relegated to unacceptably 

low efficiencies when the out-coupled mode is smaller than 10nm. The problem lies in 

the classical skin depth. Because the free space photons can tunnel directly through very 

thin metal films, the metallic layer is required to be optically thick. This constraint 

immediately limits the plasmon wavelength which will achieve efficient evanescent 
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tunneling43 across the film. The large plasmon wavelength, in turn, disperses the energy 

in both the transverse and longitudinal directions, fundamentally limiting the ultimate 

focal size of the field. 

 

Figure 1-8: Geometry of enhanced transmission through sub-wavelength apertures 

 

Finally, we present a method of coupling light to very small dimensions which 

does not employ surface plasmons. Tapered fiber probes, instead, create a very small 

aperture and thereby the transmitted light is localized to a very small focus. This is 

achieved by either pulling the fiber or chemically etching it into a tapered configuration. 

The fiber is then coated with a metal, typically Aluminum. An aperture is then created at 

the end of the tip by shaving back the metal to expose a very small aperture. The reader is 

warned not to confuse this geometry with that of a plasmonic waveguide. Metals are the 

only media which can block light with only tens of nanometers of thickness. These 
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metals may therefore create the smallest possible aperture size at the apex, limited only 

by the skin depth of the metal. This scheme is illustrated in Figure 1-9. 

This method is an open trade between efficiency and aperture size. Because the 

propagating modes of the fiber are cut off in the taper, the propagation is strictly 

evanescent. Therefore, the shortest tapers (generally achieved via chemical etching48) 

tend to have the highest throughput. The loss is also restricted by the poor transmission 

through the aperture49. These losses limit the apertures to larger than the skin depth 

because of the practicality achieving even moderate efficiencies. Typical losses tend to be 

50-60dB for a 100nm diameter aperture, however losses of 20-30dB have been 

demonstrated for a triple tapered fiber50 (also with a 100nm aperture). Clearly this is not 

an efficient or even plausible method of coupling to the nanoscale, but serves as an 

important benchmark. 
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Figure 1-9: Operational schematic of tapered fiber probe 

 

1.7 Looking to the Future 

Efficient optical coupling to the nanoscale, suggested by the serendipitous success 

of Surface Enhanced Raman Scattering, has not been effectively demonstrated by the 

prior art. The inefficiencies of photoassisted STM tells us that a guided mode is necessary 

to bring the optical field to small dimensions. Good coupling, therefore, needs a traveling 

mode solution. The work with plasmonic wires shows that the design must take crippling 

propagation losses into account. In addition, the device must be designed based on 

potentially feasible fabrication techniques. In the remainder of this thesis, we present a 

design which addresses all of these issues and arrives at true efficient coupling to the 

nanoscale.  
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CHAPTER 2 MATERIALS AND DISPERSION 
 

The important thing in science is not so much to obtain new facts as to discover new ways 

of thinking about them. 

-Sir William Bragg 

 

  This chapter presents the fundamental engineering principles which make optical 

coupling to the nanoscale feasible. Throughout the text, efficiency is emphasized rather 

than simply achieving a small spot size. As is known in the field, the losses associated 

with even ideal materials can be devastating to efficient propagation. To this end, a 

quantitative analysis of materials systems is presented. Then we describe the dispersion 

relations and how they detail the physical mechanisms of efficient optical coupling. 

Finally we present our design for the novel plasmonic lens. 

 

2.1 Materials Systems for Plasmonic Focusing 

Effective nano-focusing is ultimately a function of efficiency. Before continuing 

to describe the design and analysis of our focusing device, we must digress to the 

material properties which govern the absorption and dispersion properties of the plasmon. 

Losses are implicit in confining a macroscopic optical field to nanoscale dimensions. 

Increasing field confinement and wave-vector leads to slower group and phase velocities. 

This increases the interaction time of the field with the loss mechanisms of the media, 

which in turn creates a proportionally degraded throughput. In fact, the losses can be 
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catastrophic for certain systems, negating any advantages of field enhancement. To 

ignore this fact would remove any of the real-world engineering aspects of the problem 

and relegate it to a mere intellectual curiosity. This puts a premium on analysis of loss 

mechanisms and material properties.  

Surface plasmon modes tend to be very lossy and the majority of this loss is due 

to absorption in the metal. The poor transmission properties of plasmons are described by 

their decay length, which is defined as the length over which the intensity decays by e-1. 

Typical surface plasmon decay lengths are less than 10µm51, while ‘long range’ surface 

plasmons can travel as far as hundreds of microns52,53. The long range plasmons 

capitalize on geometric and material effects which keep most of the field inside the 

dielectric media54. As is the case for all optimized waveguides, the decay lengths are 

limited by dissipation in the metal. As the electrons collectively oscillate at these surface 

plasmon frequencies, they collide with the background lattice of positive ions, 

transferring energy which is dissipated as heat. This powerful loss mechanism strongly 

constrains the design of any plasmonic device. For surface plasmons to achieve even 

modest levels of efficiency careful selection of materials and operating frequencies is 

required.  

Ideally, a comparison of the modal Quality Factor (Q) over frequencies and 

materials would yield the ideal operating point. This trade study, though, is clouded by 

the realities of the system. Modal Q, which will henceforth be referred to as Qmod, is 

determined by the details of the geometry of the plasmonic waveguide and the Qmod can 

vary by orders of magnitude simply by altering the dimensions. It must be stressed that 
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the loss is determined primarily by the properties of the conductor. Because of this, it is 

the intrinsic Q of the metal that is most important.  

Material Q is a quantity which we introduce here to quantify the efficiency of 

large wave-vector plasmon propagation for various materials and frequencies. This 

metric originates from the classical expression for Qmod in dispersive media. In such 

media, the derivative of the dielectric constant takes on added importance.  The term 

( ) /d dωε ω  replaces the relative dielectric constant (ε) in determining the energy of the 

electric field and Q-factor for the plasmon modes. This is especially significant in 

conductors whereε  is negative and thermodynamics requires a positive electric-field 

energy. From Landau and Lifshitz55 (although a more accessible derivation may be found 

in reference 56) the total energy stored in the field is given by 

 
( ) ( )0 02 21

2
U E H d

ωε ε ωµ µ
τ

ω ω
′ ′⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
∫  (2-1) 

The quantities 0ε and 0µ are the permittivity and permeability of free space, respectively 

whileε ′ andµ′are the real parts of the relative dielectric constant and relative 

permeability. The integral is taken over volume (τ ). Equation (2-1) is derived in the 

literature for semitransparent dispersive media and, as the reader is well aware, good 

conductors tend to be highly reflective in the frequency range that supports surface 

plasmons (below the plasma frequency of the conductor). This is a far cry from 

transparency. The mathematical assumptions which lead to this definition of stored 

energy, however, do not strictly require transparency. They demand, instead, that the 
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imaginary component of the wave-vector be small in comparison to the real component. 

This justifies the above formalism, even below the plasma frequency. Therefore, the 

expression is valid in the regime of interest. The average heat evolved in the material per 

unit time in the lossy medium is55:  

 ( )2 2
0 0

dU E H d
dt

ω ε ε µ µ τ′′ ′′= +∫  (2-2)  

The termsε ′′andµ′′ are the imaginary components of the relative dielectric constant and 

relative permeability. With these pieces in place, it remains to define the Q-factor as a 

function of frequency, which we will define as the modal Q (Qmod). 
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ωε ε ωµ µ
τ

ω ωω
ε ε µ µ τ

′ ′⎛ ⎞∂ ∂
+⎜ ⎟∂ ∂⎝ ⎠≡ =

′′ ′′+

∫

∫
 (2-3) 

Equation (2-3) can be simplified by remembering that the imaginary component 

of the permeability (µ′′ ) tends to zero at optical frequencies. We may then work from 

this to define a quantity known as the material Q (Qmat) which only takes the electrical 

energy into account, dropping the second term from the numerator of Equation (2-3). As 

will be shown explicitly in Chapter 4, the energy stored in the magnetic field becomes 

negligible at large wave-vectors. This then simplifies Equation (2-3) to a function only of 

the electric field and modal geometry. Now we define the material Q (Qmat) by 

integrating Equation (2-3) only over the spatial region of the metal. Because the material 

Q is only integrated over a single material, it can then be simplified, canceling the 

integral over E2. This yields the contribution to the modal Q due strictly to the portion of 
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the field which penetrates the metal and which is the chief limitation to achieving high 

Qmod. 
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 (2-5) 

Cast in the simple form above, we now may evaluate the material Q factors for 

various high-conductivity metals. We used the experimentally determined dielectric 

constants of silver57,58,59,60, gold61, aluminum62 and copper61. The results, plotted in 

Figure 2-1, illustrate why plasmon modes have such poor propagation characteristics. 

Silver has the highest Qmat factor, topping out around 30, while the other materials lie 

below 20. Various tricks can be played to keep the modal energy in the low loss 

dielectric, but at high k-vectors, a significant fraction of the energy must penetrate into 

the metal. 

The material Q not only places silver far above the other conventional conductors 

for supporting surface plasmons, but it limits the bandwidth of efficient operation. 

Clearly the efficiency is diminished when operating outside of the photon frequency 

range of 2eV-3eV. These intrinsic material properties create a fundamental barrier which 

limits broadband plasmonic applications at large wave-vectors. 
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Figure 2-1: Material Q for various good conductors 

 

While the optical properties of silver are favorable, the physical mechanisms that 

create them are a challenge to model. As is known in the field, the dielectric constant of 

silver cannot be adequately represented simply by the intraband transitions of a Drude 

character. This is because there is a mixture of free-electron states with a polarizable d-

band63, causing the plasma frequency to be pushed down from ~9eV, where it would sit 

in the absence of interband transitions. This is graphically illustrated in the works of 

Ehrenreich and Phillip64, which clearly illustrate the onset of interband transitions near 

4eV. In the region of interest, this can be modeled with an additional term added to the 

Qmat 
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Drude model with a value of approximately 563. The surface plasmon parameters are very 

dependent on the material constants, so these approximations could not be made for our 

calculations. In fact, the experimentally determined optical constants must be used in any 

thorough analysis. In this work, we used the tabulated values for evaporated silver. Over 

the region of interest (from 1.2 eV to 3.2eV), an analytical fit of the experimental data 

was used. In these empirical fits, ħω is the photon energy in electron Volts. 

 
1.72( ) 7.62 356 1.8e ωε ω ω−′ = − − +== =  (2-6)  

 ( ) ( )2 3
16.1 31.2 16.3( ) 2.77ε ω
ω ω ω

′′ = − + −=
= = =  (2-7) 

 
A spline fit was used to interpolate between experimentally derived values outside of our 

range of interest. The real and imaginary components of the dielectric constant are shown 

in Figure 2-2 and Figure 2-3, respectively. As will be discussed below, the real part of 

epsilon will determine the plasmon wavelength and the imaginary part determines the 

magnitude of absorption. Note that the magnitude of the real part of epsilon is always 

more than ten times greater than that of the imaginary part over the region of interest. 

Additional plots and tables on the properties of silver are given in Appendix A.  
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Figure 2-2: Empirical real component of the dielectric constant of silver 
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Figure 2-3: Empirical imaginary component of the dielectric constant of silver 

 

2.2 Double Sided Plasmons 

 For our plasmonic focusing device, we have chosen a system very different from 

those discussed in Chapter 1. To create a compact device that is useful for real world 

applications, we need low loss and a robust design which lends itself to modern nano-

fabrication technology. Addressing these concerns, we have dismissed the ND hole and 

pin geometries and chosen to build upon slab mode plasmons. Specifically, we will work 

with double sided slab plasmons in the micro-strip wave-guide configuration. This 

geometry consists of a thin planar film which is symmetrically surrounded by a medium 
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ε ′′
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of the opposite dielectric constant. This layout and plasmon mode profile is illustrated in 

Figure 2-4 for this metal-insulator-metal (MIM) scheme. The basic structure is analogous 

to conventional micro-strip, shown in Figure 2-5. 
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Figure 2-4: Geometry of double sided MIM plasmon 
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Figure 2-5: Geometry of conventional micro-strip 

 

From a fabrication perspective, the key to this structure is that it relies on 

conventional planar processing techniques. Leveraging off of the semiconductor 

processing industry allows for a tunable dielectric thickness down to a single nanometer, 

εmetal < 0 
εdielectric > 0 
εmetal < 0 
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as gate oxides thinner than 1.3nm have been report as far back as 199865 and 1.1nm 

oxides are now the standard for the 65nm node of the ITRS Roadmap66. The ultimate 

manufacturing limit to lateral confinement of plasmonic structures is a function of the 

minimum thickness of the dielectric layer. Fortunately, the modern semiconductor 

processing industry is built on the construction of repeatable and high quality planar 

dielectric layers. This is in stark contrast to photo-assisted STM and tapered plasmonic 

wires described in Chapter 1. Requiring full three-dimensional control of the silver as it 

tapers down to molecular dimensions, these geometries are prohibitively difficult to 

fabricate. Although atomically sharp silver STM tips have been developed, they tend to 

be difficult to reproduce and have an overall shape67,68,69  which makes them poor for 

plasmonic focusing.  

In regards to nanoscopic fabrication, the Metal-Insulator-Metal structure has a 

distinct advantage. This is due to the material properties of silver. At ambient 

temperatures, silver forms a polycrystalline structure. In bulk silver, these grains tend to 

be on the order of 100nm in diameter. As the silver is made thin, as in the case of an STM 

tip, these grains will shrink to the radius of the tip, actually changing the nanoscopic 

shape. This leads to an increased resistivity due to grain and interface boundary 

scattering. By using the MIM structure and working with thin amorphous dielectrics, we 

mitigate this additional loss mechanism. 

The converse of the MIM structure, the Insulator-Metal-Insulator (IMI) system, 

provides a particular case in point. This planar structure supports propagating plasmons, 

however it suffers from diminished grain size when the metal film is made to be thin. 
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Electrons in a nanometer-scale silver film will suffer from much greater grain-boundary 

scattering losses than those in thick silver. Thus, the insulator-metal-insulator system is 

inherently lossier70. This problem becomes catastrophic as the film thickness reduces to 

the scale of monolayers. Electron energy loss spectroscopy experiments71 have shown 

that ultra-thin silver films form grains that completely localize the plasmons, not allowing 

them to propagate at all. In the case of the MIM system, however, the thin insulating 

layer can be made of an amorphous dielectric. This allows for a much smoother interface 

and puts no limitations on the size of the silver grains in the metal plates. Furthermore, 

the MIM geometry is superior in terms of efficiency and greater field confinement72. 

 

2.3 Dispersion Relations 

 The dispersion relation for the MIM slab structure contains the important physical 

pieces required for full three-dimensional optical confinement. The Metal-Insulator-

Metal dispersion relations are derived in the literature13,14,73 using various techniques and 

levels of complexity. To complete the analysis of our device, a derivation is given below 

starting with Maxwell’s equations. The geometry and coordinate system is shown in 

Figure 2-6. First we begin with the wave equation of Chapter 1 where ω is the angular 

frequency of oscillation, c is the speed of light, and ε is the relative dielectric constant of 

the medium. 
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Figure 2-6: Geometry and coordinate system for MIM plasmons 
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This simplification assumes that the field has exponential and sinusoidal variation in the x 

and z direction. We also assume and that the fields have no variation in the homogenous 

y-direction. Now, to create modes bound to the surface (i.e. surface plasmons) the fields 

must decay in the direction normal to the surface. Mathematically this means that kx is 

imaginary and thus 2 0xk < . Combined with the wave-equation, then, 
2

2
2zk

c
εω

>  in the 

dielectric and therefore the plasmon wave-vector (kz) has a larger momentum than the 

light line.  This, too, is a prerequisite for bound modes. In line with the notation of 

reference14, we define zk k≡  and
2

2
2xK ik k

c
εω

≡ = − . Note that for a given k, K will 
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depend on the medium via its dependence on ε. These solutions to the wave-equation tell 

us that each component of the electric field propagating in the positive z direction must 

be of the form:  

 1 . 2 .( , , ) exp( ) exp( )i m i mf x z t C K x ikz i t C K x ikz i tω ω= + − + − + −  (2-9) 

The terms C1 and C2 are constants to be determined for a given geometry, frequency and 

materials system. The subscripts on K indicate whether they are in the metal (m) or 

insulator (i). We are now in a position to define the electric field in the x direction (Ex) for 

regions 1, 2 and 3 of Figure 2-6. In the solution of these equations, we will take the 

angular frequency (ω) to be positive and real. The terms k and Ki,m are complex, however 

the real part is taken to be positive. 

 1 exp( )x mE K x ikz i tω= + −  (2-10) 

 2 1 2exp( ) exp( )x i iE B K x ikz i t B K x ikz i tω ω= + − + − + −  (2-11) 

 3 exp( )x mE C K x ikz i tω= − + −  (2-12) 

To generate equations above, terms were dropped which diverge at x = ±∞ . The region of 

Figure 2-6 for each electric field term E is denoted by the numerical subscript while the 

second subscript describes the direction of the electric field. Finally, electric field at 

0x = in region 1 was normalized to unity. Once Ex has been specified, Gauss’s Law now 

uniquely determines Ez in each region. 

 1 exp( )m
z m

iKE K x ikz i t
k

ω= + −  (2-13) 

 [ ]2 1 2exp( ) exp( )i
z i i

iKE B K x ikz i t B K x ikz i t
k

ω ω= + − − − + −  (2-14) 
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 3 exp( )m
z m

iKE C K x ikz i t
k

ω= − − + −  (2-15) 

To eliminate the constants B1, B2 and C, we now employ the continuity of Ez and Dx at 

x=0 and x=d.  

 ( )1 2i mK B B K− =  (2-16) 

 ( )1 2i mB Bε ε+ =  (2-17) 

 [ ]1 2exp( ) exp( ) exp( )m m i i iC K d B K d B K dε ε− = + −  (2-18) 

 [ ]1 2exp( ) exp( ) exp( )m m i i iK C K d K B K d B K d− − = − −  (2-19) 

This generates a system of four equations and four unknowns (B1, B2, C and k). Simple 

algebra may then be used to generate the final dispersion relation. Here we are interested 

in the mode in which the induced charges are anti-symmetric with respect to spatial 

inversion about a plane through the center of the device (i.e., the plane which lies in the 

center of region 2). A second mode exists in which the charge is symmetric with respect 

to this inversion, but this mode cannot achieve large wave-vectors and therefore is of no 

relevance to this dissertation. Putting everything together, we arrive at 

 
iK d m i i m

m i i m

K Ke
K K

ε ε
ε ε

− +
=

−  (2-20) 

 Equation (2-20) may then be solved by various methods. For this work, numerical 

techniques were employed using Mathematica 5.0.0.0. The first step in the solution was 

to recast Equation (2-20) as  

 ( ) 0iK d
m i i m m i i mK K e K Kε ε ε ε−+ − − =  (2-21) 
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The left-hand side of Equation (2-21) is real and non-negative. For a fixed frequency, Ki 

and Km are defined by the real and imaginary components of k through
2

,2
, 2

i m
i mK k

c
ε ω

≡ − . 

With a real and fixed ω, a minimization routine was then run on the left hand side of 

Equation (2-21) to separately vary both components of the complex k. A local minimum 

in the right hand side of Equation (2-21) could easily be rejected by discarding any 

answers greater than 10-6. To rapidly arrive at the global minimum, various techniques 

were used to determine appropriate starting values for the components of k in 

Mathematica’s ‘FindMinimum’ routine. For instance, the imaginary component of εm 

tends to only be a small perturbation to the dispersion relation. It can, therefore, be 

discarded and the minimization routine is then run over only the real part of the wave-

vector. This rapidly converges to a global minimum and yields an excellent starting point 

for the minimization over the complex dielectric constants εm. It is noted that there are 

more mathematically interesting methods of solving the dispersion relations74,75, however 

our simple numerical minimization routine for solving k at fixed ω will be crucial when 

determining higher order perturbations and loss mechanisms in later chapters. 
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Figure 2-7: Dispersion relations of Ag-SiO2-Ag plasmons of various oxide thicknesses 

 
The dispersion relations for the Ag-SiO2-Ag double sided plasmon are plotted in 

Figure 2-7. This plot shows the plasmon (or photon) energy on the ordinate axis in 

electron Volts, derived from Planck’s constant times the frequency. The abscissa 

enumerates the real component of the plasmonic wave-vector in units of 1/nm. Note that 

the dispersion relation is entirely dependent on the thickness of the dielectric, with the 

lowest wave-vector curve (shown in blue) indicating an infinitely thick dielectric. 

Thinner SiO2 layers have large wave-vectors at any given frequency. This suggests that 

by tapering the thickness of the SiO2 layer, the wave-vector can be made very large. In 
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fact, by tapering to 1nm and using 476nm free space photons, X-ray wavelengths may be 

achieved in the plasmon!  

While the large wave-vectors of surface plasmons are very promising, the 

propagation lengths are not. Calculated as the 1/e propagation length of the plasmonic 

energy due strictly to dissipation in the silver, the losses are shown in Figure 2-8. Note 

that most plasmons in this anti-symmetric mode have propagation lengths less than 

500nm. As we shall demonstrate in the next chapter, this problem may be surmounted by 

rapidly tapering to the very thin oxide. For most applications, there is no need to 

propagate the nano-focused mode over long distances. Instead, the significant figure of 

merit is the efficiency of energy delivery in focusing to the nanoscale. There is still plenty 

of room within the slab mode plasmon properties to achieve greater than 50% coupling 

efficiency. 
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Figure 2-8: Plasmonic decay length versus wave-vector at various oxide thicknesses 

 

2.4 Three-Dimensional Confinement in a Slab Geometry 

 Although the MIM structure is plainly 1 dimensional, this geometry can achieve 

full three dimensional focusing down to nanoscale dimensions. This is attained via three 

properties of the double sided surface plasmons evident in Figure 2-7. Departing from the 

light-line, the dispersion relation has a knee as the k-vector becomes very large for 

moderate photon energies. In fact, the plasmon wavelengths become so small that they 

enter the X-ray wavelength regime but with optical frequencies. Such small wavelengths 

allow us to create a nanoscopic line image in our slab geometry using conventional 

focusing techniques. The limitations on the spot size of a line image are much looser than 
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that of a two-dimensional image76 and are limited to the plasmon wavelength (λp) divided 

by two. The key is that the limitations of the free space photon wavelength are now 

replaced by the extraordinarily short plasmon wavelength.  

The slab mode also achieves confinement in the longitudinal dimension. The 

optical energy density is enhanced along the direction of propagation by the reduced 

group velocity. The slope of the dispersion relation, equal to the group velocity, decreases 

as the wave-vector becomes very large. From simple energy conservation considerations, 

this causes the field to compress along the direction of propagation.  

Finally, there is compression of the field in the transverse direction. This we will 

call the ‘skin depth’, and represents the rapid exponential decay of the field into the 

metal. This effect is most prominent at large wave-vectors. The simple wave equation, as 

shown in Equation (2-8), dictates why the skin depth must become very small. At large 

wave-vectors, the term representing the light line is negligible and K k≈ . Because the 

term K is the rate of exponential decay into the medium, the skin depth is then 1/K. under 

the large-k approximation, this is equal to the plasmon wavelength (λp) divided by 2π and 

is therefore forced to become very small as the k vector becomes very large.  

At this point we must digress to address the issue of the classical skin depth (or 

penetration depth55) in high frequency electronics. The nomenclature tends to be a point 

of confusion and so will be discussed here explicitly. The result can be derived several 

ways and here we use the scheme illustrated by Figure 2-9. As shown in the figure, 

radiation is impinging normally onto a metallic half-space. The solutions of Maxwell’s 

equation dictate that the metal will setup charges and currents to cancel the field. At high 
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frequencies, however, the conductivity is finite and the field has some penetration into 

the metal.  

This exponential decay of the field normal to the interface has a decay length 

equal to77 

 
0

2 m

λδ
π ε

=
−  (2-22) 

In Equation (2-22), λ0 is the free space radiation wavelength and εm represents the relative 

dielectric constant of the metal. At RF and Microwave frequencies, this term tends to be 

dominated by its imaginary component and δ is known as the collisional skin depth. At 

optical frequencies, however, εm is dominated by its real part and δ is called the 

collisionless skin depth. A cursory examination of Equation (2-22) for a visible photon 

impinging on silver yields a penetration depth of approximately 25nm. This, however, 

has no relevance to the limitations of the skin depth for surface plasmons. As this 

calculation assumed zero momentum along any direction tangential to the interface, this 

has little bearing on the plasmonic case of exceedingly high momentum in the plane of 

the interface.  
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Figure 2-9: Scheme for generation of the classical skin depth 

 
 

2.5 Plasmon Properties at Large Wave-Vector 

 Surface plasmons can be focused to the nanoscale because of they can achieve 

very large wave-vectors. It is essential, then, to analyze the dispersion relations in this 

high-impact regime. We begin again with the full dispersion relation for the MIM 

geometry. 

 iK d m i i m

m i i m

K Ke
K K

ε ε
ε ε

− +
=

−
 (2-23) 

 
2

,2 2
, 2

i m
i mK k

c
ε ω

≡ −  (2-24) 
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As k becomes very large, Equation (2-24) simplifies considerably and Ki,m ≈ k. After 

cancellations, this reduces Equation (2-23) to: 

 
kd m i

m i

e ε ε
ε ε

− +
=

−  (2-25) 

It must be noted that the losses already become prohibitively large before we enter the 

sub-nanometer regime where quantum mechanical calculations would become necessary. 

Selvedge effects, which account for the charge discontinuity at the metal-insulator 

interface, have been ignored, however the losses due to electron transport effects will be 

discussed at length in Chapter 5.  

Emphasis must be given to our fortuitous length scale regime. Lengths on the 

order of tens of nanometers would require the more complicated retarded plasmon 

dispersion relation of Equation (2-23). The description of sub-nanometer plasmon 

wavelengths, on the other hand, would demand complicated quantum mechanical 

calculations which rely heavily on models and detailed knowledge of the surface 

properties. Between these extremes lies the elegant simplification shown in Equation 

(2-25) 

 Once the material properties are mapped out and the dispersion relation is cast in 

the simple form of Equation (2-25), the design parameters begin to present themselves. 

This stems from the fact that the plasmon properties become linear functions of the 

dielectric film thickness (d) in the high-k limit. Inspection of Equation (2-25) tells us that 

choosing the optical excitation frequency (laser line, arc-lamp, etc) fixes the right hand 
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side via the frequency dependence of the dielectric constants. This allows Equation 

(2-25) to be recast as  

 ( )k d f ω=  (2-26) 

where ( )f ω  is some scalar function of frequency. The significance of this equation is 

liable to be lost in its simplicity. It is telling us that all of the important design parameters 

of the surface plasmons in the MIM structure become simple functions of the gap 

thickness (d) in the high-k limit. Clearly, the real and imaginary components of the k-

vector grow inversely with d. The constant of proportionality (f) for the real and 

imaginary parts of k d are given in Figure 2-10 and Figure 2-11 respectively. This 

illustrates that the plasmon wavelength is directly proportional to the film thickness. As 

the film grows thinner, the plasmon wavelength and decay length both decrease linearly 

with d. In this large k-approximation, the ratio of the real to imaginary components of k is 

therefore fixed and independent of thickness. This implies that loss per plasmon 

wavelength is a function of frequency and materials only, and this constant of 

proportionality is plotted in Figure 2-12. Note that the imaginary component of the wave-

vector is much smaller than the real component across the frequency band of interest, 

justifying the use of Equation (2-1) 

 The form of Equation (2-25) also allows for a simple formulation of the group 

velocity. Taking the differential of both sides of Equation (2-25) with respect toω , we 

arrive at the group velocity. A bit of manipulation yields 

 vg d Mω=  (2-27) 
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Figure 2-10: Relation for the real part of kd for Ag-SiO2-Ag in the high-k limit 
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Figure 2-11: Relation for the imaginary part of kd for Ag-SiO2-Ag in the high-k limit 
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Figure 2-12: Attenuation per plasmon wavelength at large wave-vector 

 

The quantity M in Equation (2-27) is dimensionless and is defined below  

 ( )( )Re
( )2

m i m i

m
i m

M ε ε ε ε
ωεε εω

⎡ ⎤
⎢ ⎥+ −

≡ ⎢ ⎥∂⎛ ⎞⎢ ⎥−⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

 (2-28) 

A plot of M for the Ag-SiO2-Ag geometry is shown in Figure 2-13 as a function of 

frequency. Like the other plasmon properties discussed above, the group velocity is 

simply a linear function the dielectric thickness for large k.  

 As was discussed in Section 2.3, the three-dimensions of optical confinement are 

achieved by tapering the oxide thickness in the double-sided MIM plasmon. This occurs 

ħω (eV) 

0.18 

0.09 

Im
Re
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through a reduction in group velocity, reduction in the plasmonic skin depth, and the 

reduction in plasmonic wavelength. At high wave-vector, we clearly see that these effects 

all scale linearly with the dielectric thickness. Equation (2-26) demonstrates 

that
{ }
1

Re
d

k
λ ∼ ∼ . Of course, since { }ReK k≈  in this regime, the skin depth also must 

scale linearly with d. Therefore, a taper in a MIM plasmonic waveguide will yield an 

energy density enhancement of ( )3
/initial finald d  when losses are neglected and at large 

wave-vector. 
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Figure 2-13: Dimensionless quantity M versus optical energy 
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With these pieces in place, significant conclusions immediately become apparent. 

We start with the definition of modal Q ≡ Qmod 

 mod
U UQ dU dU dx
dt dx dt

ω ω
≡ =  (2-29)  

The term ω is the input frequency. We now define a decay length (Λ) which represents 

the propagation length over which the energy decays by e-1. This allows us to recast 

dU
dx

as U
Λ

. The term dx
dt

represents the velocity at which energy propagates down the 

channel, which is very definition of the group velocity vg. Putting this all together and 

manipulating yields 

 
mod 1v

2g
im

Q
kω

= Λ =  (2-30)  

The second equality comes about because the power decay length must be equal to 

1
2 imk

by the assumptions given in Equation (2-9). As shown above, both vg and 1/kim are 

linear functions of thickness in the high-k regime. This implies that the modal Q must be 

independent of film thickness. It must be a function only of material parameters and input 

frequency.  

With the development of one more piece, the expression for modal Q may be 

greatly simplified. We need to find a simple expression for the decay length. Starting 

with Equation (2-25), we know that kim is given by 
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 1 Im ln m i
im

m i

k
d

ε ε
ε ε

⎡ ⎤⎡ ⎤−
= ⎢ ⎥⎢ ⎥+⎢ ⎥⎣ ⎦⎣ ⎦

 (2-31) 

Taking the imaginary part of a natural log amounts to finding the phase of the complex 

quantity inside the brackets. We have defined the insulator as being lossless, and thus 

having only a real dielectric constant. The expression for kim may be reduced to 

 
( )( )

21 arctan m i
im

m i m i

k
d

ε ε
ε ε ε ε

′′
=

′ ′− +
 (2-32) 

Finally we make the approximation that arctan θ ≈ θ, which is true in the case such that 

the plasmonic loss is low enough to make Equation (2-3) applicable. 

 
( )( )

21 m i
im

m i m i

k
d

ε ε
ε ε ε ε

′′
=

′ ′− +
 (2-33) 

We may now recast Equation (2-30) by substituting the expressions found in Equations 

(2-27), (2-28) and (2-33). With some simple manipulation and cancellation, this yields 

 

( )

mod 2 2

m

m

m

d
dQ

ωε
εω

ε ε

′
′

= −
′′ ′′  (2-34) 

Again, the real and imaginary parts of the dielectric constant of the metal are 

represented by the primed and double primed quantities, respectively. Like the loss per 

wavelength, the modal Q is a constant at large wave-vectors. Note also that although 

many propagation parameters depend very strongly on the dielectric constant of the 

insulator and its thickness, the modal Q has no dependence on either of these terms. This 

remarkable result, plotted in Figure 2-14, result underscores the critical importance of the 

conductor and frequencies used in plasmonic focusing devices. This is illuminated by 
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analyzing the terms in Equation (2-34). The first term is simply Qmat as given by Equation 

(2-5) and takes dispersion into account. The second term is equivalent to the first in the 

case of a non-dispersive medium. Both terms are of the same order of magnitude, which 

explains why Qmod is approximately twice Qmat.  

One can arrive at Equation (2-34) by another method. Starting with the explicit 

definition of modal Q given in Equation (2-3) and again assuming that the H field 

contains no energy in the high-k limit, we may solve for Qmod. Because the dispersion 

relations tell us the exact form of the electric field, it is feasible to carry out the spatial 

integrations of both Ex and Ez. After a good deal of algebra, manipulation and 

substitutions, we arrive at the same simple formula given above. Both of these methods 

converge to the same result, even though the second method makes the explicit 

assumption that the magnetic energy is zero, while the first makes no such restrictions. 

The simple frequency dependence implies that the spatial mode profile merely changes 

its geometric scale linearly with dielectric thickness. Analytical solutions as well as 

simulations bear this conclusion out. It tells us that in the high wave-vector regime, 

changing the thickness of the dielectric simply scales the transverse plasmon mode 

profile.  

The reader should note that Figure 2-14 is very similar to the plot of the material 

Q of silver, which is illustrated in Figure 2-1 and in greater detail in Figure A-1. This 

demonstrates the significance of material Q in determining the modal properties. It is 

important for the reader to note that although this shows a maximum Qmod of ~45, much 
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higher modal Q may be achieved at low wave-vectors where Equation (2-34) does not 

apply and most of the energy is in the dielectric.  
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Figure 2-14: Modal Qmod as a function of frequency 

   

2.6 The Ideal Taper at Large Wave-Vectors 

Surface plasmons have the remarkable capacity to confine visible photons to 

dimensions on the order of nanometers. As is evident in Figure 2-8 and Figure 2-15, 

surface plasmons can be intolerably lossy, particularly at very large wave-vectors and for 

thin insulators. Note that the plasmon energy propagates less than 1µm for oxides less 

than 10nm thick. This is an exceedingly short length. The propagation characteristics are 

much more favorable near the light-line, where the group velocity is large, thereby 

ħω (eV)

Qmod 
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reducing the interaction per unit length of the field energy with the intrinsic loss 

mechanisms of the metal. Ideally, then, the most efficient focusing structure would begin 

with a thick, low-loss plasmon wave-guide. The next step would be a coupler between a 

thick plasmon channel and a very thin channel. The design of this coupler for minimum 

absorption or scattering is pivotal for efficient coupling to the nanoscale. 
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Figure 2-15: Plasmon decay length versus oxide thickness at constant photon energies for the Ag-

SiO2-Ag slab geometry 

 

 The remarkable analytical simplifications of Section 2.5 provide intuition on how 

to create this nano-coupler and focus the field in the MIM (micro-strip) geometry. For 
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clarity, the problem is treated two-dimensionally. We envision a taper, of some profile to 

be determined, which begins in a thick, low-loss slab channel and terminates in a slab 

geometry with a very thin insulator. Minimizing the absorption losses must be the first 

consideration. To that end, the region of high k-vector and tight focusing must be kept as 

short as possible because it is also the region of the greatest attenuation. This means a 

minimized length of the thinnest portion of the dielectric.  

 

Figure 2-16: Illustration of the scattering losses from a non-adiabatic taper 

 

Maximizing power throughput also means an efficient transition between the low 

loss, thick part of the device, and the thin focal region. One imagines some arbitrary 

transition profile of the dielectric to achieve this. From the adiabatic criterion, scattering 

can be neglected if δλ/λ << 1. This suggests a gradual taper. The design space is 

constrained on the other side by dissipation effects, which demand a rapid transition. At 

this point, the simple dependence of the plasmon parameters on d with large wave-vector 

gives us a solid foundation for designing this taper. We know that the loss/λ is fixed with 

a given frequency. The adiabatic criterion tells us scattering losses are governed by δλ/λ. 
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Therefore, a value of δλ/λ which is constant across the taper will give us a constant value 

of scattering losses per plasmon wavelength. It is then logical that the profile with 

balance between a constant scattering loss per wavelength and a constant absorption loss 

per wavelength will yield the best throughput.  

Determining the spatial profile of the oxide thickness now hangs on determining 

the functions which yield a constant δλ/λ. This is a simple exercise because of the 

discussion above. We know that 

 [ ]d f ω λ=  (2-35) 

where [ ]f ω  is a scalar function of frequency and λ is the plasmon wavelength. Taking 

the differential and writing d as thickness for clarity we have 

 [ ]( )d thickness df
dz dz

λω=  (2-36)  

If we then set dz = λ, we arrive at a simple proof that the adiabatic criterion is constant for 

a linear taper. This design will then allow us to equalize the scattering losses along the 

length of the taper, preventing excessive losses at any one point and creating a constant 

transition. To the first order, then, a linear taper is the best transition to the nanoscale. 

These fundamental design principles present themselves thanks to the simplicity of 

Equation (2-25).  

 This chapter has laid the foundations for the design of an optimized plasmonic 

focusing structure. It has suggested a suitable geometry for confining visible photons to 

dimensions less than 10nm. The numerical details of the device, however, cannot be 

described through analysis alone and must be determined through computational 
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simulations. The following chapter outlines the computational details of the design of the 

plasmonic lens and its overall system specifications. 
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CHAPTER 3 DESIGN AND SIMULATION 
 

Part of the inhumanity of the computer is that, once it is competently programmed and 

working smoothly, it is completely honest. 

-Isaac Asimov 

 

This chapter begins with the basic design of a linear taper in a two-dimensional 

slab geometry. Numerical techniques are then employed to optimize the throughput of 

this structure, accounting for both absorption and scattering losses. These results are then 

generalized to a three-dimensional focusing structure. The overall throughput and electric 

field enhancements are then calculated, as well as the final focal spot of the plasmonic 

lens. 

 

3.1 Numerical Methods 

 From the analysis developed in Chapter 2, a linear taper is the best trade between 

scattering losses and resistive losses in the metal. While the analysis of Chapter 2 is 

useful in forming a theoretical framework, this does little to actually determine the details 

of an optimized transition to the nanoscale. Based on the discussion at the end of the 

previous chapter, we restrict our attention to a linear taper. To accurately determine the 

optimum slope and its throughput, we need some way of estimating the back-scattering as 

a function of slope as well as the absorption in a non-uniform slab geometry. In the case 

of an adiabatic taper or quasi-adiabatic taper, many mathematical tools exist78,79. The 
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changes in thickness and wavelength are then small compared to the wavelength of the 

plasmon, and the linear taper can be treated as a series of small, coherently summed 

perturbations. Back-scattering may be accounted for by employing perturbation theory 

and the implementation of overlap integrals between the forward propagating and 

backward propagating waves as the thickness slowly changes. Large scale numerical 

simulations have established the accuracy of this method80. The resistive losses, too, may 

be determined by numerically integrating the instantaneous losses over the course of the 

taper.  

Instead of treating the linear taper as a perturbation to the slab geometry, a more 

exact treatment can analytically solve for the modes in a wedge geometry81,82. These 

modes reduce to simple analytic expression and better represent the evolution of power 

across the taper. They will also more accurately represent the absorption losses, as the 

wedge mode has a different shape than the perturbed slab mode.  

 

Figure 3-1: Geometry of the linear taper to be optimized 
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The problem, however, comes at the interfaces of the straight channel with the 

wedge mode. For adiabatic tapers of small opening angle, perturbation theory may be 

applied. For sharp bends and rapid transitions, though, the modes in each section interact 

with each other, form resonances, and are strictly non-adiabatic. This case does not lend 

itself to the mathematical simplicity of perturbation theory. Solving for the relevant 

parameters of the taper, then, necessitates a full electromagnetic simulation. To this end, 

a two-dimensional finite-difference time-domain (FDTD) code was written in C to 

determine the temporal evolution of a known input field across the device. An example of 

this code is given in Appendix B. There are many excellent references available on 

FDTD simulations83,84, so only a brief overview is given here. The technique begins with 

a basic staggered, or ‘leap-frog’ meshing85. Because the surface plasmons are TM modes, 

this yields a two-dimensional matrix as shown in Figure 3-2. Every H-field component is 

spatially surrounded by four E-field components. Maxwell’s curl equations are then 

solved in time, again using a leap-frog technique. 

  1E H
t ε

∂
= ∇×

∂
 (3-1) 

 H E
t

µ∂
= − ∇×

∂
 (3-2) 

This means that in the equations above, first Equation (3-1) is solved for E using H as a 

source. Time is then incremented one-half step, and Equation (3-2) is solved for H using 

E as a source. The technique then continues as such. 
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Figure 3-2: Spatial mesh for FDTD of TM plasmon modes 

 

 While such an FDTD algorithm was successfully implemented to model surface 

plasmons in our slab geometry employing Perfectly Matched Layer boundary conditions, 

the taper demands a certain subtlety. Because the wavelength is rapidly changing, the 

length scales of the mesh must likewise be changed. Accurate computation requires 

approximately 10 mesh points every wavelength. The wavelength is a dynamic and 

rapidly changing quantity, therefore efficient meshing requires an adaptive grid which 

changes with the taper geometry. The process of redefining the grid with every change in 

geometry becomes incredibly time consuming and computationally inefficient.  
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 To efficiently converge to solutions as the taper slope was changed, Finite 

Element software known as FEMLab was used. This software allowed for a graphical 

interface for local mesh control and rapid display of results for various relevant 

electromagnetic quantities. Finite Element methods, however, do not operate in the time 

domain. To solve for the TM plasmons of interest, we used the In-Plane TM Wave 

application mode, which solved the Helmholtz Equation shown below 

 ( )1 2
0 0r rH k Hε µ−∇× ∇× − =  (3-3) 

The quantities εr and µr are the relative permittivity and permeability respectively, and k0 

represents the free space scalar wave-vector equal to ω/c. This application mode operates 

only in the frequency domain. As has been emphasized throughout this text, the 

dispersive properties of the silver are crucial to the plasmon propagation characteristics. 

Nonetheless the results reported in this chapter were achieved strictly with 

monochromatic inputs. 

 

3.2 Numerical Results for the Optimum Linear Taper 

 With these numerical methods in hand, we now return to the problem of taper 

optimization. We began with a basic geometry: a 50nm thick slab channel leading into a 

linear taper, terminating at 1nm thick straight channel as shown in Figure 3-3. These 

thicknesses were not chosen arbitrarily. The final SiO2 thickness was chosen to be 1nm 

because gate oxides of this thickness are now repeatably fabricated for the semiconductor 

industry. Such an oxide yields a transverse mode size of only 2.6nm with 476nm photons 

(measured at 1/e of intensity). The thickness of the input side was chosen as 50nm 
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because such plasmons lie close to the light line, and therefore have manageable losses. 

As in all of the calculations in this chapter, the input free-space optical wavelength was 

chosen to be 476nm, corresponding to a photon energy of 2.6eV. 

The computational boundaries of this two-dimensional geometry were surrounded 

by absorbing Perfectly Matched Layers (PMLs). These layers absorb incoming energy 

without reflection by increasing the imaginary component of µr at the same rate as the 

imaginary component of εr. This serves to absorb energy without changing the 

impedance, thereby minimizing reflections at the boundary. Optimal results were 

obtained by increasing these imaginary components at a rate which increased with the 

cube of distance. The electromagnetic input was the modal profile of a 50nm SiO2 

thickness in the Ag-SiO2-Ag slab plasmon mode. 

For this taper, then, the length was sequentially incremented and the loss was 

computed between the power flow down the 50nm straight channel and that coupled into 

the 1nm straight channel. The input power is defined as the optical power which arrives 

at the left hand side of the taper, propagating in the 50nm channel in the positive z-

direction. Because of the complications involved with back scattering, this power cannot 

simply be determined by numerically integrating the Poynting vector at the input to the 

taper. To overcome this obstacle, the power was calculated at a point several microns in 

away from the input to the taper. Even this calculation was non-trivial. First, the ratio of 

the amplitude of the forward propagating wave in relation to that of the backward 

propagating wave was needed. Because the input is monochromatic, these waves create a 

standing wave pattern. The modulation depth of the standing wave E2 field then allows 
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for the determination of the ratio of these waves. Once this is known, a correction to the 

Poynting vector can be made which will yield the power propagating in the forward 

direction. Because the 50nm channel has known propagation characteristics, the loss can 

be accounted for and the power arriving at the taper can be determined. A similar 

procedure is then used to determine the power which couples into the 1nm plasmon mode 

at the output of the taper. 

After distinguishing between forward and backward going waves, the results were 

surprisingly good, as plotted in Figure 3-4. Simulations show that a 70nm transverse 

mode (in 50nm thick SiO2) can be coupled to a 2.6nm transverse mode (in a 1nm SiO2 

slab dielectric waveguide) with only approximately 2dB of loss. The numerically 

calculated power flow is shown in Figure 3-5. Even more interesting than the low loss, 

the minimum occurs for an angle of 30°, which is a very steep taper. This means that 

resistive losses are so great that efficient coupling must be accomplished over very short 

length scales. If one integrates the dynamic wave-vector across the taper, one finds that 

the taper is approximately 0.9 wavelengths long. Clearlyδλ λ  is not much less than 1. 

Nonetheless, the back-scattering losses in the taper are low, at approximately 1dB. For 

this reason we call the taper quasi-adiabatic. The very rapid transition means that the 

perturbative methods outlined earlier in this chapter would never have yielded the profile 

of the optimum taper. In fact, a gentle taper (with an opening of less than 5°) shows the 

very poor throughput in a transition to a 1nm channel. This is precisely the reason that the 

adiabatically tapered metallic pin described in Chapter 1 showed such poor enhancement 

when first order resistive losses were taken into account. These results hint that the 
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throughput of the pin, too, could be greatly enhanced by optimization of the opening 

angle. The computational results also show that the majority of the back-scattering occurs 

near the sharp corners of the model. Because nano-fabrication affords us little control 

over such features and the loss is already very low, no attempt was made to improve 

throughput by rounding the corners. 

 

 

Figure 3-3: The auxilliary magnetic field in the optimized linear taper 
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Figure 3-4: Loss across the taper at various angles 
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Figure 3-5: The Poynting vector across the taper 

 

After accounting for backscattering and absorption, this two dimensional focusing 

structure achieves an energy density enhancement of approximately 350. At this point we 

must be very specific about what this number entails. Of the power arriving at the taper 

from the 50nm channel, this is the relative energy density compared to the field 

propagating forward in the 1nm channel. This factor of 350 comes from the concentration 

of energy along two dimensions: the reduction of velocity along the direction of 

propagation (the z-dimension) and the compression of the mode in the transverse 

dimension (the x-dimension) by the metal plates. Thus we have enhancement from the 

change in velocity and skin depth. The reader is reminded, however, that finite element 

simulations are incapable of incorporating dispersion, thus equating phase velocity with 
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group velocity. As can be seen from even a cursory examination of the dispersion 

relations, the group velocity is always lower than the phase velocity in these slab 

structures. In the case of the 1nm channel and 2.6eV photons, the group velocity is 

approximately 3.5 times slower than the phase velocity. The energy density enhancement 

should thereby be scaled by 3.5. Dispersion can easily be incorporated by repeating the 

simulation at a series of discrete frequencies to determine the phase shift and loss of each 

monochromatic term. Fourier analysis may then be applied to this linear system to 

determine the compression of pulses and other input signals. Within the realm of the 

assumptions and loss mechanisms used, an enhancement of 350 is certainly a lower limit. 

There is a great deal of field concentration at the sharp tip at the bottom of the 

taper. This, however, is a static enhancement which does not propagate forward in the 

1nm SiO2 mode and therefore has not been considered in our calculation. For certain 

applications, such as inducing local optical non-linearities, this energy can be used, and 

thus a higher enhancement factor will follow. This compels us to define an appropriate 

figure of merit for this type of nano-focusing device. Surely the size of the focal spot is 

significant, but this completely ignores efficiency. Here we present an alternative figure 

of merit  

 
2
maxc EF

P
ε

≡  (3-4) 

In the above, P represents the input power into the focusing device, c is the speed of light, 

and εE2 is the peak electric energy at the focus. The figure of merit represents the energy 

focusing power of a lens. F has units of 1/area, representing 1/spot size, but it also 
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accounts for compression in the direction of propagation. For instance, in free-space, 1/F 

represents the smallest area to which a beam may be focused. In a lossless dielectric on 

the other hand, 1/F is the minimum area times the index of refraction of the medium. This 

gives weight to the slowing of the waves which obviously increases the energy density. 

The higher the value of F, the better the focusing power. A plot of our figure of merit for 

the taper of Figure 3-5 is given in Figure 3-6. The abscissa represents the channel 

thickness at various points on the ideal 30° taper. Because the numerical simulations are 

two dimensional, the figure of merit has units of inverse length rather than inverse area.  

As described in Chapter 2, the E2 is enhanced by a factor of (1/d) for each 

dimension of focusing in the large-k limit. In the case of the MIM wedge, the focusing is 

two dimensional, thus the E2 enhancement should scale with (1/d)2. Thus we expect the 

figure of merit to have a square law dependence on channel thickness. A line representing 

perfect square law dependence is shown in Figure 3-6. The deviation of the actual E2 

from this trend is due to two factors. The first is the loss, which serves to reduce F. The 

second factor is that the entire taper is not in the regime of large wave-vectors. At a 50nm 

insulator thickness, the wave-vector lies close to the light line, and many of the 

approximations which led to the square-law dependence break down. 
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Figure 3-6: Figure of merit for the plasmonic beam as it propagates across the taper 

 

3.3 A Three-Dimensional Focusing Device 

To take advantage of the third dimension of focusing, the two-dimensional wedge 

structure is no longer appropriate. Instead we have developed a geometry analogous to 

the standard immersion lens. In this design, only a two-dimensional slice of the device 

resembles a wedge. In three dimensions, the device is the linear taper, which was 

analyzed previously, revolved about the focal point. Creating a dimple lens, it makes a 

tightly focused point image. The layout is illustrated in Figure 3-7. This technique differs 

from conventional immersion lens microscopy, however, in that the effective refractive 
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index is changing continuously toward extraordinarily high values at the center of the 

dimple. The 1nm thick SiO2 at the focus allows a 10nm plasmon wavelength for 2.6eV 

source photons. Conventional imaging principles76 tell us that this would permit a ~5nm 

line image in the lateral dimension (see Figure 3-8). The key to this design is that the 

plasmon wavelength is reduced only where it need be. As the beam approaches the 

center, the focal structure creates an effective aperture which attenuates the high spatial 

frequencies. Because the plasmons are linearly increasing their wave-vector as they 

approach the spot, the loss of the large spatial frequencies is countered and the device is 

able to achieve a tight focus with low losses. 

 
Figure 3-7: Three dimensional structure with dimple lens 
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  Besides the cylindrical symmetry of the third dimension, Figure 3-7 has 

several differences from the two dimensional structure simulated in the previous section. 

Its two dimensional cross-section resembles the tapered structure of Figure 3-9. Most 

importantly, it has a grating structure to couple a free-space optical beam into the single-

sided plasmon mode. Because of the wave-vector mismatch, clearly some structure is 

necessary to generate the requisite momentum to couple to plasmons. In this case, we 

have chosen to work with gratings. Preliminary optimization calculations have shown 

grating efficiencies greater than 55% for the case of lossless silver. This is still an 

ongoing optimization project, and higher efficiencies are predicted. 
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Figure 3-8: Illustration of effective index change in plasmonic lens. This represents a top-down view 

of Figure 3-7. 

 

For completeness, we are compelled to mention that grating couplers are not the 

only form of efficient coupling. Various sources in the literature have reported high 

efficiencies by using end-fire coupling86,87, which entails firing a free-space optical beam 

normally onto the left hand facet of Figure 3-9. This is well suited to our geometry 
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because we are initially launching large, single-sided plasmons, which have fair overlap 

with an appropriately focused free-space beam. Preliminary numerical simulations in 

FEMLab have yielded coupling efficiencies of 35%. While our calculations suggest that 

it is less efficient than the grating coupler, there are situations where end-fire coupling is 

desirable, such in broadband plasmonic focusing devices. 

 

 

Figure 3-9: Cross section of plasmonic focusing device 

  

The coupling from the free-space photon to a single-sided plasmon has a 

significant effect on the taper optimization. Instead of a 50nm double-sided plasmon 

channel feeding the taper, its input now consists of a single SiO2/Ag interface. The taper 

must efficiently couple between the single sided plasmon to the double sided plasmon, 

eventually down to a 1nm dielectric gap. A series of two-dimensional simulations we 

carried out to account for the geometry illustrated in Figure 3-9 and the inset of Figure 

x

z
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3-10. For this optimization, there was some ambiguity as to the height at which the taper 

beings. The fields of the 2.6eV single-sided plasmons in SiO2 decay by 1/e at 77nm away 

from the interface. Initial taper heights of both 100 and 200nm (on the ‘input’ side of the 

taper) were evaluated, however, both showed the effects of scattering off this feature. 

Because of this, the initial thickness was fixed at 400nm. The terminal channel thickness 

was kept at 1nm. Using methods identical to those of the previous optimization, the taper 

angle was varied and the power throughput was calculated.  
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Figure 3-10: Throughput optimization for the transition from the single-sided plasmon to the 1nm 

channel 
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 The results of the optimization are illustrated in Figure 3-10 and agree well with 

the results from the 50nm to 1nm taper. Again the greatest throughput occurs at 

approximately 30°. The minimum loss of 5.5dB, however, is substantially larger than the 

previous optimization which was as low as 2dB. Not only is this unsurprising, but is 

completely expected. The additional loss is a result of symmetry considerations. In the 

single sided plasmon, there is only one mode which propagates. In the MIM structure, 

however, there are both symmetric and anti-symmetric modes. Definitions of these 

modes are contradictory in the literature, so here we refer to the anti-symmetric mode as 

that which has an anti-symmetric charge profile about the center of the channel. It is this 

mode which has been the subject of all of our previous calculations. The geometry does 

permit a second, symmetric mode. Because the single sided plasmon can be decomposed 

into a weighted summation of both of these modes, it undergoes additional loss as part of 

its energy couples to the symmetric mode. Spatial overlap concepts suggest that the 

single sided plasmon is an equally weighted sum of both symmetric and anti-symmetric 

modes, which would neatly explain the 3dB differential between the results. This anti-

symmetric mode does not couple to large wave-vectors at the focus and therefore its 

energy is lost in the transition to the double sided plasmon. This decomposition is 

illustrated in Figure 3-11 which plots Ez (the E-field component tangential to the 

interface) for the anti-symmetric mode, symmetric mode, their summation and the single 

sided mode for the Ag-SiO2-Ag structure stimulated with 2.6eV photons. In these plots, 

the gap width is 400nm. Note that Figure 3-11 shows plots of the actual field distributions 

for the full solution to Maxwell’s equations in these geometries, they are not drawings. 
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Figure 3-11: Shows both the symmetric and antisymmetric modes for a 400nm SiO2 thickness for 

2.6eV plasmons. The summation of both modes approximates the single sided plasmon. 

 
3.4 A New Class of Immersion Lens 

The immersion lens formed by the conical dimple is unlike a standard immersion 

lens. Over the length of the taper, the effective index changes continuously by more than 

an order of magnitude. This creates very unusual behavior for plasmonic wave-fronts 

impinging on the lens. To illustrate this behavior, we have modeled the system using ray 

optics. First the plasmonic lens was reduced from a three dimensional geometry to a two-

dimensional imaging system. In the slab mode geometry, the insulator thickness uniquely 

determines the wave-vector. This allowed us to replace all features in this dimension 

(previously referred to as the x-direction in all plots) with a scalar effective refractive 

index. This refractive index is determined from the slab mode dispersion relations by 

dividing the plasmon wave-vector (k) by the free-space wave-vector (ω/c). Once a two 
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dimensional map of the effect index was created, we then calculated the path of the rays. 

Because the plasmonic lens has circular symmetry, the formula of Bouguer9 can be used. 

This reduced the problem of determining the path of a ray to the solution of 

 2 2 2dr r n r c
d cθ

= −  (3-5) 

where c is a constant determined from the slope and position of the incoming ray. Figure 

3-12(a) and (b) show the results of these calculations for rays impinging on the taper with 

various degrees of misalignment. From elementary optics, we know that the light is bent 

toward the region of high index. In our design, the circular profile and dramatic change in 

index conspire to force rays to the focal spot. Of course, rays incident normal to the lens 

focus properly on the center. Highly misaligned rays, too, are compelled to the center by 

this strong refraction, much as a ball rolls down a hill or light is trapped in a black hole. It 

is also a well known result of electromagnetics that it is energetically favorable for the 

field to concentrate in the higher index regions of a system88. Considering this result in 

another manner, the magnification of the plasmon lens is so high that even rays of large 

initial misalignment find a path which takes them directly to the focal spot. Any 

misalignment from the optic axis will be reduced by a factor equal to the huge ratio of the 

effective indices.  
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Figure 3-12: Ray tracing of aligned (a) and misaligned (b) rays across the taper 

 

This unexpected feature shows the dimple lens to be self-correcting in addition to 

the other properties for which it was specifically optimized. Because of the small scales 

to which we are focusing, this self-correction is a necessity. Had this not been the case, 

any misalignment between the curved gratings and the plasmon lens would have resulted 

in a useless focusing device. The other aspect of this feature is that it prevents the lens 

from achieving image formation of anything more complex than a single spot. Creating 

multiple pixels at the output is not an option with such large focusing in this lossy 

medium. It is useful to note that although the taper has the ability to correct for some 

misalignment, it does not have the corrective powers to accommodate a plane wave input 

(a) (b)
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rather than a cylindrical input. Simulations with parallel rays show that parallel rays do 

not converge on the focus efficiently because the corrective power simply is not strong 

enough. For this reason, curved gratings must be used for in-coupling the free space 

beam, thereby properly orienting the rays toward the focus before they arrive at the 

conical plasmonic dimple lens.  

The ray refraction model is a tool to establish a sense of this novel focusing lens. 

The attentive reader, however, will note that the entire taper is less than 1 wavelength 

long and clearly outside the bounds of the validity of ray optics. To solve this problem, 

two-dimensional wave simulations were undertaken. Again the calculations were reduced 

to a top view in two-dimensions by employing the effective index. It must be noted that 

the field vectors of surface plasmons will have very different vector distributions in 

comparison to the cylindrical optical waves in a two dimensional geometry. The plasmon 

will have fields both in and out of the plane of Figure 3-13, with vector distributions 

unique to these plasmons. To account for this, the 2-d wave simulation was done using 

TM modes, such that the E-fields are in-plane. This will then give us a worst-case 

estimate of the plasmonic focusing. The results of this simulation, plotted in Figure 3-13, 

demonstrate the focusing power of the lens, creating a spot size of 7nm. Further 

simulations also show that the design is, in fact, tolerant to deviations from perfect 

focusing. 
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Figure 3-13: 2-d wave simulation of dimple immersion lens showing energy density. 
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space optical beam at a wavelength of 476nm which is focused down to a 1µm diameter 

spot. This was chosen because it is a convenient limit of most long-working-distance 

microscope objectives. The focused beam impinges on a grating, creating a single-sided 

plasmon beam, 1µm in width. Energy conservation arguments show that the square of the 

peak E-field in the plasmon is enhanced by a factor of 66 compared to that of the free-

space beam. We will also assume a grating efficiency of 0.1 to be conservative. As the 

beam propagates across the taper, it picks up an additional E2 enhancement of 340 as it is 

slowed down and confined to the 1nm plasmon channel. This accounts for the scattering 

and absorption losses. The beam also achieves a geometrical enhancement of 140 from 

the spherical focusing, as it goes from a width of 1µm down to 7nm as shown in Figure 

3-13. Finally the E2 is enhanced by a factor of 2 because, at the large-k limit, all of the 

energy is in the electric field and none is in the magnetic field. Putting all of these 

numbers together yields a total E2 enhancement of 56 10×  in a spot size of approximately 

3nm by 7nm (see Figure 3-14). The assumed losses are 5.5dB from the taper and 10dB 

from the grating coupler. Of course, the losses can be improved significantly with more 

efficient in-coupling. 
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Figure 3-14: Illustration of final spot size 
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CHAPTER 4 THE TRANSMISSION LINE MODEL 
 

A hidden connection is stronger than an obvious one. 

-Heraclitus 

 

This chapter presents a transmission line model for surface plasmon propagation 

in the Metal-Insulator-Metal (MIM) structure. While providing intuition as to the 

characteristics of these plasmonic modes, this model will also demonstrate the 

availability of very high transmission line impedance. In fact, it will be shown through 

fundamental arguments that efficient propagation cannot be achieved unless the 

plasmonic waveguide impedance becomes increasingly large. Fortunately the optical 

frequency modes have exactly these characteristics. The transmission line model also 

rationalizes the two-dimensional simulations of Chapter 3 as applied to the three-

dimensional focusing structure. Finally, by reducing the results of the electrodynamic 

field equations to distributed parameter circuit components, plasmonic circuit design may 

then fall into the realm of ordinary circuit engineering. The critical difference is that there 

is extra inductance due to the inertia of the electron at optical frequencies, referred to as 

kinetic inductance. 

 

4.1 Optical Impedance and Kinetic Inductance 

 Although all electromagnetic energy propagation is fundamentally a question of 

fields and waves89, it is expedient in the design of electrical components to distill the 
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complex field relations down to simple lumped parameters. This then breaks the 

complicated spatial description of fields and potentials into isolated components. What 

was once an infinite summation of the terms in a basis set converges to a few numbers 

representing energy storage or impedance in circuit theory. The coupling between various 

elements, too, may be reduced to distributed combination of inductors, capacitors, and 

resistors. Separating these functions and clarifying the inter-relationships between various 

pieces then allows for the necessary intuition to design useful devices out of these novel 

structures90. In addition to this, the highly developed techniques and optimization 

methodology of conventional circuit theory may then be applied to this burgeoning new 

field of study. Also, the need to communicate our findings to a larger audience and to 

compare these results with other technologies compels the analysis of surface plasmons 

in a transmission line model. 

 

Figure 4-1: Circuit model for a lossy transmission line 
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Beyond intuition and design tools, the transmission line model is essential for 

extending the reach of our previous calculations. It is, in fact, of great use to our analysis. 

Because this model can represent a three dimensional waveguide, it can bridge the gap 

between a three dimensional focusing structure and the two dimensional calculations 

described earlier. The analysis contained in Chapters 2 and 3 was strictly rigorous only 

for slab plasmons with translational symmetry in the y-dimension. The numerical 

simulations which determined the efficiency of the taper were also for structures with no 

variation in along this direction. This begs the question as to what happens when the 

plasmons are focused in the y-dimension to less then 10 nanometers. Certainly these 

tightly focused modes may no longer be modeled as having negligible variation.  

W = 5nm

1.6nm

 
Figure 4-2: Restricted current flow at focus of plasmonic lens creating very large resistance 

 

To begin the development of the theory of plasmonic transmission lines, the 

material parameters must be recast from complex dielectric constants into circuit 

parameters. To define the optical impedance, we return to two equivalent forms of 

Maxwell’s Equations. The first is the general case of Ampere’s Law, while the second 
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equation is explicitly for the fields in matter. At optical frequencies, we assume that the 

free current is zero and that the permeability is equal to that of free space. 
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In the case of optical plasmons, the term J represents the bound current. We may then 

define a resistivity ρ such that EJ ρ= . The two equations above can be reconciled (in 

the frequency domain) only if   

 0 0 m
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Again, εm is the relative dielectric constant of the material and ω is the angular frequency 

of the optical wave. In the RF and microwave regime, the frequencies are much smaller 

than the reciprocal of the electron relaxation time in most metals. εm can be approximated 

as purely imaginary. This leads to the purely real resistivity to which we are accustomed. 

This is illustrated best by the Drude model for the dielectric constant of a free electron 

gas. Although silver is not strictly a Drude metal at optical frequencies, it can be well 

approximated as a Drude metal in the terahertz and RF range.  
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This illustrates not only why the resistivity is dominated by the real component at low 

frequencies, but also why it is approximately a constant in that range.  

At optical frequencies, however, the interband transitions force us to revert to the 

empirically determined values of εm. In this high frequency regime, the dielectric constant 

is complex and is dominated by its real part. Because the dielectric constant is mostly 

real, this creates a large imaginary component of the resistivity, representing a kinetic 

inductance. Physically this represnts the mass of the electrons as they oscillate at such 

rapid frequencies. The complex resistivity as a function of frequency is tabulated in Table 

A-1 of Appendix A. 

As is known from classical electrical engineering considerations90, the resistance 

of a conductive element is equal to the resistivity (ρ) times length divided by area. 

Although the optical impedance is dominated by the kinetic inductance, the resistance 

can become very large at very small length scales. This is because the resistance grows 

reciprocally with length scale as we approach the nanoscale. This problem is very 

pronounced at the focus of our plasmonic lens and at optical frequencies. Here the 2.6eV 

plasmons are compressed down to a SiO2 thickness of 1nm. In this case, the mode is 

focused down to a 7nm width and 1.6nm height (as shown in Figure 4-2). The top and 

bottom conductor act in series, making the resistance per unit length approximately 

22kΩ/µm. This series resistance is incredibly large and could cause the plasmonic 

propagation to be very lossy. 

The key to overcoming this gargantuan loss and redeeming our previous 

calculations is found in the formalism of the transmission line. Figure 4-1 illustrates the 
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equivalent circuit of a lossy transmission line. Consider each infinitesimal unit of length 

as a simple voltage divider. The lossy line will have a resistance of δR*δl, where δR is 

resistance per unit length, and δl is the incremental distance. The Thevenin Equivalent 

circuit91 is an ideal voltage source with a series resistance δR*δl, feeding into a resistor 

equal to the transmission line impedance (Z0). In the limit of an infinitesimal length, the 

voltage drop across the lossy resistor goes to
0

0

Z
lRV δδ

. Clearly this loss can be made 

negligibly small by making Z0 large. Therefore, to maintain the integrity of our 

assumptions in Chapter 3, the transmission line impedance must grow reciprocally with 

the transmission line width at the same rate as the series resistance. The analysis 

developed below shows that the tapered plasmonic transmission lines have a precisely 

divergent wave impedance of this form. This is not only a necessity for efficient 

propagation but it also vindicates the excellent efficiencies projected in Chapter 3. 

 

4.2 Characteristic Impedance of the MIM Geometry 

Application of the transmission line model of the MIM structure rests on the 

magnetostatic approximation (also known as quasi-static approximation3). This allows 

the electric field to be written strictly as the gradient of the scalar potential (V) which then 

rationalizes expressing the voltage as a path integral of the electric field. For this 

approximation to be valid, the fields must be approximately irrotational and essentially 

magnetostatic. Mathematically, this is expressed as 

 0E∇× =  (4-5) 
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This is more general than the electrostatic approximation92 because it applies to 

transmission lines longer than the free-space wavelength. Clearly such an approximation 

is not valid in the regime of the dispersion relation near the light line. In that case, a large 

portion of the electromagnetic energy is carried by the magnetic field, which is varying 

with time at optical frequencies. Thus the small-k plasmons are not in the regime of 

magnetostatics. 

The region of large k-vector, on the other hand, has very little energy in the 

magnetic field. As k breaks away from the light line, the term describing the exponential 

decay into each media simplifies, as discussed in Chapter 2 
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The field quantities for forward traveling waves may then be decomposed into the terms: 

 1 2
kx ikz kx ikz

x x xE B e B e+ − += +  (4-7) 

In the above equation, B1x and B2x represent field amplitudes in the x direction. We then 

write a similar equation for Ez 

 1 2
kx ikz kx ikz

z z zE B e B e+ − += +  (4-8) 

We now examine only the first term in Equations (4-7) and (4-8). B1z may be found in 

terms of B1x by a simple application of Gauss’s Law.  

 0 x zdE dED E
dx dz

∇⋅ = = ∇ ⋅ = +  (4-9) 
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 1 1z xB iB=  (4-10) 

Likewise for the second term, Gauss’s law yields 

 2 2z xB iB= −  (4-11) 

Once these coefficients are known, the curl of the electric field is then computed directly. 

It is found to be identically zero in this ‘large-k’, or short length scale approximation. 

Because 0BE t
∂∇× = − ≈∂ and the magnetic field is oscillating at optical frequencies, 

this implies that the amplitude of the magnetic field is negligible in this wave-vector 

range. Thus justifies the formalism of Chapter 2 and implies that the field is both 

electrostatic and magnetostatic, greatly simplifying the analysis. 

 

Figure 4-3: Geometry of MIM structure. Propagation is along the z direction. 

 

d
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The fact that the magnetic field becomes negligible at these large wave-vectors 

can be a cause for confusion among some readers. For monochromatic plane waves 

propagating through free space, the energy of the electric and magnetic fields are equal. 

In this case, the wave is exchanging energy between these two fields harmonically, 

analogous to the exchange of kinetic and potential energy for a mechanical pendulum. 

Obviously, this exchange mechanism is absent for the large wave-vector plasmon. 

Instead of conserving instantaneous energy through exchange with the magnetic field, the 

large-k plasmons exchange energy between the Ex and Ez fields, which are precisely 90° 

out of phase.  

Once the fields enter the quasi-static regime, it is appropriate to apply circuit 

models. There are then many methods of calculating the transmission line wave 

impedance. The most straight-forward and exact calculation is achieved by solving for 

the ratio of voltage to current directly from the field relations. While rigorous, this 

method does little to establish intuition. In that regard, two other methods are presented 

which make more approximations but yield deeper insight. These will employ simple 

parallel plate models from conventional electrostatics and basic energy flow concepts. 

 We begin with an explicit statement of the fields in the three layers of the material 

stack (see Figure 4-3). The interface of materials 1 and 2 is defined as x = 0, and the z-

axis is defined as the direction of plasmon propagation. The fields in each medium are 

derived from the wave equation and Gauss’s law, unique to within a scale factor. The 

electric fields in medium 1 are: 
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kx ikz
x

kx ikz
z

E Ae

E iAe

+

+

=

=  (4-12)                   

In medium 2: 

 
1 2

1 2

kx ikz kx ikz
x

kx ikz kx ikz
z

E B e B e

E iB e iB e

+ − +

+ − +

= +

= −
 (4-13)            

In medium 3:  

 

kx ikz
x

kx ikz
z

E Ce

E iCe

− +

− +

=

= −  (4-14)          

In the equations above, A, B1, B2 and C are field amplitudes to be determined. Because 

the electric field is irrotational, the voltage between the plates can then be calculated 

directly from the Ex in medium 2. 

 ( )1 2
0 0

d d
kx kxV E dx B e B e dx−= ⋅ = +∫ ∫  (4-15) 

 ( )1
1

0

22 1
d

kx kdBV B e dx e
k

= = −∫  (4-16) 

Because the integral over the B1 and B2 terms is symmetric for this plasmon mode, B2 is 

eliminated. B1 is then eliminated using considerations introduced in Chapter 2, finally 

yielding 

 ( )1 1kdm

d

AV e
k

ε
ε

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 (4-17) 
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The current (I) may then be found by integrating the current density in the metal plate of 

medium 1. The width of the mode in the y-direction is represented by W. Ohm’s law in 

the metal can be written as 

 ∫∫ ∞−∞−
==

00
dxEdxJ

W
I z

z ρ
 (4-18) 

where ρ≡ ρ(ω) is the predominantly reactive plasmonic resistivity derived previously. 
 

∫ ∞−
−−=

0

0 )1( dxEi
W
I

zmεωε  

 
Substituting the expression for Ez given above and integrating we obtain 
 

 
( )0 1mWA

I
k

ωε ε −
=  (4-19) 

Once voltage and current are known, solving for the transmission line impedance (Z0) is, 

by definition, the ratio of the two. 

 ( ) ( )( )0
0

1 1
1

kd
m d

d m

VZ e
I W

ε ε
ωε ε ε

≡ = + −
−  (4-20) 

Notice that the waveguide impedance Z0 diverges as W goes to 0, implying a good 

plasmonic transmission efficiency. 

Basic Transmission Line Theory can also be used to derive the dispersion 

relations k ≡ k(ω) in the large-k limit. We begin with a simple derivation which links the 

transmission line impedance with the wave-vector. First we have the mathematical form 

of the voltage drop across a length of conductor with series impedance per unit length 

defined as Z ′  (not the transmission line impedance). 
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dV Z I
dz

′= −  (4-21) 

For the sake of clarity, we will only consider forward propagating waves. In this case, we 

know that all of the fields have the functional z-dependence of eikz. 

 ikV Z I′= −  (4-22) 

By the definition of transmission line impedance described above, we also know that 

Z0=V/I. Putting both of these equations together, we arrive at the well known relation90 

 0/iZ k Z′ =  (4-23) 

We may then derive the series impedance per unit length by simply dividing the 

resistivity by the effective cross-sectional area of the mode, as described above.  

 W
ikZ
m )1(

2

0 −
=′

εωε  (4-24) 

Z ′  is primarily inductive due to the electron inertia. We now have two equations for Z0, 

Equation (4-20) and Equation (4-23). Equating these and manipulating yields the large 

wave-vector dispersion relations. 

 
kd m d

m d

e ε ε
ε ε

−
=

+  (4-25) 

The reader will note that this is exactly the dispersion relation obtained from Maxwell’s 

equations in the large-k approximation of Chapter 2. Therefore we have an independent 

derivation of the dispersion relations from the transmission line model in the electrostatic 

regime. Finally, substituting the dispersion relation into the expression for Z0 gives 
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377

)1(
2 0

0
0

mm WW
ikZ

επ
λ

εωε −
Ω

=
−

=  (4-26) 

 

4.3 Alternative Derivations of Plasmonic Transmission Line Impedance 

 

 

Figure 4-4: Parallel plate geometry 

 
While exact in the electrostatic limit, the above derivation can be approximated 

through simplifications based on a parallel plate model of the plasmonic transmission 

line. We begin with the parallel plate geometry shown in Figure 4-4. The plates act as a 

conventional capacitor with negligible fringing fields. In such a case, the electric field 

between the plates is in the x direction and is a fixed constant. The voltage is then equal 

to the plate spacing (d) times the constant electric field (Ex). The current flowing through 

the plates is found from Ampere’s Law to be WH y × . To find the transmission line 

impedance, we now only need a relation between Hy and Ex. Using Ampere’s Law again, 

we find 
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0

x

y d

E k
H ωε ε

=  (4-27) 

 0
0

x

y d

EV d d kZ
I W H W ωε ε

= = =
 (4-28) 

Equation (4-28) can be cast in familiar form by finding an approximation for k. This is 

accomplished by Taylor expanding the dispersion relation about εd/εm. This is appropriate 

for most frequencies below 3eV. As shown in Chapter 2 and Appendix A, it is these 

photon energies below 3eV which have the largest Q and most favorable propagation 

characteristics. 

 
21 ln m d d

m d m

k
d d

ε ε ε
ε ε ε

+
= − ≈ −

−  (4-29) 

Substituting this approximation for k into our expression for Z0 yields a surprisingly 

accurate result. 

 
mW

Z
επ

λ Ω
=

3770
0  (4-30) 

Equation (4-30) approaches Equation (4-26) asymptotically as mε → −∞  when the 

photon energy goes to zero, and is very close to the proper result at 2.6eV. 
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Figure 4-5: Three dimensional focusing structure cast as parallel plates 

  

The simple parallel plate waveguide is a standard in electrical engineering 

pedagogy. Nonetheless, these simple modes generate a transmission line impedance very 

close to that derived from the exact plasmonic fields. These complicated plasmon modes, 

with frequencies and dispersion relations very different from conventional waveguides, 

still follow basic engineering principles. To give the reader one more bout of intuition, 

we present a third derivation for the transmission line impedance which invokes neither 

Gauss’s nor Ampere’s Law. Assuming only that the electric field is a constant between 

W
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the parallel plates, this derivation uses basic energy equivalence concepts. Elementary 

circuit concepts state that the power in a circuit element is equal to V2/Z0. Conservation of 

energy tells us that the flux through a bounded area is equal to 

 
2

0

vg
VP Energy Density Area
Z

= ⋅ ⋅ =  (4-31) 

We are analyzing the case of monochromatic input, so the group velocity is equal to the 

phase velocity. 

 v vg p k
ω

≈ =  (4-32) 

In the electrostatic regime and with an infinite parallel plate geometry, the energy density 

is simply the electrostatic energy density in the dielectric medium. The cross sectional 

area is taken as the width times the insulator thickness. 

 
2

0 dEnergyDensity Area E Wdε ε⋅ ≈  (4-33) 

Finally, the voltage is taken as the field times the insulator spacing (V=Ed). Putting this 

all together and manipulating gives 

 
mpd WW

dZ
επ

λ
εε

Ω
≈=

377
v

1 0

0
0  (4-34) 

In the final expression, the approximation for k is employed, as was done in the case of 

the parallel plate capacitor. Upon inspection of the three derivations of impedance, it is 

clear that all three are equivalent. All of the relations presented above, then, are 

applicable at the desired frequencies of operation of our plasmonic lens. 
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4.4 Ramifications and Discussion 

 Through both intuitive and rigorous means, we have shown that the transmission 

line impedance of the MIM structure can be made very large. This impedance diverges 

reciprocally with the width (W) of the plasmonic wave-guide. For the novel plasmonic 

lens described in this thesis, the impedance can be made several times larger than the 

impedance of free space at the focus. This is the source of several effects which are 

crucial to plasmonic devices. First and foremost, this enhances the throughput of the 

channel. Clearly the resistive impedance of the channel increases as more current is 

focused into a smaller area. From an initial evaluation, then, this would seem to preclude 

any kind of efficient focusing of the surface plasmon waves. Fortunately, the 

transmission line impedance increases at the exact same rate. This keeps the overall loss 

independent of the focusing and strictly a function of channel thickness. Plasmonic losses 

can therefore be kept manageable for a short taper.  

These results also confirm the assumptions made in Chapter 3 which used 

geometric arguments to generalize the two-dimensional simulations to the full three-

dimensional device. Transmission line theory tells us that focusing the beam has no effect 

on the efficiency since both Ohmic resistance and waveguide impedance diverge 

together. In light of work with plasmonic wires36, this should come as no surprise. This 

geometry, described in Chapter 1, consists of a thin metallic cylinder surrounded by a 

dielectric. For this mode, the symmetry of the problem allows for an exact analytical 

solution for the propagation losses due to absorption. In these modes too, the series 
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resistance becomes exceedingly large as the radius of the wire is made very small. This, 

however, is exactly compensated by the transmission line impedance of the wire in 

exactly the same manner as in the focused parallel plate geometry outlined in this 

chapter. Since it has an exact three-dimensional analytical solution, the plasmonic wire is 

proof of the potential for reasonable coupling efficiency to the nanoscale. 

 The second important result of the large wave-guide impedance is in impedance 

matching. Many applications, from microscopy to lithography, require efficient coupling 

between the tightly focused plasmons and the free space near-field. Delivery of energy 

between these modes requires an impedance transformer, from the 50 Ohms of an 

antenna to the much higher impedance of the nanoscale. The greater the transmission line 

impedance, the greater the voltage that can be generated at the nanoscale.  

 The reader is warned to interpret the language of impedance carefully. With 

proper selection of channel thickness and focal spot, the plasmonic waveguide can be 

made to match the impedance of free space (377Ω). This does not mean that the focused 

plasmon will couple efficiently to free space. At the focus of the plasmonic waveguide, 

the energy acts as a source for generating optical energy in free space. When decomposed 

into a basis set of plane waves, though, the spatial frequencies involved will be far 

beyond the light line for the same considerations outlined in Chapter 1. Thus, all of the 

wave-vectors will be large in the focal plane, leaving only imaginary wave-vectors along 

the direction of propagation. Regardless of the impedance, these tightly confined modes 

can only efficiently couple to the near-field. 
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CHAPTER 5 ADDITIONAL LOSS MECHANISMS 
 

The trouble with life isn't that there is no answer, it's that there are so many answers. 

-Ruth Benedict 

 

 This chapter presents an overview of the higher order loss mechanisms. 

Specifically, we examine the effects of surface roughness, Landau damping and non-local 

electron conduction on the propagation parameters of the surface plasmons. Of these 

effects, the non-local electron conduction at the small length scales of the focused 

plasmons proves to be the most problematic, providing a fundamental limitation to the 

plasmonic propagation. 

 

5.1 Surface Roughness and Landau Damping 

Surface roughness can play an important role in limiting the efficiency of the 

taper lens structure. To address this issue, Atomic Force Microscopy (AFM) scans were 

taken of electron-beam evaporated silver and SiO2 films that will be necessary for the 

planned plasmonic lens device. A sample line scan of a silver film is shown in Figure 5-1, 

showing a correlation length of approximately 100nm.  

Closed form expressions have previously been derived in the literature for 

plasmon scattering and out-coupling due to roughness effects93,94. These expressions 

break down, however, as the plasmon wavelength becomes very small. Because we are 

interested primarily in short plasmon wavelengths this analysis does not suffice and 
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numerical simulations were required. To accomplish this, the empirical surface profile 

data was used in the same FEMLab simulations as described in Chapter 3 using an 

interface known as CANVAS95 which was developed in-house. After the simulations 

were complete, they showed only a minimal reduction in throughput efficiency. The 

reader is reminded that all of the numerical simulations were done in two dimensional 

space only. The scattering due to surface roughness which these models can describe, 

then, is only the back-scattering. While our results suggest that this effect is negligible, it 

is advised that full three-dimensional simulations be done before completely ruling out 

scattering in all other directions. 

 

Figure 5-1: AFM line scan of e-beam evaporated silver 

  

Likewise, Landau damping is also ignored, as the phase velocity of the surface 

plasmon in much larger than the electrons Fermi velocity. Landau damping arises from 

the non-local optical conductivity. At the thinnest portion of the taper, the phase velocity 

is still more than four times greater than the Fermi velocity. Because of this discrepancy, 

the Fermi electrons cannot travel along the crests of the plasmon field long enough to 
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change the dynamics of propagation. Intuitively, this explanation enables us to dismiss 

Landau damping factors, and the analysis of Section 5.3 bears out this conclusion. 

Another non-local effect, known as the anomalous skin effect, cannot be 

dismissed so easily. While the phase velocity is significantly larger than the Fermi 

velocity in our structure, the group velocity comes very close to the Fermi velocity at the 

focus of our lens. Clearly this should have important effects on the propagation 

characteristics which are not described by the local, bulk dielectric constant. It is the 

subject of this chapter to evaluate this loss mechanism. We will demonstrate that it 

provides a limit to efficient nano-focusing when the plasmon group velocity is of the 

order of the Fermi velocity. 

 

5.2 Non-local Conductivity, an Overview 

 There is an overwhelming amount of experimental evidence96,97,98,99 which 

demonstrates that the dielectric constant of a metal can no longer be equated with that of 

the bulk material at very large wave-vectors. As is known in solid state physics, the 

dielectric constant is not only a function of frequency, but of wave-vector as well. The 

formulation of the dielectric permittivity for the general case in an isotropic medium is 

given below100. 

 
3( , ) ( , ) ( , )D x t d x x t E x x t t dtε′ ′ ′ ′ ′ ′= − −∫ ∫

G G G G G G
 (5-1) 

This convolution in space and time can be reduced in Fourier space for the case of 

harmonic fields to 
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 ( , ) ( , ) ( , )D k k E kω ε ω ω=
G G GG G

 (5-2) 

Because optical wave-vectors tend to be much smaller than the relevant length scales of 

optical media (such as the lattice spacing, mean free path, etc), the wave-vector 

dependence is typically dropped and Equation (5-2) reduces to the standard frequency 

dependence. In the case of our plasmonic focusing device, the wave-vector becomes so 

large that the plasmonic wavelength reduces to well below the mean free path. An initial 

look at this problem would be to simply include the wave-vector dependence, known as 

spatial dispersion or non-local permittivity, of the permittivity into the dispersion 

relations, as in reference 101. Unfortunately, these results to not agree with experiment 

because they only apply to the bulk63 and do not take the effects of the surface into 

account. The proximity of free surfaces causes additional electron scattering and 

fundamentally changes the electron dynamics from those of the bulk medium. Electro-

magnetic confinement, even in the absence of free surfaces, can present additional losses 

owing to the anomalous skin effect. This is due to the large spatial gradients of the 

electric fields near the surface. These fields change at lengths much smaller than the 

electron’s mean free path, as will be explained below. Thus the most immediate effect of 

large wave-vectors is to increase the small imaginary component of the dielectric 

constant ( mε ′′ ) of the metal. There is also an effect of large wave-vectors on the real part 

of the dielectric constant ( mε ′ ) however we expect this effect to be less noticeable than 

on mε ′′ .  

Approaches to calculating the non-local dielectric constants at large wave-vectors 

come in two camps. The first uses quantum mechanical approaches such as the density 
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functional theory and the random phase approximation, typically within the bounds of the 

jellium model. These approaches are excessively complicated and notoriously inaccurate. 

They depend so critically on assumed interactions and length scales that even the sign of 

the slope of the dispersion relations can be qualitatively incorrect. These kinds of 

analyses are most applicable to the large plasmonic wave-vectors generated in electron 

energy loss experiments102 which are much greater than those achieved in our plasmonic 

focusing structure.  

For these reasons, we have chosen a second, semi-classical approach for 

predicting the relative dielectric constant εm at large wave-vectors. The principal effect is 

on the imaginary component of the permittivity owing to the surface scattering and the 

anomalous skin effect. The concept of the anomalous skin effect is illustrated in Figure 

5-2 and revolves around the mean free path of the electrons. Although this number is 

seldom referenced for silver, estimates derived from electron mobility put the mean free 

path between 20nm and 50nm. This number is large compared to both the classical 

penetration depth into the metal (~25nm for 2.6eV photons) as well as the plasmonic skin 

depth, which can be made as small as 1.6nm in our geometry. The very large free path of 

the electrons leads to the anomalous skin effect77 which can be explained as follows: as 

the electrons scatter through the positive ionic background in Brownian motion, they can 

very easily travel outside the reach of the plasmonic skin depth. When they leave the 

region of the plasmon, they take electromagnetic quiver energy with them. Alternatively, 

the electrons can collide with the surface which also causes energy loss. Both of these 

circumstances create a decrease of the effective mean free path103,104.   
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Figure 5-2: Classical electron scattering picture with diffuse reflection from the surface 

 

5.3 A Phenomenological Model for Diffuse Scattering 

 The field-current relationship explicit in Ohm’s law breaks down when the field 

penetration into the conductor becomes smaller than the mean free path of the electrons. 

In the case of a surface plasmon, this breakdown can be attributed to two new sources of 

loss. The first is the collisions with the surface. Historically, surface scattering events 

tend to be handled with a scalar known as the ‘Fuchs parameter’ p, which designates the 
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percentage of electrons which undergo specular scattering at the surface105. The 

remaining electrons are assumed to undergo diffusive scattering. It is the purpose of this 

analysis to determine an upper bound on loss due to these processes, so a Fuchs 

parameter of zero is assumed, thereby all scattering is assumed to be diffuse. When an 

electron collides with the surface, then, it will lose all of its momentum memory and 

become a thermalized electron. 

 In the anomalous skin effect, electrons simply leave the electromagnetic field of 

the plasmon before undergoing a collision event. When they leave, they take energy from 

the plasmon with them. Conservation of charge then pulls another thermalized electron 

into the field region. This creates a process symmetrical with surface scattering with 

respect to the amount of energy lost.  

Collisions with the surface and collisions with an effective boundary at the skin 

depth of the plasmon replace the energetic electrons with their thermalized counterparts. 

The half space of metal then acts as a thin film with a thickness equal to the skin depth of 

the surface plasmon. The scattering events of this effective thin film create a loss 

mechanism with its own effective electron lifetime much shorter than the bulk 

momentum relaxation time. This allows us to define a Quality factor106 (QASE) for this 

process  

 ASE eQ ωτ≡  (5-3) 

In Equation (5-3), ω is the frequency of the plasmon, and τe is the effective momentum 

relaxation time due to these additional loss processes. These extra losses will only 

become significant when the skin depth is much smaller than the mean free path of the 
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electron. From the analysis developed in Chapter 2, we know that this will only occur at 

large wave-vectors. The skin depth can then be approximated as 1/k, where k is defined 

as the plasmon wave-vector.   

 The effective mean free path for this process may now be determined with one 

further assumption. As the skin depth grows very small, most of the electrons will be 

beginning their trajectories from the effective scattering barriers. That is to say, as the 

effective mean free path of this ‘anomalous skin effect’ becomes much smaller than the 

bulk mean free path, the scattering is much more likely at a boundary than at some other 

point in within the skin depth. We may then calculate the electron mean free path 

assuming that all 2π Steradians are equally likely for the direction of travel of the 

thermalized electron.  

 1
0

2

tan

1 cos
sinmfp k

d
k

π
θ θ

θ−
= ∫ A

A  (5-4) 

The limits of integration are taken from the angle normal to the boundary to a minimum 

angle such that the bulk mean free path becomes the limiting factor. For most cases of 

interest, numerical integration gives us a mean path of approximately 2/k. The effective 

lifetime is 2 / vF k  which leads to a Q factor: 

 2
vASE

F

Q
k

ω=  (5-5) 

where QASE is associated with diffuse surface collisions and the anomalous skin effect, 

while vF is the Fermi velocity at the surface of the Fermi sphere. 
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Chapter 2 defined a Quality factor for bulk silver material (Qmat) at large wave-

vectors based on the electrodynamics of dispersive media, and the results are tabulated 

extensively in Appendix A. These two Quality factors may then be combined to yield an 

effective imaginary component of the relative dielectric constant (ε ′′ ). 

 0 0
mat

total
ASE

Q
Q

ε ε ε′′ ′′ ′′= +  (5-6) 

The reader must note that as ε ′′  becomes large, this creates a change in the skin 

depth, which changes QASE, which again changes the imaginary component of epsilon. To 

account for this, we use an iterative method, in which the new version of epsilon was put 

into the dispersion relation, creating a new version of epsilon, and so forth. In all cases 

this method converged to a solution in less than 10 iterations. The results of these ε ′′  

calculations were then fit to a function of dielectric thickness and used in the simulation 

of the best-case linear taper described in Chapter 3. To remind the reader, this taper 

began in a 50nm channel and terminated in a 1nm channel, with a transmission loss of 2.2 

dB. With the additional losses from surface collisions and the anomalous skin effect, this 

loss becomes approximately 4.6dB across the taper, which is a surprisingly favorable 

result. This is, of course, an upper bound on loss. Even in these extreme conditions, 

however, these excess loss mechanisms only contribute 2.4dB to the total loss of the 

device. If the actual loss mechanism were to be found close to this upper bound, the taper 

could be re-optimized and losses would be even further reduced. 

 

5.4 The Limit of Nano-Focusing  



 112

 The phenomenological model given above creates a simple way for us to estimate 

an upper bound on efficient focusing. The calculations in the previous section used a self-

consistent iterative method for determining the change in the complex propagation 

constants due to the anomalous skin effect. It was seen that while these additional losses 

had a non-zero effect on the real component of the propagation constant k, this effect was 

negligible. It is therefore justified to assume that the real part of k, and by extension the 

properties which depend on k, are approximately unchanged by the effects of diffuse 

surface scattering and the anomalous skin effect.  

These assumptions give us the foundation by which we may determine the limit 

of efficient focusing. In the case of very large losses due to these non-local effects, QASE 

will dominate the intrinsic Q of the bulk material Qmat. The total Q of the metal is then 

well approximated by QASE. We may then use Equation (2-34) for the modal Q (Qmod) 

from Chapter 2, together with Equation (5-6) to determine Qmod in the limit of extreme 

anomalous skin effect and surface scattering.  

 mod 1
2ASE

mat

Q Q
Q
ε

ε
′⎛ ⎞

= +⎜ ⎟′′⎝ ⎠
 (5-7) 

The terms ε ′ andε ′′  represent the real and imaginary components of the bulk dielectric 

constant of the metal.  

 The plasmon oscillation becomes untenable when it dissipates more energy in one 

optical cycle than 2π times that which is stored at resonance. This is the condition at 

which Qmod < 1. The second term in the brackets is approximately 0.5 in the spectral 
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region of interest, and is between 0.2 and 1.2 across the entire spectrum. The surface 

plasmon oscillation, therefore, breaks down when the Qmod is equal to one. 

 mod
31 1.5
vASE

F

Q Q
k

ω= ≈ =  (5-8) 

Rearranging the terms we have 

 v 3F k
ω

=  (5-9) 

Thus it becomes very inefficient to propagate surface plasmons when the phase velocity 

reduces to one third of the Fermi velocity. We may recast Equation (5-9) with the help of 

Equations (2-25) and (2-27). 

 3v v
ln

F g
m i

m i

M ε ε
ε ε

= ×
⎛ ⎞−
⎜ ⎟+⎝ ⎠

 (5-10) 

The quotient in Equation (5-10) is between 2 and 15 across the plasmon spectrum for 

large wave-vectors. This paints a simple dynamic picture of these loss mechanisms. If the 

group velocity becomes sufficiently small, the electrons will carry the quiver energy 

away faster the energy can arrive. At such a point, the oscillation is no longer sustainable 

and therefore this process limits the achievable wave-vectors and by extension, the 

minimal spot size. 

 

5.5 An Exact Model for Specular Scattering 

 The case of specular scattering from the surface cannot be treated in such a simple 

manner as that of diffuse scattering. For a basic framework for understanding the effect 

of such behavior on the propagation parameters, we begin with the methodology of 
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Reuter and Sondheimer77, used to analyze the anomalous skin effect in the case of the 

optical response of a metallic surface to normally incident radiation. The strategy is to 

simultaneously solve Maxwell’s Equations (as was done previously on their own) with 

the linearized Boltzman transport equation given below. 

 0
k r

f ff e E f v f
t τ

−∂
− ∇ + ∇ = −

∂
i i

=
 (5-11) 

τ is the electron relaxation time. The term f represents the electron distribution function, 

while f0 represents the equilibrium electron distribution (the Fermi function). Therefore, f 

– f0 is equal to the deviation from equilibrium caused by the oscillating plasmon field. If 

the fields create a small perturbation, we are justified in assuming that these deviations 

will have the same temporal and spatial distributions as the plasmon itself.  

 The work of Reuter and Sondheimer is justified, with the realm of its own 

assumptions, only for optical incidence such that the electric field lies in the plane of the 

surface. Kliewer and Fuchs107 extended the theory to the case of non-normal incidence, 

such that the electric field has components normal to the surface. Because the large wave-

vector surface plasmons have electric field components evenly split between the 

transverse and longitudinal direction, it is this theory which is applicable to the plasmonic 

case. This extension of the theory for normal incidence is non-trivial. Field components 

normal to the surface create charge fluctuations which are not effectively screened by the 

electrons. The reader is reminded that although the Thomas-Fermi screening length is 

much smaller than the length-scales of interest, it was derived in the zero frequency 

limit12. This concept no longer applies at optical frequencies where 1ωτ � . In this case, 

the normal electric field creates unscreened charge fluctuations which make 0E∇ ≠i . 
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This forces us to keep this term which is dropped in the standard formulation and write 

Maxwell’s Equations as 

 
2

2
02( ) (1 )IBE E E i J

c
ωε ωµ∇ −∇ ∇ + + = −i  (5-12) 

The term εIB represents the dielectric constant due to interband transitions. With judicious 

use of Fourier expansions, exploitation of the symmetry implied by specular boundary 

conditions, and the zero-temperature approximation (which states that f0=1 for all 

energies below the local Fermi energy, and zero above it), we arrive at a closed form for 

the surface impedance. 
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∫  (5-13) 

In the equation above, k is the plasmonic wave-vector, while kx represents the Fourier 

expansion coefficients in the direction normal to the surface. All of the directions are the 

same as those in Figure 5-2 and follow the standard used throughout this document. The 

longitudinal (εl) and transverse (εt) dielectric constants are defined below, where the term 

K is used as a shorthand for (k2 + kx
2)0.5, and not as the transverse decay constant as in 

Chapter 2. 

 
( ) ( )

( )
( )
( )

32

2

2 2

2

3 11
2 v

v 1 1 v vln
1 v 12 1

p
t IB

F

F F F

F

i
i K

K i i i K K
i i K ii i

ω ωτε ε
ω ω τ τ

τ ωτ ωτ τ τ
ωτ τ ωτωτ

⎛ ⎞−
≡ + − ×⎜ ⎟+ ⎝ ⎠

⎡ ⎤⎛ ⎞+ − − +
−⎢ ⎥⎜ ⎟⎜ ⎟− + −−⎢ ⎥⎝ ⎠⎣ ⎦

 (5-14) 
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 (5-15)  

These equations were derived to determine the reflectivity of metals under non-

normal incidence. The surface impedance, however, is exactly what is needed to calculate 

the dispersion relations of the MIM plasmon when the electrons scatter from the surface 

specularly. As the spacing (d) in the MIM plasmons becomes very small, the dielectric 

still tends to act with its bulk dielectric constant. The bound electrons of the dielectric, of 

course, will not undergo extraneous scattering events due to the change in wave-vector. 

The boundary conditions derived from Maxwell’s Equations tell us that Ez and Hy are 

continuous across the boundary. Because the surface impedance has been defined as the 

ratio of these quantities, then it must be continuous as well. Returning to the standard 

plasmon relations and assuming exponential decay of the fields in the dielectric, the 

surface impedance must be 
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 (5-16) 

The plasmon propagation parameters may then be determined numerically by 

finding the real and imaginary components of k which equate Equation (5-16) and 

Equation (5-13). It is precisely the crude minimization routines which were used to 

determine the dispersion relations of Chapter 2 which are necessary to solve these more 

complicated equations. There is still one piece of information necessary before we can 
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turn the numerical crank on this problem. Equations (5-15) and (5-14) describe the silver 

in terms of a Drude metal with additional contributions from interband transitions. 

Fortunately, the exact physical picture for silver is a Drude metal with a plasma 

frequency of approximately 9eV whose character is drastically changed by the onset of 

interband transitions near 3.9eV, as is a similar case for all of the coinage metals108. To 

complete our numerical calculations with any accuracy, this information was used in 

conjunction with the experimentally derived dielectric constants of silver to solve for the 

necessary parameters. It must be noted that the contribution to the dielectric constant due 

to interband transitions in a function of frequency and must be treated as such. 

 The results of these calculations for the Ag-SiO2-Ag geometry are plotted below. 

Figure 5-3 shows the change in decay length due to the calculations described in this 

section (the dotted line) compared to those simply using the bulk approximation for the 

dielectric constant of silver (the solid lines). All curves are for constant energy input 

photons. Note that the change in decay length is very small. Because this increased loss is 

almost imperceptible, there is little sense in using these numbers in another 

electromagnetic simulation to determine the effect of specular scattering on the ideal 

taper. The throughput efficiency of the 30° taper would be nearly the same as in the bulk 

approximation.  

 These results also give substance to our claim in Section 1.5 that Landau damping 

can be ignored in these problems. Landau’s original discovery of this damping 

phenomenon came about because he treated the evolution of plasma oscillations as initial 

value problems in a similar electron transport model and allowed the propagation 



 118

parameters to be complex, even in the case of a collisionless plasma. Note that in our 

case, we also allowed for complex propagation parameters. If Landau damping were to 

be significant it would have appeared in these results. 
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Figure 5-3: Decrease in the plasmonic decay length due to the accounting of the electron densities 

and specular scattering at the interface. The solid line denotes the use of the bulk dielectric constant, 
and the dashed line represents the electron behavior under the Boltzmann transport equation 

 

 Strictly examining loss does not tell the entire story. Figure 5-4 illustrates the 

dispersion relations using the techniques described above. Again the solid line shows the 

bulk approximation and the dashed lines show the calculations which take electron 

dynamics into effect. A comparison of these plots yields an unexpected result: the 
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specular scattering and electron dynamics yield a reduced wave-vector. More pronounced 

than the change in decay length, this reduction in wave-vector helps to explain why the 

loss changes much less than expected. The reduced wave-vector creates a larger group 

velocity. This increased group velocity reduces the interaction time of the field with the 

loss mechanisms of the metal, thereby increasing the decay length. The downside to this 

is that it was the slow group velocity and large wave-vector that made this plasmonic lens 

so powerful! A reduction in these properties will reduce the overall enhancement factor. 

Because loss and enhancement are so intertwined with the plasmonic lens, the cutting 

corners in one tends to cut corners with the other. 

 This chapter has presented two limiting cases of electron scattering and its effects 

on MIM surface plasmons. As has been borne out with low frequency experiments, the 

electron scattering at an interface tends to be some combination of diffuse and specular 

scattering109. The calculations undertaken in this chapter have demonstrated that even in 

the worst case of completely diffuse scattering, the change in throughput of the taper 

geometry will only suffer by a few dB of loss. While not insignificant compared to 

absorption and scattering losses, these numbers do not undermine the overall efficiency 

of the design and they do uphold the notion that a rapid taper is an efficient transition 

from the micro-scale to the nanoscale. 
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Figure 5-4: Dispersion relation comparing the bulk approximation (solid lines) to the calculation 
using the Boltzmann transport equation with specular scattering at the interface (dashed lines) 
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CHAPTER 6 THE FUTURE OF THE PLASMONIC LENS 
 

It’s a poor sort of memory that only works backwards.  

-The Queen in Lewis Carroll’s Through the Looking Glass 

 

This thesis has demonstrated, through both analysis and numerical simulations, a 

plasmonic focusing scheme which can couple the large single-sided plasmon mode into 

the tightly focused MIM mode with only 5.5 dB of loss. If we include the full effects of 

the anomalous skin effect with diffuse electron scattering at the interface as well as 3dB 

of loss at the in-coupler (be it grating or end-fire), this yields a total loss of only 12dB. 

Even assuming the worst case electron scattering losses, our device has such 

astonishingly low loss even when focusing from a 1µm2 spot of a microscope objective 

down to a 3nm by 7nm spot at the focus of the plasmonic lens. The promise of this 

technology is clearly ahead of the state of the art in tapered fiber probes which have 

approximately 30dB of loss in focusing to a 100nm diameter spot. 

 

6.1 Experiment and Fabrication 

The next step in the development of the plasmonic lens is experimental 

verification of these simulations. Such a plan has entails several serious fabrication 

challenges. To date, gratings have been fabricated and tested, as shown in Figure 6-1. 

Gratings were prepared by depositing 40nm of SiO2 onto a glass slide. Electron beam 

lithography and dry etching were then used to create several straight gratings of various 
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periods on the SiO2. This step was followed by electron beam evaporation of silver onto 

the grating.  

Evaluation of the various gratings was then achieved by characterizing the 

reflectance of monochromatic light at various linear polarizations. The normally incident 

illumination was from a fiber-coupled Kr-Ar laser operating at 488nm. The introduction 

of the fiber produced light of a random polarization. This output polarization was found 

to be very steady over time and used to the advantage of the experiment. The optical field 

which is polarized in the y-direction will not generate surface plasmons when 

illuminating a grating that has translational symmetry in that direction. This polarization 

was therefore used as a control beam and corrected for local changes in reflectance due to 

surface imperfections. The reflectivity of the beam of correct polarization and that of the 

control beam were measured at normal incidence to the grating and the ratio of the two is 

plotted for each grating period. Note the large dip in reflectance at the 280nm grating 

period, exactly where plasmons were expected from the simple dispersion relations. This 

demonstrates that gratings can be effectively fabricated for this device. In addition to the 

grating, the tapered dimple lens has also been successfully fabricated by using a de-

focused electron beam to create the cylindrically symmetric exposure. After development 

and subsequent SEM exposure, the proper taper angle was created on an acceptably 

smooth surface. It now remains for the UCLA plasmonics team to put these pieces 

together and create an output facet so that the near field can be interrogated and 

measured. 
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Figure 6-1: Plot of the reflection ratio of ths s to p polarization of light normally incident on gratings 

of verious periods. The inset shows an SEM image of one such silver grating. 

 

6.2 Applications 

Once the device is demonstrated, the applications are many and varied. The 

obvious range of applications begins with displacing all of the uses of the tapered fiber 

probe. With the plasmonic lens’s increased throughput and greatly decreased spot size, 

there is no question as to which is the superior technology. There are a vast number of 

applications for tapered fiber probes which will immediately be advanced with the use of 

our device. From Near-field Scanning Optical Microscopy (NSOM) and optical 

lithography, to near-field optical memory storage, a significant breakthrough in efficiency 
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will enable all of these applications. For a more complete list of biological and chemical 

applications, the reader is referred to Reference 49. 

 In addition to merely making an improved version of the tapered fiber probe, the 

plasmonic dimple lens will also enable an entire suite of new applications. The huge field 

enhancements can be used to achieve non-linear response from the dielectric material at 

low input powers. In the case of the plasmonic dimple lens described in the body of this 

thesis, the dielectric material is SiO2. This is a symmetric molecule, so the second order 

susceptibility is zero2. Third order effects, however, are routinely seen in SiO2 and are 

dominated by non-linear refraction. An increase in index of the insulator material can 

have dramatic effects on the plasmonic dispersion relations by down shifting the 

frequency at which k goes to infinity. By engineering the input powers and frequencies, 

this could be used to create an optically controlled optical delay line. This effect could 

also increase the dielectric constant so much as to push the plasma frequency below that 

of the optical beam. It could thereby make for an optical logic element or modulator. 

Such intense optical fields have also been shown to enhance electron tunneling across the 

dielectric gap of the MIM structure110 or to generate hot electrons from the focus. Finally, 

there has been interest in these devices to compress the optical spot size a detector. 

Allowing for a much smaller detector area, this would greatly reduce dark current and 

therefore enable higher sensitivity.  
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6.3 Heat Assisted Magnetic Recording 

In addition to the applications listed above, the plasmonic lens has the opportunity 

to make a large impact on future generations of hard disk technology. The need for 

focused energy comes about because standard hard disk media become unstable when the 

domains are made sufficiently small, an effect known as super paramagnetism. This 

means that the next generation will need more magnetically rigid media, however these 

would require untenable magnetic fields from the drive heads to write the bits. The 

solution to this comes in the form of directed light. A focused optical beam can locally 

heat the volume of the bit making it easier to re-write. By focusing an optical beam only 

onto the bit that is to be written, it dramatically lowers the requisite field of the write 

head. As the medium cools, it then stabilizes the data111. This is known in the industry as 

Heat Assisted Magnetic Recording (HAMR). 
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Figure 6-2: The decay length of the near field at the output facet of the plasmonic lens. 

 
Although the plasmonic lens has been shown to efficiently focus light, the trick is 

getting the optical field out of the slab mode plasmons. Modern hard disks read and write 

by using the magnetic near-field of a magnetic dipole which requires the head to float 

tens of nanometers above the disk. The plasmonic lens likewise produces an AC electric 

dipole which couples only to the optical near field. Figure 6-2 illustrates the decay length 

of the near field for 2.6eV plasmons at various SiO2 thicknesses. Because this decay 

length is non-exponential, we have defined it as the length normal to the out-coupling 

surface, at which the optical energy density has decayed by 1/e. For the 1nm terminal 

thickness described throughout this text, the plasmonic energy decays in just 0.35nm 
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outside of the device. Intuitively, this is expected because the MIM geometry acts as a 

parallel plate capacitor, with energy only out-coupling through the fringing fields.  

While the standard plasmonic lens will not exactly fit this application, there is a 

solution. The HAMR technique requires that optical energy be deposited in a thin film 

conductor, typically cobalt, which acts as a transducer changing the light to heat. 

Simulations using our 30° taper with a 10nm terminal thickness and a 10nm air gap to the 

cobalt showed only 10% efficiency in energy transfer. When the MIM geometry was 

changed to the converse IMI scheme, this number increased to 28%. Conceptually, the 

IMI technique should yield an improved throughput because instead of a capacitor, it 

creates an oscillating charge at the tip. This creates image charges112 in the cobalt, which 

greatly facilitates the energy transfer. This is illustrated in Figure 6-3. Optimization of the 

plasmonic focusing geometry for the HAMR is an ongoing application and further 

developments are expected in the near term. 
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Figure 6-3: Simulation results of the IMI focusing scheme for HAMR. The arrows indicate direction 
and strength of the electric field and the color designates total energy density 
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6.4 Conclusions 

 This thesis has provided a first step. It has generated a feasible plan for focusing 

to the nanoscale, and designed the materials and processes to achieve this plan. We have 

identified and computed the dominant losses and analyzed the device for several 

applications. It is now up to the next student to put these concepts into practice. There is 

such vast potential in the plasmonic lens but it only depends on adequate fabrication tools 

to realize it. 
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Appendix A The Optical Constants of Silver 
 

ħω (eV) ε' ε" d(ωε ')/dω Qmat Re[ρ(Ω cm)] Im[ρ(Ω cm)]

0.2 -1623.42 418.964 1311.38 1.56503 5.54E-06 -2.15E-05 

0.4 -438.142 61.5077 436.758 3.55043 5.82E-06 -4.16E-05 

0.6 -196.065 20.1764 170.145 4.21645 6.38E-06 -6.23E-05 

0.8 -116.129 9.00827 100.231 5.56326 6.08E-06 -7.90E-05 

1 -75.0013 4.00022 79.8387 9.9793 5.14E-06 -9.77E-05 

1.2 -51.0708 1.81331 55.1952 15.2194 4.15E-06 -1.19E-04 

1.4 -37.2903 1.26983 42.8527 16.8734 4.60E-06 -1.39E-04 

1.6 -27.5713 0.934328 38.0527 20.3636 5.32E-06 -1.63E-04 

1.8 -20.5736 0.67703 32.7334 24.1743 6.01E-06 -1.92E-04 

2 -15.505 0.497701 27.555 27.6823 6.80E-06 -2.25E-04 

2.2 -11.805 0.381254 22.955 30.1046 7.86E-06 -2.64E-04 

2.4 -9.07569 0.312172 19.0739 30.5504 9.53E-06 -3.08E-04 

2.6 -7.03494 0.27778 15.9582 28.7245 1.23E-05 -3.56E-04 

2.8 -5.48267 0.268454 13.5489 25.2351 1.70E-05 -4.10E-04 

3 -4.27676 0.277045 11.7927 21.2831 2.46E-05 -4.69E-04 

3.2 -3.21096 0.3172 12.8114 20.1946 4.14E-05 -5.50E-04 

3.4 -2.20801 0.37474 14.9484 19.945 7.87E-05 -6.74E-04 

3.6 -1.18101 0.429287 17.8648 20.8075 1.80E-04 -9.13E-04 

3.8 -0.007865 0.496733 15.1258 15.2253 7.71E-04 -1.56E-03 

Table A-1: The relevant optical constants of silver. The primes denote the real component and 
double primes the imaginary component of ε. 
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 This appendix details the material properties of silver so that the reader is not 

required to return to the literature in order to make any detailed plasmonic calculations on 

their own. The information in Table A-1 quantifies the data points derived from a spline 

fit of experimentally measured data. These empirical values of the real and imaginary 

part of the dielectric constant are given in Figure A-1 and Figure A-2 respectively. Figure 

A-3 illustrates a larger view of the material Q-factor of silver derived from the methods 

outlined in Chapter 2. Finally, Figure A-4 is a plot of ( )d
d

ωε
ω

′
 versus frequency. This 

term replaces ε ′ in the standard relation for electrostatic energy density: 

 21
2

U Eε ′=  (A-1) 

In dispersive media, and especially in the case of good conductors, the tenets of basic 

thermodynamics require that: 

 ( ) 21
2

d
U E

d
ωε
ω
′

=  (A-2) 

As shown in Chapter 2, these relations allow us to define the material Q (Qmat) as 
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2matQ

ωε
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′′

 (A-3) 
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Figure A-1: Empirically determined real component of ε versus photon energy 
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Figure A-2: Empirically determined imaginary component of ε versus photon energy 
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Figure A-3: Material Qmat of silver 
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Figure A-4: Plot of the differential dielectric constant of silver which is used in the determination of 

the energy contained in the field 
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Appendix B Sample 2D FDTD Code written in C 
 
FD1D_3.2.c    2D TM simulation PML  */ 
/* dx/dt = 2*c */ 
/* 2.5 eV photons */ 
 
# include <math.h> 
# include <stdlib.h> 
# include <stdio.h> 
#define NR_END 1 
#define FREE_ARG char* 
 
double **dmatrix(long, long, long, long); 
 
#define IE  400 
#define JE  400 
 
main () 
{ 
  double **hz, **dx, **dy; 
  double **ex, **ey, **ix, **iy; 
  double **sx, **sy; 
  float dummy1[JE], dummy2[JE], dummy3[JE]; 
  int l,n,i,j,ic,jc,nsteps, npml, npml1, lim1, lim2, switch1; 
  float ddx, dt, T, epsz, pi, epsilon, sigma, eaf, ddx2, B1, B2, C1; 
  float xn, xxn, xnum, xd, curl_e, curlh, gamma1, gamma2, gamma3, ddd; 
  float t0, pulse, w0, chi0, dchi0, wp2, ww, krl, epss, epsag; 
  float sigeps, chi1, photonenergy, www, kshft, indexs; 
  float gi1[IE], gi2[IE], gi3[IE]; 
  float gj1[JE], gj2[JE], gj3[JE]; 
  float fi1[IE], fi2[IE], fi3[IE]; 
  float fj1[JE], fj2[JE], fj3[JE]; 
  double **idx, **idy; 
  float pulseback, pulseey, factor1, factor3, pulseex; 
  FILE *fp, *fopen(); 
  FILE *fp1, *fp2; 
   
  hz=dmatrix(0,IE-1,0,JE-1); 
  dx=dmatrix(0,IE-1,0,JE-1); 
  dy=dmatrix(0,IE-1,0,JE-1); 
  sx=dmatrix(0,IE-1,0,JE-1); 
  sy=dmatrix(0,IE-1,0,JE-1); 
  ex=dmatrix(0,IE-1,0,JE-1); 
  ey=dmatrix(0,IE-1,0,JE-1); 
  ix=dmatrix(0,IE-1,0,JE-1); 
  iy=dmatrix(0,IE-1,0,JE-1); 
  idx=dmatrix(0,IE-1,0,JE-1); 
  idy=dmatrix(0,IE-1,0,JE-1); 
  ic= IE/2; 
  jc= JE/2; 
  lim1=220; 
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  lim2 = 230; 
  ddx = 0.000000002e14;       /* Cell size */ 
  dt = ddx/6e8;               /* Time steps */ 
  ddx2 = ddx*1e-5; 
  epsz = 8.8e-12; 
  pi = 3.14159; 
  w0 = 1.193; 
  ww = 2.5;             /* photon energy (eV) */ 
  www = ww*15.2013;     /* photon angular freq * 10^-14 */ 
  chi0 = 10942*dt - 9172*(1- exp(-1.193*dt)); 
  dchi0 = -11319*pow(1-exp(1.193*dt),2); 
  wp2 = 13054; 
  t0 = -1.193; 
  krl = 7.30102; 
  epss = 3.14947; 
  indexs = sqrt(epss); 
  kshft =  krl*0.00506708*ddx2; 
  epsag = -8.0315; 
  ddd = (lim2-lim1)*ddx2; 
  gamma1 = sqrt(krl*krl - epss*ww*ww) / 197.35; 
  gamma2 = sqrt(krl*krl - epsag*ww*ww) / 197.35; 
  gamma3 = sqrt(krl*krl - ww*ww)/ 197.35; 
  B1 = 0.5 * ((epss/epsag) + (gamma1/gamma2)); 
  B2 = 0.5 * ((epss/epsag) - (gamma1/gamma2)); 
  C1 = epsag*(B1*exp((gamma3+gamma2)*ddd)+B2*exp((gamma3-gamma2)*ddd)); 
  sigeps = t0*13054.; 
  chi1 = -1.*t0*t0*13052.; 
  factor1= exp(-gamma1*ddx2); 
  factor3= exp(-gamma3*ddx2); 
   
  /* initialize matricies */ 
  for ( j=0; j < JE; j++) { 
    /* printf( "%2d   ", j);       */ 
    for ( i=0; i< IE; i++ ) { 
      dx[i][j] = 0. ; 
      idx[i][j] = 0. ; 
      dy[i][j] = 0. ; 
      idy[i][j] = 0. ; 
      ex[i][j] = 0.; 
      ey[i][j] = 0.; 
      hz[i][j] = 0.; 
      ix[i][j] = 0.; 
      iy[i][j] = 0.; 
      sx[i][j] = 0.; 
      sy[i][j] = 0.; 
    /*  printf( "%5.2f ", ga[i][j]);     */ 
    } 
    /* printf( " \n");  */ 
  } 
   
  /* Calculate the PML Parameters */ 
   for (i=0; i<IE; i++ ) { 
    gi1[i] = 0.0; 



 138

    gi2[i] = 1.0; 
    gi3[i] = 1.0; 
    fi1[i] = 0.0; 
    fi2[i] = 1.0; 
    fi3[i] = 1.0; 
   } 
   for(j=0; j< JE; j++) { 
    dummy1[j] = 0.0; 
    dummy2[j] = 0.0; 
    dummy3[j] = 0.0; 
    gj1[j] = 0.0; 
    gj2[j] = 1.0; 
    gj3[j] = 1.0; 
    fj1[j] = 0.0; 
    fj2[j] = 1.0; 
    fj3[j] = 1.0; 
   } 
    
   printf( "Number of PML vert cells --> "); 
   scanf("%d", &npml); 
   printf( "Number of PML horizontal cells --> "); 
   scanf("%d", &npml1); 
    
   for( i= 0; i<= npml1; i++) { 
    /* xnum = npml - i; */ 
    xnum = npml1 - i; 
    xd = npml1+0.5 ; 
    xxn = xnum/xd; 
    xn = 0.1*pow(xxn, 2.0); 
    /* printf(" %d %7.4f %7.4f \n", i,xxn,xn); */ 
    /* gi1[i] = xn; */ 
    gi1[IE-1-i] = xn; 
    /* gi2[i] = 1.0/(1.0 + xn); */ 
    gi2[IE-1-i] = 1.0/ (1.0 + xn); 
    /* gi3[i] = (1.0 - xn)/(1.0+ xn); */ 
    gi3[IE-i-1] = (1.0 - xn)/(1.0+ xn); 
    /* printf(" %d %f %f %f\n", IE-1-i,gi1[IE-1-i],gi2[IE-1-i],gi3[IE-1-i]); */ 
   } 
   for( i= 0; i<= npml1; i++) { 
    xnum = npml1 - i + 0.5; 
    xd = npml1+0.5 ; 
    xxn = xnum/xd; 
    xn = 0.1*pow(xxn, 2.0); 
    /* fi1[i] = xn; */ 
    fi1[IE-1-i] = xn; 
    /* fi2[i] = 1.0/(1.0 +xn); */ 
    fi2[IE-1-i] = 1.0/(1.0 +xn); 
    /* fi3[i] = (1.0 - xn)/(1.0+xn); */ 
    fi3[IE-1-i] = (1.0 - xn)/(1.0+xn); 
    /* printf(" %d %f %f %f\n", IE-1-i,fi1[IE-1-i],fi2[IE-1-i],fi3[IE-1-i]);  */ 
   } 
    
   for(j=0; j<= npml; j++) { 
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    xnum = npml -j; 
    xd = npml+0.5; 
    xxn = xnum/xd; 
    xn = 0.33*pow(xxn, 3.0); 
    /* printf(" %d %7.4f  %7.4f \n", i, xxn,xn); */ 
    gj1[j] = xn; 
    fj1[JE-j-1] = xn; 
    gj2[j] = 1.0 / (1.0 + xn); 
    fj2[JE-j-1] = 1.0 / (1.0 + xn); 
    gj3[j] = (1.0 - xn)/(1.0 + xn); 
    fj3[JE-j-1] = (1.0 - xn)/(1.0 + xn); 
   } 
   for(j=0; j< npml; j++) { 
    xnum = npml -j+0.5; 
    xd = npml+0.5; 
    xxn = (xnum)/xd; 
    xn = 0.33*pow(xxn, 3.0); 
    fj1[j] = xn; 
    gj1[JE-1-j] = xn; 
    fj2[j] = 1.0/(1.0+xn); 
    gj2[JE-1-j] = 1.0/(1.0+xn); 
    fj3[j] = (1.0-xn)/(1.0 +xn); 
    gj3[JE-1-j] = (1.0-xn)/(1.0 +xn); 
   } 
    
   /* printf("gi + fi \n"); 
   for(i=0; i<IE; i++) { 
    printf( "%2d   %f   %5.2f   %5.2f \n", i, gi1[i], gi2[i], gi3[i]); 
    printf( "      %5.2f   %5.2f   %5.2f \n", fi1[i], fi2[i], fi3[i]); 
   }          */ 
    
   /* printf("gj + fj \n"); 
   for(j=0; j<JE; j++) { 
    printf( "%2d   %5.2f   %5.2f \n", j, gj2[j], gj3[j]); 
    printf( "      %5.2f   %5.2f   %5.2f \n", fj1[j], fj2[j], fj3[j]); 
   }       */ 
   
  /* t0 = 20.0;       */ 
  T = 0; 
  nsteps = 1; 
   
  /* initialize hard source input spatial function */ 
  /* dummy1 is for Hz, dummy2 is for Ey */ 
 for(j=npml;j<JE-npml;j++) { 
  dummy1[j] = 1; 
  dummy2[j] = 1; 
  dummy2[j] = 1; 
 } 
  /* for(j=npml+1; j < lim1;j++) { 
        dummy1[j] = epss*exp(gamma1*(j-lim1)*ddx2); 
        dummy2[j] = dummy1[j]*krl/(ww*epss); 
        dummy3[j] = -gamma1*epss*exp(gamma1*(j-lim1-0.5)*ddx2)*197.35/krl; 
  } 
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  dummy3[lim1] =-gamma1*epss*exp(-0.5*gamma1*ddx2)*197.35/krl; 
   
  for(j=lim1; j <= lim2; j++) { 
        dummy1[j] = epsag*(B1 * exp(gamma2*(j-lim1)*ddx2) + 
          B2*exp(-gamma2*(j-lim1)*ddx2)); 
        dummy2[j] = dummy1[j]*krl/(ww*epsag); 
        if(j>lim1) 
                dummy3[j] = -epsag*gamma2*197.35*(B1 * exp(gamma2* 
                (j-lim1-0.5)*ddx2)  
                -B2*exp(-gamma2*(j-lim1-0.5)*ddx2))/krl; 
  } 
  for(j = lim2+1; j < JE -npml; j++) { 
        dummy1[j] = C1*exp(-gamma3*(j-lim1)*ddx2); 
        dummy2[j] = dummy1[j]*krl/ww; 
        dummy3[j] = C1*exp(-gamma3*(j-lim1-0.5)*ddx2)*gamma3*197.35/krl; 
  }            */ 
  switch1 = 0; 
   
  while (nsteps >0) { 
    printf( "nsteps --> "); 
    scanf("%d", &nsteps); 
    printf("%d \n", nsteps); 
     
    for ( n=1; n <= nsteps; n++) { 
       T = T+1; 
       printf(" %f \n",T); 
    /*   ------- Start of the Main FDTD Loop ----------      */ 
 
     /* Put a Sinusoidal Source */ 
 
      pulse = exp(-pow(T/60,2))* sin(www*dt*T); 
      /* hz[ic][jc] = pulse;  */ 
      pulseback = exp(-pow(T/60,2))*sin(www*dt*T + kshft); 
      pulseey= exp(-pow((T+0.5)/60,2))*sin(www*dt*(T+0.5) - (kshft/2)); 
      pulseex = exp(-pow((T+0.5)/60,2))*sin(www*dt*(T+0.5)+(3.14159/2)); 
       
      for(j=0; j< JE; j++) { 
        hz[1][j] = pulse*dummy1[j]; 
      } 
 
    /* Calculate the Dx field */ 
    /* separates the known field from the scattered field in the j direction*/ 
      for ( j=0; j<JE-1; j++) { 
        for ( i = 0; i< IE-1; i++ ) { 
          if (j==JE-npml) 
              curlh = (hz[i][j+1]+hz[i][j]*factor3) - hz[i][j]; 
          else if (j==npml) 
              curlh =  hz[i][j+1] -(hz[i][j] +hz[i][j+1]*factor1); 
          else curlh = hz[i][j+1] - hz[i][j]; 
          idx[i][j] = idx[i][j] + gi1[i]*curlh; 
          dx[i][j] = gj3[j]*dx[i][j] + 
            gj2[j]*(0.5*curlh + idx[i][j]); 
              } 
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      } 
 
      /* Calculate the Dy field */ 
      /* Adds in the source hz field 1 point behind the real source */ 
      for ( j=0; j<JE; j++) { 
        for ( i = 0; i< IE-1; i++ ) { 
          if (i==0) curlh = -hz[i+1][j] + (pulse*dummy1[j] + hz[i][j]); 
          else curlh = -hz[i+1][j] + hz[i][j]; 
          idy[i][j] = idy[i][j] + fj1[j]*curlh; 
          dy[i][j] = fi3[i]*dy[i][j] + 
            fi2[i]*(0.5*curlh + idy[i][j]); 
        } 
      } 
       
      /* Calculate the Ex and Ey field from D field */ 
/*      for(j=1; j<=lim1;j++) { 
        for(i=1; i< IE-1; i++) { 
          ex[i][j] = dx[i][j]/epss; 
          ey[i][j] = dy[i][j]/epss; 
        } 
      } 
 
      for(j=lim1+1; j<=lim2;j++) { 
        for(i=1; i<IE-1; i++) { 
          ex[i][j] = (dx[i][j] - ix[i][j] - sx[i][j]*exp(-dt/t0))/ 
            (1+ sigeps*dt + chi1*dt/t0)   ; 
          ey[i][j] = (dy[i][j] - iy[i][j] - sy[i][j]*exp(-dt/t0))/ 
            (1+ sigeps*dt + chi1*dt/t0)  ; 
          iy[i][j] = iy[i][j] + sigeps*dt*ey[i][j]; 
          ix[i][j] = ix[i][j] + sigeps*dt*ex[i][j]; 
          sy[i][j] = exp(-dt/t0) * sy[i][j] + chi1*dt*ey[i][j]/t0; 
          sx[i][j] = exp(-dt/t0) * sx[i][j] + chi1*dt*ex[i][j]/t0; 
        } 
      } 
 
      for(j=lim2+1; j< JE-1; j++) { 
        for(i=1; i< IE-1;i++) { 
          ex[i][j] = dx[i][j]; 
          ey[i][j] = dy[i][j]; 
        } 
      }                                    */ 
      for(j=1; j<JE-1; j++){ 
         for(i=1;i<IE-1;i++){ 
          ex[i][j] = dx[i][j]; 
          ey[i][j] = dy[i][j]; 
         } 
      } 
      /* Add in the hard source E-field in both x and y directions */ 
      for(j=npml+1; j<JE-npml-1;j++) { 
          ex[1][j] = dummy3[j]*pulseex; 
          ey[1][j] = dummy2[j]*pulseey; 
      }     
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      /* printf(%3f   %6.2f \n", T, ez[ic][jc]); */ 
       
      /* Set the Ez edges to 0, as part of the PML */ 
      for( j = 0; j< JE-1; j++ ) { 
        ey[0][j] = 0.0; 
        ey[IE-1][j] = 0.0; 
        hz[0][j] = 0.0; 
        hz[IE-1][j] = 0.0; 
      } 
      for(i=0; i < IE-1; i++) { 
        ey[i][0] = 0.0; 
        ey[i][JE-1] = 0.0; 
        hz[i][0] = 0.0; 
        hz[i][JE-1] = 0.0; 
      } 
       
      /* Calculate the Hz field */ 
      /* subtracts out the source term */ 
      for( j=1; j< JE-1; j++) { 
        for ( i = 2; i < IE - 1; i++) { 
 /*         if (j==JE-npml-1) 
          { 
            if (i==1) curl_e = (ex[i][j+1]+ex[i][j]*factor3) 
               - ex[i][j] - 
              (ey[i+1][j]-pulseey*dummy2[j]) +ey[i][j] ; 
            else curl_e = (ex[i][j+1]+ex[i][j]*factor3) - 
               ex[i][j] -ey[i+1][j] +ey[i][j] ; 
          } 
          else if (j==npml -1) 
          { 
          if (i==1) curl_e = (ex[i][j+1]-ex[i][j+1]*factor1) 
               - ex[i][j] - 
              (ey[i+1][j]-pulseey*dummy2[j]) +ey[i][j] ; 
          else curl_e = (ex[i][j+1]-ex[i][j+1]*factor1) 
               - ex[i][j] -ey[i+1][j] +ey[i][j] ; 
          } 
          else 
          { */  if (i==1) curl_e = ex[i][j+1] - ex[i][j] - 
                 (ey[i+1][j]-pulseey*dummy2[j]) +ey[i][j] ; 
               else curl_e = ex[i][j] - ex[i][j-1] -ey[i][j] +ey[i-1][j] ; 
         /* } */ 
          hz[i][j] = gi3[i]*fj3[j]*hz[i][j] 
            + gi2[i]*fj2[j]*0.5* curl_e ; 
        } 
      } 
 
    } 
    /*   ------ end of the main FDTD loop ------- */ 
     
    /* for( j=1; j<jc; j++)  { 
      printf( "%2d   ",j); 
      for( i = 1; i<ic; i++ ) { 
        printf( "%5.2f ", ez[2*i][2*j]); 
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      } 
      printf( " \n"); 
    } */ 
    printf("t = %5.0f \n", T); 
     
    /* write the Hz field out to a file "Hz" */ 
    fp = fopen( "Hz", "w"); 
    for( j= 0; j < JE; j++) { 
      for(i=0; i < IE; i++) { 
        fprintf( fp, "%6.3f ", hz[i][j]); 
      } 
      fprintf(fp, " \n"); 
    } 
    fclose(fp); 
 
  /* write the Ex field out to a file "Ex" */ 
    fp1 = fopen( "Ey", "w"); 
    for( j= 0; j < JE; j++) { 
      for(i=0; i < IE; i++) { 
        fprintf( fp1, "%6.3f \n", ey[i][j]); 
      } 
      /* fprintf(fp, " \n");  */ 
    } 
    fclose(fp1); 
     
    /* write hz field enveloppe out to a file "dummy" */ 
    fp2 = fopen( "dummy", "w"); 
    for( j= 0; j < JE; j++) { 
        fprintf( fp2, "%6.3f \n", dummy1[j]); 
      } 
    fclose(fp2); 
  } 
} 
 
double **dmatrix(long nrl, long nrh, long ncl, long nch) 
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */ 
{ 
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
double **m; 
/* allocate pointers to rows */ 
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); 
/* if (!m) nrerror("allocation failure 1 in matrix()");    */ 
m += NR_END; 
m -= nrl; 
/* allocate rows and set pointers to them */ 
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
/* if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    */ 
m[nrl] += NR_END; 
m[nrl] -= ncl; 
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
/* return pointer to array of pointers to rows */ 
return m; 
} 
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