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ABSTRACT OF THE DISSERTATION

High-Impedance Electromagnetic Surfaces

By

Daniel Frederic Sievenpiper

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 1999

Professor Eli Yablonovitch, Chair

A new type of metallic electromagnetic structure has been developed that is characterized

by having high surface impedance. Although it is made of continuous metal, and

conducts DC currents, it does not conduct AC currents within a forbidden frequency

band. Unlike normal conductors, this new surface does not support propagating surface

waves, and it reflects electromagnetic waves with no phase reversal. The geometry

consists of a metal sheet, textured with a two-dimensional lattice of resonant elements,

which act as a two-dimensional filter to prevent the propagation of electric currents. The

surface can be described using a lumped parameter circuit model, which accurately

predicts many of its electromagnetic properties. This unique material is applicable to a

variety of electromagnetic problems, including new kinds of low-profile antennas.
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1 Introduction

In some situations, the presence of electric conductors can have consequences that

adversely affect the performance of electromagnetic devices, particularly those involving

radio communication. Conductive surfaces are useful as reflectors, but they reverse the

phase of reflected waves. They also support propagating surface waves, which can have

deleterious effects on antenna performance. One can compensate for these properties, but

this adds additional geometric constraints, often resulting in a design that is less than

optimum.

By applying a special texture to a conducting surface, it is possible to alter its

surface properties. [1] Made of solid metal, the structure conducts DC currents, but over a

particular frequency range, it does not conduct AC currents. This new surface is

characterized by having high electromagnetic surface impedance. It does not reverse the

phase of reflected waves, and the image currents appear in-phase, rather than out-of-

phase as they are on normal conductors. Furthermore, propagating surface waves are not

supported. Instead, radio-frequency currents on the surface radiate efficiently into free

space. This high-impedance surface provides a useful new ground plane for novel low-

profile antennas, and other electromagnetic structures.

1.1 Electric Conductors

While a conductive surface is a good reflector, it has the unfortunate property of

reversing the phase of reflected waves. Good conductors forbid internal electric fields,

and continuity across the metal/air boundary forces the tangential electric field at the
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surface to zero. When an electromagnetic wave impinges on a conductor, the reflected

wave experiences a phase reversal to ensure that the electric field has a node at the

surface. Likewise, the magnetic field has an antinode at the surface.

A flat metal sheet is used in many antennas as a reflector, or ground plane. [2]

The presence of a ground plane redirects half of the radiation into the opposite direction,

improving the antenna gain by 3dB, and partially shielding objects on the other side.

Unfortunately, if the antenna is too close to the conductive surface, the phase of the

impinging wave is reversed upon reflection, resulting in destructive interference with the

wave emitted in the other direction. This is equivalent to saying that the image currents in

the conductive sheet cancel the currents in the antenna, resulting in poor radiation

efficiency. Figure 1.1.1 depicts an antenna in close proximity with a flat, conducting slab.

The antenna is effectively shorted out by the metal surface, and negligible radiation is

emitted.

 

Figure 1.1.1 An antenna lying flat against a ground plane

This problem is solved by including a one-quarter wavelength space between the

radiating element and the ground plane, as shown in Figure 1.1.2. The total round trip
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phase shift from the antenna, to the surface, and back to the antenna, equals one complete

cycle, and the waves add constructively. The antenna radiates efficiently, but the entire

structure requires a minimum thickness of λ/4.

 

Figure 1.1.2 An antenna separated by 1/4 wavelength from the ground plane

Another property of metals is that they support surface waves.[3, 4] These are

propagating electromagnetic waves that are bound to the interface between metal and free

space. They are called surface plasmons at optical frequencies, [5] but at microwave

frequencies, they are nothing more than the normal AC currents that occur on any electric

conductor. If the conductor is smooth and flat, the surface waves will not couple to

external plane waves. However, they will radiate if scattered by bends, discontinuities, or

surface texture. Bound surface waves do not exist on an ideal “perfect electric conductor”

since, in the limit of infinite conductivity, the fields associated with surface currents

extend an infinite distance into space.

An example of a TM surface wave propagating across a metal slab is shown in

Figure 1.1.3. The magnetic field is transverse to the direction of propagation, associated
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with longitudinal currents flowing on the conductor. The electric field is linked to charge

separation on the top of the conductor, and it jumps out of the surface in loops. The

charges oscillate, and the wave propagates along the surface at nearly the speed of light.

At optical frequencies, these surface plasmons are highly localized to the air/metal

interface. At microwave or radio frequencies, the electromagnetic fields extend many

thousands of wavelengths into the surrounding space, and these waves are described

more appropriately as surface currents.

 

Figure 1.1.3 A TM surface wave propagating across a metal slab

Surface waves appear in many situations involving antennas. If an antenna is

placed near a metal sheet, such as a reflector or ground plane, it will radiate plane waves

into free space, but it will also generate currents that propagate along the sheet. On an

infinitely large ground plane, the surface currents would be evident only as a slight

reduction in radiation efficiency. In reality, the ground plane is always finite in size, and

these currents propagate until they reach an edge or corner. Any break in the continuous

translational symmetry of the smooth, flat surface allows the currents to radiate. The

result is a kind of multipath interference or “speckle”, illustrated in Figure 1.1.4, which

can be seen as ripples in the far field radiation pattern. Moreover, if multiple antennas
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share the same ground plane, surface currents can cause unwanted mutual coupling

between them.

 

Figure 1.1.4 Multipath interference due to surface waves on a ground plane

1.2 High Impedance Surfaces

By incorporating a special texture on a conductor, it is possible to alter its radio-

frequency surface properties. In the limit where the period of the surface texture is much

smaller than the wavelength, the structure can be described using an effective medium

model, and its qualities can be summarized into a single parameter, the surface

impedance. This boundary condition defines the ratio of the tangential electric field to the

tangential magnetic field at the surface. It is the same impedance given by Ohm’s law:

the ratio of the voltage to the current along the sheet, expressed in Ohms/square. A

smooth conducting sheet has low surface impedance, while with a specially designed

geometry, the textured surface can have high surface impedance.

Figure 1.2.1 Cross-section of a high-impedance surface
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A high-impedance surface, shown in cross section in Figure 1.2.1, consists of an

array of metal protrusions on a flat metal sheet. They are arranged in a two-dimensional

lattice, and are usually formed as metal plates, connected to the continuous lower

conductor by vertical posts. They can be visualized as mushrooms or thumbtacks

protruding from the surface. An example of a top view is shown in Figure 1.2.2. The

hexagonal metal patches are raised above the surface, and the dots in the center are

vertical connecting posts.

Figure 1.2.2 Top view of the high-impedance surface

If the protrusions are small compared to the wavelength, their electromagnetic

properties can be described using lumped circuit elements – capacitors and inductors. The

proximity of the neighboring metal elements provides the capacitance, and the long

conducting path linking them together provides the inductance. They behave as parallel

resonant LC circuits, which act as electric filters to block the flow of currents along the
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sheet. An equivalent circuit is shown below in Figure 1.2.3. This is the origin of the high

electromagnetic surface impedance.

Figure 1.2.3 An equivalent circuit for the high-impedance surface

Because of its unusual impedance, the surface wave modes on this structure are

very different from those on a smooth metal sheet. It can support tightly bound, radio

frequency TM modes that propagate much more slowly than the speed of light. It can also

support TE modes that are bound to the surface at some frequencies, but radiate readily at

other frequencies. In TE surface waves, the electric field is tangential to the surface, and

to the propagation direction, while the magnetic field extends out of the sheet in loops.

They resemble the TM surface waves described earlier, but with the electric and magnetic

fields exchanged, as shown in Figure 1.2.4.

Figure 1.2.4 A TE surface wave propagating across a high-impedance surface

In the frequency range where the surface impedance is very high, the tangential

magnetic field is small, even with a large electric field. Such a structure is sometimes

described as a “magnetic conductor”. This is a mathematical idea that is used in certain
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electromagnetics problems, but does not exist in reality. Having high impedance and

being nearly lossless, this new surface can be regarded as a kind of magnetic conductor,

over a certain frequency range.

Figure 1.2.5 A flush-mounted dipole on a high-impedance ground plane

Because of this unusual boundary condition, the high-impedance surface can

function as a unique new type of ground plane for low-profile antennas. For example, a

simple dipole lying flat against a high-impedance ground plane, shown in Figure 1.2.5, is

not shorted out as it would be on an ordinary metal ground plane. The high-impedance

surface reflects all of the power just like a metal sheet, but it reflects in-phase, rather than

out-of-phase, allowing the radiating element to be directly adjacent to the surface. In

other words, the direction of the image currents results in constructive, rather than

destructive interference, allowing the antenna to radiate efficiently. Furthermore, in a

forbidden frequency band, the high-impedance ground plane does not support freely

propagating surface currents, resulting in an improved radiation pattern.
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2 Surface Waves

Surface waves can be illustrated in several different ways. In optics, they are

called surface plasmons. They also exist at radio frequencies, where they are simply

called surface currents. One way to derive their properties is to solve for waves that decay

exponentially away from a dielectric interface. We find that such waves only exist on

materials with a non-positive dielectric constant, such as metals. The same waves can be

found by starting from the viewpoint that a material can be assigned an effective surface

impedance. In the case of a metal, the surface impedance is determined by the skin depth.

We find that the skin depth is equivalent to the surface wave penetration depth, and thus,

surface waves are nothing more than ordinary surface currents, which are well

understood at radio frequencies. MKSA units will be used throughout this discussion.

2.1 Dielectric Interfaces

Figure 2.1.1 A surface wave on an interface between two dissimilar media.

Surface waves can occur on the interface between two dissimilar materials, such

as metal and free space. To derive the properties of surface waves on a general interface,

begin with two materials having different dielectric constants, 1ε  and 2ε . [4, 6] The
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surface is in the YZ plane, with material 1 extending in the +X direction, and material 2

in the –X direction, as shown in Figure 2.1.1.

For a wave to be bound to the surface, assume it decays in the +X direction with

decay constant α, and in the –X direction with decay constant γ. Consider first a TM

surface wave, for which Ey=0. The electric field in material 1 has the following form, in

which the factor tje ω  is implicit.

xjkz
z

y

xjkz
x

eBE

0E

eAE

α−−

α−−

⋅=

=
⋅=

Equation 2.1.1

In material 2, the electric field has the same form, given below.

xjkz
z

y

xjkz
x

eDE

0E

eCE

γ+−

γ+−

⋅=

=
⋅=

Equation 2.1.2

Here, A, B, C, and D are constants. Recall the following from Maxwell’s equations.

t

B
E

t

E

c
B

2
r

∂
∂

−=×∇

∂
∂ε

=×∇

v
v

v
v

Equation 2.1.3

These can be combined to yield the equation below.
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2

2

2

2

r
t

E

c
E

∂

∂ω
ε−=×∇×∇

v
v

Equation 2.1.4

This can be expanded explicitly, bearing in mind that the Y derivative of the electric field

on both sides is zero.

( )zx2

2

2
z

2
x

2
z

2

2
x

2
EẑEx̂

cx

E

zx

E
ẑ

zx

E

z

E
x̂ +

ω
ε=











∂

∂
−

∂∂
∂

+










∂∂
∂

+
∂

∂−

Equation 2.1.5

By inserting Equation 2.1.1 into Equation 2.1.5, we obtain equations for the fields above

the surface.

B
c

BAjk

A
c

BjkAk

2

2

1
2

2

2

1
2

ω
ε=α−α

ω
ε=α+

Equation 2.1.6

Similarly, by inserting Equation 2.1.2 into Equation 2.1.5, we obtain equations for the

fields below the surface.

D
c

DCjk

C
c

DjkCk

2

2

2
2

2

2

2
2

ω
ε=γ−γ−

ω
ε=γ−

Equation 2.1.7

Finally, the tangential electric field and the normal electric displacement must be

continuous across the interface, as specified by the following boundary conditions.
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DB

CA

21 ε=ε
=

Equation 2.1.8

We can combine Equation 2.1.6, Equation 2.1.7, and Equation 2.1.8 to solve for the wave

vector, k, and the decay constants, α and γ.

c
k

21

21 ω
ε+ε

εε
=

Equation 2.1.9

c21

2
1 ω
ε+ε

ε−
=α

Equation 2.1.10

c21

2
2 ω
ε+ε

ε−
=γ

Equation 2.1.11

These equations describe surface waves on a general interface between two dissimilar

dielectric materials. For simplicity, assume that one of the materials is free space, 11 =ε .

Dropping the subscript from 2ε , we obtain the following results.

c1
k

ω
ε+

ε
=

Equation 2.1.12

c1

1 ω
ε+

−
=α

Equation 2.1.13
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c1

2 ω
ε+

ε−
=γ

Equation 2.1.14

From these equations, it can be seen that TM surface waves do not exist on non-

conductive, dielectric materials. If ε is positive, then α and γ are imaginary, and the

waves do not decay with distance from the surface; they are simply plane waves

propagating through the dielectric interface. On the other hand, if ε is less than –1, or if it

is imaginary, the solution describes a wave that is bound to the surface. These TM

surface waves can occur on metals, or other materials with non-positive dielectric

constants. The properties of surface waves under various conditions will be explored in

the following sections.

The solution for TE surface waves can be obtained from the foregoing analysis by

the principle of duality. [2] If the electric and magnetic fields are exchanged, and µ is

substituted for ε, the solution above can be applied to the TE case.

2.2 Metal Surfaces

The effective, relative dielectric constant of a metal can be expressed in the

following form. [6]

0

j
1

ωε
σ

−=ε

Equation 2.2.1

σ is the conductivity, which is given by the equation below.
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ωτ+
τ

=σ
j1

m/nq2

Equation 2.2.2

τ is the mean electron collision time, q is the electron charge, and m and n are the

effective mass and the density, respectively, of the conduction electrons.

For frequencies much lower than 1/τ, which includes the microwave spectrum,

the conductivity is primarily real, and much greater than unity, so the dielectric constant

is a large, imaginary number. Inserting Equation 2.2.1 into Equation 2.1.12 leads to a

simple dispersion relation for surface waves at radio frequencies.

 
c

k
ω

≈

Equation 2.2.3

Thus, surface waves propagate at nearly the speed of light in vacuum, and they travel for

many wavelengths along the metal surface with little attenuation. By inserting Equation

2.2.1 into Equation 2.1.13, we can find an expression for α, the decay constant of the

fields into the surrounding medium.

)j1(
2c

j
2

1

c

0

0

−
σ

ωεω
≈α

ωε
σ

−

−ω
=α

Equation 2.2.4

For good conductors at microwave frequencies, the surface waves extend a great distance

into the surrounding space. For example, on a copper surface, the electromagnetic fields
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associated with a 10 GHz surface wave extend about 70 meters, or 2300 wavelengths into

free space. Hence, at microwave frequencies they are often described simply as surface

currents, rather than surface waves. These surface currents are nothing more than the

normal AC currents that occur on conductors in any electromagnetics problem.

We can also determine γ, the surface wave penetration depth into the metal. By

inserting Equation 2.2.1 into Equation 2.1.14, we obtain the following equation.

δ
+

=
σωµ

+≈γ

ωε
σω

=ε−
ω

≈
ε+

ε−ω
=γ

)j1(

2
)j1(

j

cc1c

0

0

2

Equation 2.2.5

The skin depth, δ, is defined by the expression below. [3]

σωµ
=δ

0

2

Equation 2.2.6

Thus, the surface currents penetrate only a very small distance into the metal. For

example, at 10 GHz, the skin depth of copper is less than one micron.

From the skin depth, we can derive the surface impedance of a flat metal sheet.

The current and the electric field decay exponentially into the metal with a decay constant

of γ. From Equation 2.2.5, we can write an equation for the current in terms of the skin

depth, in which E0 is the electric field at the surface.



16

δ+−σ=σ= /)j1(x
0zz eE)x(E)x(J

Equation 2.2.7

The magnetic field at the surface is found by integrating around a path surrounding the

thin surface layer of current, extending far into the metal beyond the skin depth.

0
0

z0 E
j1

dx)x(JH
+
σδ

== ∫
∞

Equation 2.2.8

Thus, the surface impedance of a flat metal surface is derived.

σδ
+

==
j1

H

E
Z

y

z
s

Equation 2.2.9

The surface impedance has equal positive real and positive imaginary parts, so the

resistance of a metal surface is accompanied by an equal amount of inductance.

At higher frequencies, the dielectric constant of a metal takes a different form.

When the frequency is much greater than 1/τ, the inverse collision time, the dielectric

constant given in Equation 2.2.1 may be approximated as follows.

2

2
p

1
ω

ω
−≈ε

Equation 2.2.10

The plasma frequency, pω , is the highest frequency to which the conduction electrons

are able to respond, and it is given by the expression below.
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m

nq

0

2

p ε
=ω

Equation 2.2.11

Above pω , which is usually in the ultraviolet range, the electrons cannot follow applied

electric fields, so the metal is transparent to electromagnetic waves.

At optical frequencies, the dielectric constant is a negative real number. Surface

waves, often called surface plasmons, propagate just below the speed of light. Inserting

Equation 2.2.10 into Equation 2.1.12, we find that surface waves are cut off for

frequencies above 2/pω . The dispersion curve bends over flat, as shown in Figure

2.2.1, and the surface plasmons have a very high density of states.

Figure 2.2.1 Dispersion diagram for optical surface plasmons on metals

Optical-frequency surface plasmons can be detected in several ways. For

example, high-energy electrons launched through a thin metal film lose energy in

multiples of the surface plasmon frequency. They can also be seen as a narrow-band dip

in the optical reflectivity of metals. Although plasmons on a smooth surface cannot
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couple to plane waves in free space, a small amount of roughness can facilitate phase

matching between external plane waves and surface waves.

2.3 Impedance Surfaces

Figure 2.3.1 shows the geometry used for computing surface impedance. For an

electromagnetic field above a surface of width w and length l, the current in the surface

is equal to the magnetic field integrated around the surface.

Figure 2.3.1 A rectangular area used for computing surface impedance

wHI y ⋅=

Equation 2.3.1

The voltage across length l is given by the electric field at the surface.

l⋅= zEV
Equation 2.3.2

The surface impedance can be defined as the ratio of the electric field over the magnetic

field at the surface.







==
l

w

I

V

H

E
Z

y

z
s

Equation 2.3.3
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The factor of w/l is taken as unity, and the surface impedance defined this way is the

same as that given by Ohm’s law, expressed in Ohms/square.

Figure 2.3.2 A surface wave propagating on an arbitrary impedance surface

The surface wave behavior can be derived for a general impedance surface. [3, 4]

Assume a surface in the YZ plane with impedance Zs. A surface wave propagates in the

+Z direction, with fields decaying in the +X direction. The geometry of the problem is

shown in Figure 2.3.2.

For TM surface waves, 0EHH yzx === . Assume that the fields diminish in the

X direction with decay constant α, and travel along the Z direction with propagation

constant k. Start with the Z component of the electric field.

xjkz
z CeE α−−=

Equation 2.3.4

yH  can be derived from the Ampere’s law.

t

E
H

∂
∂

ε=×∇
v

v

Equation 2.3.5

Writing out the derivatives explicitly, and taking into account the three field components

that are known to be zero, we obtain the following expression.
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x

H
Ej

y
z ∂

∂
=ωε

Equation 2.3.6

Equation 2.3.6 is solved with Equation 2.3.4.

xjkz
y Ce

j
H α−−

α
ωε−

=

Equation 2.3.7

The surface impedance in this coordinate system is equal to the following expression.

y

z
s H

E
Z =

Equation 2.3.8

Inserting Equation 2.3.4 and Equation 2.3.7 into Equation 2.3.8 gives the required surface

impedance for TM surface waves.

ωε
α

=
j

)TM(Zs

Equation 2.3.9

It is clear that TM waves only occur on a surface with positive reactance – an inductive

surface impedance.

We can also determine the impedance required for TE surface waves. We use the

same geometry as shown in Figure 2.3.2, and assume that the electric field is entirely

transverse, oriented along the Y direction. The magnetic field forms loops that emerge

from the surface in the XZ plane. Complimentary to the TM waves, assume the following

form for the magnetic field.
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xjkz
z CeH α−−=

Equation 2.3.10

We can solve for yE  using Faraday’s law.

t

H
E

∂
∂

µ−=×∇
v

v

Equation 2.3.11

Writing out the derivatives of the non-zero fields gives the equation below.

z
y

Hj
x

E
ωµ−=

∂

∂

Equation 2.3.12

Equation 2.3.12 is solved with Equation 2.3.10.

xjkz
y Ce

j
E α−−

α
ωµ

=

Equation 2.3.13

To obtain the correct sign for the surface impedance, it is important to consider

the right hand rule, and the vector nature of the fields. The impedance of a surface is

taken to be the ratio of the electric and magnetic fields, with an orientation that is

consistent with a wave impinging on the surface from the outside. This convention

ensures that an absorbing surface will have positive resistance, while a surface with

reflective gain will have negative resistance. Thus, the surface impedance seen by TE

waves is given by the following expression.

z

y
s H

E
Z

−
=

Equation 2.3.14
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The difference between the TM and the TE case can be understood by remembering that

in both situations, the signs are such that an incident plane wave would be absorbed. The

TE case has Ey polarization, and the TM case has Ez polarization. The presence of the

negative sign can be understood by imagining a rotation of the coordinate system around

the X axis:

YZ

ZY

−→
→

Equation 2.3.15

Following this convention, the surface impedance for TE waves is given below.

α
ωµ−

=
j

)TE(Zs

Equation 2.3.16

Thus, a negative reactance – a capacitive surface impedance, is necessary to support TE

surface waves.
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3 Textured Surfaces

As we have seen in the previous chapter, metals support surface waves over a

broad range of frequencies, spanning from DC up to visible light. These surface waves

can be eliminated over a finite frequency band by applying a periodic texture, such as a

lattice of small bumps. As surface waves scatter from the rows of bumps, the resulting

interference prevents them from propagating, producing a two-dimensional

electromagnetic bandgap.

By engineering the geometry of the surface texture, the period can be made much

smaller than the wavelength of the surface waves. Such a structure can be described using

an effective medium model, in which the surface is assigned an impedance that can

predict many of its electromagnetic properties. As an example, this method will be used

to analyze the simple case of a one-dimensional corrugated metal surface.

The high-impedance surface is an abstraction of the corrugated surface, in which

the corrugations have been folded up into lumped circuit elements, and distributed in two

dimensions. The surface impedance is that of a parallel resonant circuit, which can be

tuned to exhibit high impedance over a predetermined frequency band.

3.1 Bumpy Surfaces

Consider the evolution from a flat metal sheet to a nearly flat conductor covered

with a two-dimensional lattice of small bumps. [7, 8] Surface waves are allowed, as they

are on normal metals. When the wavelength is much longer than the period of two-

dimensional lattice, the surface waves hardly notice the small bumps. As the wavelength
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is reduced, the waves begin to feel the effects of the surface texture. When one-half

wavelength fits between the rows of bumps, this corresponds to the Brillouin zone

boundary [9] of the two-dimensional lattice. At this wavelength, a standing wave on the

surface can have two possible positions: with the wave crests centered on the bumps, or

with the nulls centered on the bumps, as shown in Figure 3.1.1. These two modes have

slightly different frequencies, separated by a small band gap within which surface waves

cannot propagate.

Figure 3.1.1 A bumpy metal sheet with a narrow surface wave band gap

This surface has been studied at optical frequencies by Barnes, Kitson, and others

[7, 8] using a triangular lattice of bumps, patterned on a silver film. The period of the

bumps was 300 nm, and the thickness of the film was 40 nm. The structure effectively

suppressed surface plasmons within a 5% bandwidth, centered at 1.98 eV. The surface

would have similar behavior at microwave frequencies, if it were scaled about 10,000

times larger.

Small bumps only provide a narrow bandwidth because they represent only a

small perturbation of the flat metal surface. As the bumps are enlarged, the band gap
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increases. The evolution from the bumpy surface to the high-impedance surface is shown

in Figure 3.1.2.

Figure 3.1.2 Evolution from a bumpy surface to a high impedance surface

As the bumps are stretched toward each other, like mushrooms or thumbtacks

standing up on the surface, the electric field is localized to the narrow separation between

them. As this separation becomes smaller, significant capacitance develops between

neighboring protrusions. The currents traverse a long path as they slosh back and forth

between the metal elements, providing inductance to the circuit. The structure acts as a

kind of electric filter that prevents the propagation of currents on the surface.

3.2 Corrugated Surfaces

The high-impedance surface can be understood by examining a similar structure,

the corrugated surface, which is discussed in various textbooks, [3, 4] and review articles.

[10, 11] Numerous authors have also contributed general treatments of corrugated

surfaces, [12, 13, 14] and specific studies of important structures. [15, 16, 17, 18] A
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corrugated surface is a metal slab, into which a series of vertical slots have been cut, as

depicted in Figure 3.2.1. The slots are narrow, so that many of them fit within one

wavelength across the slab. Each slot can be regarded as a parallel-plate transmission

line, running down into the slab, and shorted at the bottom.

Figure 3.2.1 A corrugated metal slab

If the slots are one-quarter wavelength deep, then the short-circuit at the bottom

end is transformed by the length of the slot into an open-circuit at the top end, and the

impedance at the top surface is very high. This can be shown by assuming a sinusoidal

wave traveling down a transmission line to a discontinuity positioned at x=0, as shown in

Figure 3.2.2.  Part of the wave is reflected by the discontinuity, forming a standing wave,

consisting of forward, f, and backward, b, running waves.

jkx
b

jkx
f

jkx
b

jkx
f

eHeH)x(H

eEeE)x(E

−

−

+=

+=

Equation 3.2.1

The boundary condition at X=0 is the impedance, Z.
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Z
)0x(H

)0x(E

total

total =
=
=

Equation 3.2.2

Figure 3.2.2 A transmission line terminated at X=0 by an impedance, Z

The negative sign is present in the denominator because of the direction of the field

vectors for waves propagating in each direction. The fields in each running wave are

related by the impedance of the waveguide, η.

η==
)x(H

)x(E

)x(H

)x(E

b

b

f

f

Equation 3.2.3

If the discontinuity is a short, as in the case of the corrugated surface, then Z=0, and

according to Equation 3.2.2 the electric field is reversed on reflection.

)0(E)0(E fb −=
Equation 3.2.4

The magnetic field is also reversed for the backward wave. Combining Equation 3.2.1,

Equation 3.2.3and Equation 3.2.4, yields the impedance as a function of distance from the

short.
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Equation 3.2.5

If there are many slots per wavelength, the top surface can be assigned an

effective sheet impedance equal to the impedance of the slots. The behavior of the

corrugations is reduced to a single parameter – the boundary condition at the top surface.

We have already derived the surface wave properties of an impedance surface. If the

depth of the slots, d, is greater than one-quarter wavelength, the tangent function is

negative, and TM surface waves are cut off. Since TE surface waves are shorted by the

continuous metal ridges, they only propagate along the Y-direction. Furthermore, a plane

wave polarized with the electric field perpendicular to the ridges will appear to be

reflected with no phase reversal, since the effective reflection plane is actually at the

bottom of the slots, one-quarter wavelength away.

Corrugated surfaces have appeared in a variety of forms. Kildal [17, 18] identified

the one-dimensional corrugated sheet as a soft surface, by analogy to acoustic boundary

conditions. Lee and Jones [15] analyzed a two-dimensional corrugated surface

resembling a lattice of rectangular metal pipes, and derived the surface wave dispersion

relation for such a structure.

3.3 High-Impedance Surfaces

The properties of the new high-impedance surface are similar to those of the

corrugated slab. The quarter-wavelength slots have simply been folded up into lumped
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elements – capacitors and inductors – and distributed in two dimensions. Periodic two or

three-dimensional dielectric, [19, 20, 21, 22, 23,] metallic, [24, 25, 26, 27] or

metallodielectric [28, 29, 30, 31, 32] structures that prevent the propagation of

electromagnetic waves are known as photonic crystals. [33, 34, 35] The high-impedance

surface can be considered as a kind of two-dimensional photonic crystal that prevents the

propagation of radio-frequency surface currents.

Figure 3.3.1 Origin of the equivalent circuit elements

The two-dimensional array of resonant elements can be viewed as a kind of

electric filter, and many of its properties can be explained using a simple circuit model.

The capacitance is due to the proximity of the top metal patches, while the inductance

originates from current loops within the structure, as shown in Figure 3.3.1. The

electromagnetic properties of the surface can be reduced to an equivalent LC circuit,

shown in Figure 3.3.2.

Figure 3.3.2 Equivalent circuit model for the high-impedance surface
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LC1

Lj
Z

2ω−

ω
=

Equation 3.3.1

The impedance of a parallel resonant LC circuit, given in Equation 3.3.1, is

qualitatively similar to the tangent function that describes the impedance of the

corrugated surface. It is inductive at low frequencies, and thus supports TM surface

waves. It is capacitive at high frequencies, and supports TE surface waves. In a narrow

band around the LC resonance, the impedance is very high. In this frequency range,

currents on the surface radiate very efficiently, and the structure suppresses the

propagation of both types of surface waves. Having high surface impedance, it also

reflects external electromagnetic waves without the phase reversal that occurs on a flat

conductor. By using lumped elements, we retain the reflection phase and surface wave

properties of the quarter-wave corrugated slab, while reducing the overall thickness to a

small fraction of a wavelength.
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4 Fabrication

The high-impedance surface can be easily fabricated using printed circuit board

technology. The simplest design is a two-layer structure, consisting of a double-sided

circuit board with metal patches on one side, connected by metal vias to a solid

conducting sheet on the other side. The capacitace comes from the fringing electric fields

between adjacent patches, while the inductance depends on the thickness of the board.

The resonance frequency is determined by LC1 , so it can be reduced for a given size

structure by capacitive loading. [24] This is accomplished in a three-layer design, in

which the capacitors are formed by overlapping metal plates on two different layers.

Other construction techniques may provide even higher capacitance. However, as

we will see in Chapter 5, the bandwidth is related to CL , so increasing the capacitance

also reduces the bandwidth. The techniques described below can provide bandwidths

ranging from a few percent to nearly a full octave, with center frequencies ranging from

hundreds of megahertz to tens of gigahertz.

4.1 Two-Layer Structure

Fabrication of a two-layer structure begins with a flat plastic sheet, usually a few

millimeters thick, with several hundred microns of electrodeposited copper on each side,

as shown in Figure 4.1.1. In this design, the capacitors use fringing electric fields, which

extend into the surrounding dielectric. For this reason, the plastic is often a low-loss,

teflon-based material such as Duroid, available from Rogers Corporation.
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Figure 4.1.1 Copper clad dielectric circuit board material

The first step in the fabrication is to drill the vias, which form the vertical

connections between the two layers, as shown in Figure 4.1.2.

Figure 4.1.2 Holes drilled to define the locations of the vertical connections

An electroless process is used to apply a thin metal coating to the inside of the vias. The

entire structure is then electroplated with copper to thicken the metal coating.

Figure 4.1.3 Plated copper forming vertical interconnections

The copper is covered with photoresist, and one side of the circuit board is patterned and

etched. The other side is left as continuous metal.

Figure 4.1.4 Metal patches defined by etching
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Thus, in the final structure, the top layer is covered with metal patches, which are

shorted to the bottom layer, consisting of a solid metal sheet. A perspective view of the

metal regions, without the dielectric, is shown for a typical structure in Figure 4.1.5.

Figure 4.1.5 Perspective view of a two-layer printed circuit board

4.2 Three-Layer Structure

The two-layer circuit boards described above rely on the capacitance of fringing

fields between neighboring metal patches. Higher capacitance can be achieved by using a

three-layer design, in which two metal layers are separated by a very thin insulator. The

fabrication begins with two separate plastic sheets, each covered on both sides with

electrodeposited copper as shown in Figure 4.2.1.

Figure 4.2.1 Materials for fabricating a three-layer printed circuit board
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The thin layer is often Kapton polyimide film, available from DuPont, which is a

standard material for making flexible printed circuits. It is currently available as thin as

50 microns, and has low loss, making it suitable for capacitors. Since the electric field is

primarily concentrated in the polyimide capacitors, the thick, lower layer can be made of

a lossier material such as FR4, a standard thermoset laminate used for printed circuit

boards. The lower layer is typically several millimeters thick, depending on the frequency

and bandwidth desired.

In the fabrication of multilayer circuit boards, the standard practice is to pattern

the inner metal layers first, and then bond them together before drilling. In this design,

the metal is completely etched away from the top of the thick, lower sheet, while the

bottom of the thin, upper layer is patterned and etched as shown in Figure 4.2.2.

Figure 4.2.2 Inner layers patterned by etching

The two sheets are bonded together with an adhesive under heat and pressure,

forming a single circuit board with an inner layer of patterned copper.

Figure 4.2.3 Two sheets bonded with an adhesive
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The structure is then drilled and plated with copper, as was done on the two-layer circuit

board.

Figure 4.2.4 Plated vias forming interconnects between all three layers

Finally, the top layer is patterned with metal patches and etched, while the bottom layer is

left as continuous metal.

Figure 4.2.5 Top layer patterned by etching

In one example, the metal elements are arranged in a hexagonal array, shown in

perspective view in Figure 4.2.6.

Figure 4.2.6 Perspective view of a three-layer printed circuit board
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5 Effective Medium Model

Many properties of the high-impedance surface can be explained using an

effective medium model. The structure is assigned a surface impedance equal to the

impedance of a parallel resonant LC circuit, whose properties are derived from geometry.

The use of lumped parameters to describe electromagnetic structures is valid as long as

the wavelength is much longer than the size of the individual features. This is also the

range of applicability of effective medium theory.

The capacitance in this model comes from the fringing electric field between

adjacent metal plates in the two-layer design, or from the overlapping plates in the three-

layer design. The inductance comes from the currents in the ground plane, and in the top

capacitive layer. This effective circuit model is able to accurately predict the reflection

phase, as well as some of the surface wave properties.

5.1 Circuit Parameters

Figure 5.1.1 Cross-section of a simple two-layer high-impedance surface

A cross-section of the structure is shown in Figure 5.1.1 above. As the structure

interacts with electromagnetic waves, currents are induced in the top metal plates. A

voltage applied parallel to the surface causes charge buildup on the ends of the plates,

which can be described as a capacitance. As the charges slosh back and forth, they flow

around a long path through the vias and the bottom plate. Associated with these currents
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is a magnetic field, and thus an inductance. The origin of the capacitance and inductance

are illustrated in Figure 5.1.2.

Figure 5.1.2 Origin of the capacitance and inductance in the effective circuit model

The behavior of the structure can be reduced to a parallel resonant circuit, shown

in Figure 5.1.3. The appropriate values to use for the model are not the capacitance and

inductance of the individual elements, but rather the sheet capacitance and sheet

inductance. These depend on the value of each element, as well as their arrangement.

Figure 5.1.3 Effective circuit used to model the surface impedance

For the two-layer structures, the value of each capacitor is given by the fringing

capacitance between neighboring co-planar metal plates. This can be derived using

conformal mapping, a common technique for solving two-dimensional electrostatic field

distributions. [3] A solution can be found for a pair of semi-infinite plates separated by a

gap, g, with an applied voltage, V, as shown in Figure 5.1.4.
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Figure 5.1.4 A pair of semi-infinite plates separated by a gap

From the theory of conformal mapping, the electric flux function for this geometry is

described by the following function.


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Equation 5.1.1

The capacitance is actually infinite, and the field decays nearly logarithmically with

distance away from the gap. In our geometry, the plates end at point a/2, as in Figure

5.1.5.

Figure 5.1.5 Capacitor geometry in the two-layer high-impedance surface
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If a>>g, we can estimate the capacitance by simply terminating ψ in Equation 5.1.1 at the

ends of the plates. The flux ending on one plate is approximated by the expression below.
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Equation 5.1.2

Assume the plates have width, w, and the structure is surrounded by 1ε  on one side, and

2ε  on the other. The flux ending on one plate is equal to the charge on that plate, which

is equal to the product of the capacitance and the voltage across the plates. The edge

capacitance between the two plates is therefore given the following expression.
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Equation 5.1.3

For the three-layer circuit board, the capacitance is given by the well-known

formula for a parallel plate capacitor. A is the overlap area of the plates, and they are

separated by a distance, d, of dielectric constant, ε.

d

A
C

ε
=

Equation 5.1.4

The sheet capacitance is the product of the individual capacitance and a geometrical

factor. The sheet capacitance can be determined by considering a thin slab of dielectric,

as shown in Figure 5.1.6. An electric field is applied tangentially along the slab, and we

wish to find the effective sheet capacitance. The slab can be divided into narrow slices of
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thickness, x. The slab itself has thickness, d, and we consider the total capacitance in an

arbitrary region of length, l, and width, w.

Figure 5.1.6 A slab of dielectric divided into slices

Considering that the electric field is applied in the direction perpendicular to the

slices, the capacitance of a single slice is as follows.

x

dw
C

ε
=

Equation 5.1.5

There are l/x slices in series contained in length l, so the total capacitance is equal to the

expression below.







ε=
l

w
dCtotal

Equation 5.1.6

The factor of w/l can be normalized out, and we are left with the sheet capacitance in

units of Farads-square.
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dCsheet ε=
Equation 5.1.7

Next, insert metal plates to form discrete, vertical capacitors. The period of the plates is

designated as a.

Figure 5.1.7 Capacitor plates embedded in the dielectric slab

The value of each capacitor is given by the following expression.

d

aw
C

ε
=

Equation 5.1.8

There are l/a series capacitors in length l, so the total capacitance is now given by the

equation below.







ε

=
l

w

d

a
C

2

total

Equation 5.1.9

Finally, we obtain the sheet capacitance in Farads-square.

d

a
C

2

sheet
ε

=

Equation 5.1.10
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In effect, the dielectric constant of the thin sheet has been enhanced by the insertion of

the metal regions.

2

2

eff
d

a
⋅ε=ε

Equation 5.1.11

The sheet capacitance given in Equation 5.1.10 includes only the length, a, of the

individual capacitor plates and the thickness, d, of the dielectric insulator. Each plate

could be divided into smaller widths without affecting the normalized capacitance-square

of an area, so the width is not important. Conversely, the length of the plates is very

important, since it affects the number of capacitors in series per unit distance. It is

desirable to use all of the area in the two-dimensional lattice in order to get a large

capacitance, but this area can be divided in various ways. The sheet capacitance is

greatest if long, thin capacitors are used instead of short, wide capacitors. This point will

be illustrated further in Chapter 10.

The inductance of a single, flat, conductive surface is extremely small. In fact, we

have seen in Chapter 2 that the reactance of a metal surface is equal to its resistance,

which is usually much less than one ohm per square. In the high-impedance surface, the

inductance is much greater because of the conductive loops below the top layer,

consisting of the vias, and both metal sheets. Figure 5.1.8 shows a solenoid of current

with area l⋅t , and width, w. The current around the outside is I, and the magnetic field

through the solenoid is H. This geometry is equivalent to the current path in the high-

impedance surface, consisting of rows of vias and metal plates.
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Figure 5.1.8 A solenoid of current used to calculate the sheet inductance

The magnetic field through the solenoid is determined by the current flowing around the

outside.

w

I
H =

Equation 5.1.12

The energy stored in an inductor is equal to the energy stored in its magnetic field.

∫ ⋅µ=
vol

2 dv)HH(LI

Equation 5.1.13

This yields the inductance in the solenoid.







µ=

w
tL

l

Equation 5.1.14

For the sheet inductance in Henrys/square, the factor of l/w can be taken as unity. Thus,

the sheet inductance depends only on the thickness of the structure and the permeability.

tLsheet µ=
Equation 5.1.15
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We assign to the surface a sheet impedance equal to the impedance of a parallel

resonant circuit, consisting of the sheet capacitance and sheet inductance.

LC1

Lj
Z

2ω−

ω
=

Equation 5.1.16

The impedance of a parallel resonant circuit is shown in Figure 5.1.9. It is inductive at

low frequencies, and capacitive at high frequencies. The impedance crosses through

infinity at the resonance frequency, given by the expression below.

LC

1
0 =ω

Equation 5.1.17

Figure 5.1.9 Impedance of a parallel resonant circuit
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5.2 Reflection Phase

The surface impedance determines the boundary condition at the surface for a

standing wave formed by the incident and reflected waves. For a surface in the YZ plane,

the surface impedance seen by waves impinging on the surface from the X direction is

equal to the following expression.

y

z
s H

E
Z =

Equation 5.2.1

As shown earlier, this is equivalent to Ohm’s law. If the surface has very low impedance,

such as in the case of a good conductor, the ratio of electric field to magnetic field is very

small. The electric field has a node at the surface, and the magnetic field has an antinode.

For a high impedance surface, the ratio in Equation 5.2.1 is very high, so the electric field

has an antinode at the surface, while the magnetic field has a node. Another term for such

a surface is a “magnetic conductor”, because the tangential magnetic field at the surface

is zero.

We can determine the reflection phase from an arbitrary impedance surface by

considering the standing wave formed by a forward running wave impinging on the

surface, and a backward running wave reflected from it. The fields of the standing wave

have the following form.

jkx
b

jkx
f

jkx
b

jkx
f
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eEeE)x(E

+=

+=
−

−

Equation 5.2.2
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The boundary condition at the surface, x=0, is given by the surface impedance.

s
total

total Z
)0x(H

)0x(E
=

=
=

Equation 5.2.3

The electric and magnetic fields of each running wave are related by the impedance of

free space.

η=
ε
µ

==
0

0

b

b

f

f

)x(H

)x(E

)x(H

)x(E

Equation 5.2.4

The reflection phase is the phase difference between the backward and forward running

waves.
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Equation 5.2.5

Combining this with Equation 5.2.3 and Equation 5.2.4 gives the reflection phase of a

surface with impedance Zs.
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s
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lnIm

Equation 5.2.6

When Zs is low, the reflection phase is π± . When Zs is very high, the reflection phase is

zero. The phase crosses through 2/π±  when Zs is equal in magnitude to the impedance

of free space. Inserting Equation 5.1.16, we can plot the reflection phase of the high

impedance surface. Typical parameters for a two-layer ground plane are 2 nH/square of
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inductance, and 0.05 pF-square of capacitance. For these values, the reflection phase is

plotted in Figure 5.2.1. The results are very similar to the measured reflection phase for a

two-layer high-impedance surface with these circuit parameters.

Figure 5.2.1 Reflection phase calculated using the effective circuit model

5.3 Losses

Although this surface has high impedance, it should not be confused with a lossy

surface. The impedance is almost entirely reactive, with only a very small resistive part

due to dielectric and conduction losses. Appropriate material losses can be included in the

model to simulate real metals and real dielectrics. The dielectric loss is added as an

imaginary component in the capacitance, obtained from the loss tangent supplied by the

manufacturer. For Kapton polyimide film, the loss tangent is 3103 −× . The conduction
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losses in the upper and lower sheets of metal are added as a resistor in series with the

inductor. For copper at 15 GHz, with a  skin depth of 0.5 µm the sheet resistance is

square/102.3 2 Ω× − . This number is doubled because two copper surfaces contribute to

the resistance. Inserting this resistance and the dielectric loss tangent into the circuit

model gives the actual surface impedance, including the real part, which is plotted below.

Figure 5.3.1 Surface impedance, including dielectric and conductive losses

Notice that the impedance is almost entirely imaginary, except in a narrow region

near resonance. The reflection magnitude from a surface with this impedance is shown in

Figure 5.3.2. It is clear that the total absorption is very small – the surface reflects nearly

100% of the incident power. For antenna applications, the performance is more than

adequate.
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Figure 5.3.2 Reflection magnitude, including dielectric and conductive losses

Although the material loss is small, it is multiplied by the Q of the structure. If the

bandwidth is greatly reduced, and lossier dielectric materials are used in the capacitive

layer, then the absorption can be more significant. Furthermore, if an antenna is operated

outside the surface wave band gap, they may cause additional losses. Surface waves

spend much more time inside the materials that make up the structure as they propagate

for long distances along the surface, so material losses are likely to be more significant

for surface waves.

5.4 Surface Waves

We have previously derived the dispersion relation for surface waves on a flat

metal surface. Now, we will derive the dispersion relation for surface waves on the high-
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impedance ground plane, in the effective medium limit. Using the expressions for surface

waves on an impedance surface, derived in Section 2.3, we can determine the dispersion

relation for both TM and TE waves in the context of this effective medium model. Begin

with the following Maxwell’s equations.

t

H
E

∂
∂

µ−=×∇
v

v

Equation 5.4.1

t

E
H

∂
∂

ε=×∇
v

v

Equation 5.4.2

For TM surface waves, assume that the Z component of the magnetic field is as follows.

xjkz
z CeE α−−=

Equation 5.4.3

In the above equation, C is a constant. We write out the derivatives of Equation 5.4.1 and

Equation 5.4.2 explicitly, taking into account the three field components that are known

to be zero for TM waves. Assume that the surface is surrounded by free space with

0ε=ε  and 0µ=µ .

x

H
Ej

y
z0 ∂

∂
=ωε

Equation 5.4.4
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∂−
=ωε

Equation 5.4.5
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Equation 5.4.6

Solving Equation 5.4.4 with Equation 5.4.3 gives

xjkz0
y Ce

j
H α−−

α
ωε−

=

Equation 5.4.7

Similarly, Equation 5.4.5 gives

xjkz
x Ce

jk
E α−−

α
−

=

Equation 5.4.8

Inserting the above results along with Equation 5.4.3 into Equation 5.4.6, we can find an

expression relating k, α, and ω.

22
00

2k α+ωεµ=
Equation 5.4.9

This represents the dispersion relation for TM surface waves, but the same expression

applies to TE surface waves. It is equivalent to stating the total wave vector as a sum of

its components, as shown below.

2
z

2
y

2
x

2
00 kkk ++=ωεµ

Equation 5.4.10

Combine Equation 5.4.9 with the impedance that we derived for TM surface waves,

which is restated here for convenience.
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Equation 5.4.11

We can eliminate α to find an equation for k as a function of ω.
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Equation 5.4.12

In the above expression, η is the impedance of free space, and c is the speed of light in

vacuum.

We can find a similar expression for TE waves by beginning with the equation we

derived earlier for the TE surface impedance, which is restated here.

α
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= 0
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Equation 5.4.13

Combining this with Equation 5.4.9 gives the dispersion equation for TE surface waves.
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Equation 5.4.14

Using the effective circuit impedance, Equation 5.1.16, in Equation 5.4.12 and

Equation 5.4.14, we can plot the dispersion diagram for surface waves. Typical values for

the sheet capacitance and sheet inductance of a two-layer structure are 0.05 pF-square,

and 2 nH/square, respectively. For this example, the dispersion diagram is plotted in

Figure 5.4.1. The present analysis is limited to waves that are bound to the surface.

Shortly, we will also consider leaky waves.

Figure 5.4.1 Dispersion diagram for bound surface waves, lying below the light line

Below resonance, TM surface waves are supported. At low frequencies, they lie

very near the light line, and the fields extend many wavelengths beyond the surface, as
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they do on ordinary metals. This can be seen mathematically in Equation 5.4.9. When k is

very near 00µεω , then α is very small, so when the dispersion curve is near the light

line, the surface waves extend far into space. Near the resonant frequency, the surface

waves are tightly bound to the sheet, and have a very low group velocity, as seen by the

fact that the dispersion curve is bent over, away from the light line. In the effective

medium limit, the graph extends on to infinitely large wave vectors, and the TM

dispersion curve approaches the resonance frequency asymptotically. The graph in Figure

5.4.1 has been terminated at the point where the Brillouin zone boundary would be for a

structure with typical dimensions. No attempt has been made to include the periodicity in

the effective medium limit, so the termination of the graph is artificial in this model.

Above the resonance frequency, the surface is capacitive, and TE waves are

supported. The lower end of the dispersion curve is close to the light line, and the waves

are weakly bound to the surface, extending far into the surrounding space. As the

frequency is increased, the curve bends away from the light line, and the waves are more

tightly bound to the surface. The slope of the dispersion curve indicates that the waves

feel an effective index of refraction that is greater than unity. This is because a significant

portion of the electric field is concentrated in the capacitors. As we have seen earlier in

Equation 5.1.11, the effective dielectric constant of a material is enhanced if it is

permeated with capacitor-like structures.

Notice that in the effective medium model, there is actually no band gap. The TM

dispersion curve continues all the way up to the resonance frequency, while the TE curve

begins at the resonance frequency. However, the structure does in fact have a band gap,
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which has been seen in measurements, and in numerical calculations of the dispersion

curves. Its absence here is one of the limitations of the effective medium model. The

electromagnetic band gap becomes a frequency band of very high surface impedance in

the effective medium limit, as will be illustrated shortly.

5.5 Radiation Bandwidth

An antenna lying parallel to the textured surface will see the impedance of free

space on one side, and the impedance of the ground plane on the other side. Far from the

resonance frequency, where the textured surface has low impedance, the antenna current

is mirrored by an opposing current in the surface. The antenna is shorted out by the

nearby conductor, and the radiation efficiency is very low. Near resonance, the textured

surface has much higher impedance than free space, so the antenna is not shorted out. In

this range of frequencies, the radiation efficiency is high.

Although the surface exhibits high impedance, it is not actually devoid of current.

If there were no current, electromagnetic waves would be transmitted right through the

ground plane. However, the resonant structure provides a phase shift, so the image

currents in the surface reinforce the currents in the antenna, instead of canceling them.

Figure 5.5.1 A horizontal antenna above a ground plane
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Figure 5.5.1 shows a horizontal antenna above a ground plane. The electric field

is parallel to the antenna, and to the ground plane, while the magnetic field encircles the

antenna. Imagine a simpler problem in which the antenna is abstracted to a sheet of

current just above the ground plane. [36] The electromagnetic radiation is due to the

superposition of the antenna current and the image current.

radiationimageantenna HII +=

Equation 5.5.1

The radiated magnetic field is linked to the electric field by the impedance of free space,

H=E/η. The image current in the surface is given by I=E/Z. Substituting these

expressions into Equation 5.5.1, the antenna can be described by an equivalent circuit,

shown in Figure 5.5.2

η
+=

E

Z

E
I

Equation 5.5.2

Figure 5.5.2 An antenna shunted by a textured surface

We can determine the frequency range over which the radiation efficiency is high

by using a circuit model, in which the antenna is modeled as a current source. The
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textured surface is modeled as an LC circuit in parallel with the antenna, and the radiation

into free space is modeled as a resistor with a value of Ω=εµ 37700 . The amount of

power dissipated in the resistor is a measure of the radiation efficiency of the antenna.

The maximum power dissipated in the resistor occurs at the LC resonance

frequency of the ground plane, where the surface impedance crosses through infinity. At

very low frequencies, or at very high frequencies, the current is shunted through the

inductor or the capacitor, and the power flowing to the resistor is reduced. It can be

shown from Equation 5.5.2 that the frequencies where the radiation drops to half of its

maximum value occur when the magnitude of the surface impedance is equal to the

impedance of free space.
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Equation 5.5.3

L is usually on the order of 1 nH, C is in the range of 0.05-10 pF, and η=377 Ω. With

these values, the terms involving 22C/1 η  are much smaller than the 1/LC terms, so we
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will eliminate them. This approximation yields the following expression for the edges of

the operating band.

η
±ω=ω

η
±=ω

η
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Equation 5.5.4

The resonance frequency is LC/10 =ω , and C/LZ0 =  is a kind of characteristic

impedance of the surface. With the parameters for L, C, and η given above, 0Z is usually

significantly smaller than η. Thus, the square root can be expanded in the following

approximation.
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Equation 5.5.5

The two frequencies designated by the +/- signs delimit the range over which an antenna

would radiate efficiently on such a surface. Finally, the total bandwidth is roughly equal

to the characteristic impedance of the surface divided by the impedance of free space.
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.W.B

Equation 5.5.6
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This is also the bandwidth over which the reflection coefficient falls between +π/2

and −π/2, and image currents are more in-phase than out-of-phase. It represents the

maximum usable bandwidth of a flush-mounted antenna on a resonant surface of this

type. We have found experimentally that the surface wave band edges occur where the

reflection phase is equal to 2/π± , so this also corresponds to the width of the surface

wave band gap.

5.6 Leaky Waves

According to the effective medium model, the TM band begins at DC, and

continues up to the resonance frequency for very large wave vectors. The TE band begins

at the resonance frequency, and continues up with a slope that is less than the speed of

light. However, the model described above only involves waves that are bound to the

surface, and therefore lying below the light line. This gives the peculiar result that the TE

band begins at a finite wave vector, branching out of the light line at the resonance

frequency. The TE waves that lie to the left of the light line exist as radiative, leaky

waves, and appear only when radiation is included in the model.

Following the method of the previous section, the radiation from these leaky TE

modes is modeled as a resistor in parallel with the high-impedance surface. By definition

of a normal mode, it must exist in the absence of an inhomogenious driving current.

Therefore, the driving current must disappear from Figure 5.5.2, and the equivalent

circuit is shown in Figure 5.6.1. The circuit equations are satisfied at a frequency
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LC/1=ω . Therefore, the leaky modes that exist to the left of the light line can be

represented by a horizontal line at the resonance frequency, illustrated in Figure 5.6.2.

Figure 5.6.1 Circuit for modeling the radiation of leaky TE waves

The presence of radiation damping tends to blur the resonance frequency, so the

leaky waves actually radiate within a finite bandwidth. The damping resistance is the

impedance of free space, projected onto the surface according to the angle of radiation.

Small wave vectors represent radiation perpendicular to the surface, while wave vectors

near the light line represent radiation at glancing angles. For a TE polarized plane wave,

the magnetic field, H, projected on the surface at angle, θ , with respect to normal is

( )θ=θ CosH)(H 0 , while the electric field is just 0E)(E =θ . The impedance of free

space, as seen by the surface for radiation at an angle, is given by the following

expression.
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0
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=
θ
θ

=θ

Equation 5.6.1

Thus, the radiation resistance is 377Ω for small wave vectors and normal

radiation, but the damping resistance approaches infinity for wave vectors near the light

line. Infinite resistance in a parallel circuit corresponds to no damping, so the radiative



61

band is reduced to zero width for grazing angles near the light line. This is shown in

Figure 5.6.2, in which the high-impedance, radiative region is shown as a shaded area,

representing the blurring of the leaky waves by radiation damping. In place of a band

gap, the effective medium model produces a frequency band of high surface impedance.

Figure 5.6.2 Complete dispersion diagram, including leaky modes

5.7 Fundamental Limitations

The resonance frequency is given by LC1=ω , so it can be lowered by

increasing either the inductance or the capacitance. The sheet inductance, L=µt, depends

on the thickness of the structure, as well as the permeability. Since low-loss, high-

permeability materials do not currently exist at microwave frequencies, the inductance is
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fixed by the thickness. Thus, the only way to lower the resonance frequency for a given

thickness is to use capacitive loading.

The relative bandwidth, ∆ω/ω, is proportional to CL , so if the capacitance is

increased, the bandwidth suffers. Since the thickness is related to the inductance, the

more the resonance frequency is reduced for a given thickness, the more the bandwidth is

diminished. It would appear that a structure has a certain “natural frequency” that

depends on the thickness, and that the bandwidth is related to the ratio of the actual

resonance frequency to this natural frequency. This is suggested by the equation below.
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Equation 5.7.1

The natural frequency is easily calculated.
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Equation 5.7.2

In the above equation, c is the speed of light in vacuum, while rµ  and t are the

relative magnetic permeability and the thickness, respectively, of the material filling the

lower, inductive part of the structure, as shown in Figure 5.7.1. Since the dielectric
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constant does not appear in Equation 5.7.2, the bulk of a three-layer structure can be

filled with a low-dielectric material without affecting frequency or bandwidth. In the two-

layer structures, in which the capacitance is determined by the fringing electric fields,

which extend into the lower dielectric material, Equation 5.7.1 is still satisfied, but the

dielectric constant influences ωnatural.

Figure 5.7.1 Cross-section of one unit cell of a three-layer high-impedance surface
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6 Finite Element Model

The model described in the previous chapter is an effective medium approach, in

which the properties of the surface are summarized into a single parameter, the surface

impedance. This approach can be used when the periodicity of the structure is much less

than the electromagnetic wavelength. The effective medium model correctly predicts the

reflection properties of the high-impedance surface. However, it does not predict an

actual band gap. Instead, it predicts a high-impedance, radiative region that corresponds

roughly to the measured band gap.

Numerical methods exist that are more accurate for modeling structures of this

type, in which the periodicity is not infinitesimally small. One such approach is the finite

element method, employed by Zhang [37] in the UCLA Electrical Engineering

department, to model a two-layer structure with a square lattice. This technique can give

an accurate description of the surface wave bands by explicitly including the geometry of

the metal and dielectric regions, as well as the periodicity.

6.1 Surface Waves

In the finite element method, the metal and dielectric regions of one unit cell are

discretized on a grid. The electric field at all points on the grid can be reduced to an

eigenvalue equation, which may be solved numerically. Bloch boundary conditions are

used, in which the fields at one edge of the cell are related to the fields at the opposite

edge by the wave vector. The calculation yields the allowed frequencies for a certain
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wave vector, and the procedure is repeated for each wave vector to produce the

dispersion diagram. The structure studied was a two-layer, high-impedance surface with

square geometry, shown in Figure 6.1.1 The lattice constant was 2.4mm, the spacing

between the plates was 0.15mm, and the width of the vias was 0.36mm. The volume

below the square plates was filled with ε=2.2, and the total thickness was 1.6mm.

Figure 6.1.1 Geometry studied using the finite element method.

The results of the finite element calculation are shown in Figure 6.1.2. According

to the finite element model, the TM band follows the light line up to a certain frequency,

where it suddenly becomes very flat. The TE band begins at a higher frequency, and

continues upward with a slope of less than the speed of light in vacuum, which is

indicated by a dotted line. These results agree qualitatively with the effective medium

model. The finite element method also predicts the higher-frequency bands that are seen

in the measurements, but do not appear in the effective medium model. A second gap that

was measured on the hexagonal structure appears on the square structure studied here, but

only in the X-direction.
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Figure 6.1.2 Surface wave band structure for a two-layer, high-impedance surface

According to the more accurate finite element model, the TM band does not reach

the TE band edge as it does in the effective medium model, but stops slightly below it.

Furthermore, the TE band slopes upward before crossing the light line, without the kink

that appears in the effective medium model. Thus, the finite element model predicts a

surface wave band gap that spans from the edge of the TM band, to the point where the

TE band crosses the light line. If a resonance frequency is associated with the point where

the TE band has zero wave vector, the width of the band gap is roughly equally

distributed on either side of the resonance frequency.

In both the TM and TE bands, the k=0 state represents a sheet of current that is

continuous in space. The lowest TM mode, at zero frequency, is a sheet of DC current.
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The highest TM mode, at the Brillouin zone edge, is a standing wave in which each row

of metal protrusions has opposite charge.

The lowest TE mode is a sheet of current that is continuous in space, but

oscillating at the LC resonance frequency. Since the wavelength along the surface is

infinite, this mode occurs at the origin of k-space, k=0. The TE band slopes smoothly

upward in frequency, crossing through the light line at some point. The slope is less than

the speed of light, indicating that the TE waves interact significantly with the capacitors.

At the highest TE mode, at the Brillouin zone boundary, transverse currents flow in

opposite directions on each row of protrusions.

In the upper bands, the electric field is primarily concentrated in the region below

the capacitor plates. The modes in these bands resemble the modes in a parallel plate

waveguide, and begin at the frequency where one-half wavelength fits between the rows

of metal vias.

6.2 Leaky Waves

In order for a surface wave to couple to a plane wave in free space, phase

matching must occur along the interface. For any surface wave lying below the light line,

the wave vector along the surface exceeds that of an external plane wave of the same

frequency, as shown in Figure 6.2.1. Since no plane wave can achieve phase matching,

the surface wave is prevented from radiating, and is therefore stable.

Conversely, any surface wave that lies above the light line can radiate energy

away by coupling to external plane waves, as shown in Figure 6.2.2. The short wave
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vector along the surface is easily matched to a plane wave of the same frequency. Such

modes are not strictly surface waves, but rather radiatively unstable, leaky waves. Thus,

they have an imaginary frequency component.

Figure 6.2.1 A bound surface wave, for which phase matching is impossible

Figure 6.2.2 Phase matching to a leaky wave

A small region of Figure 6.1.2 has been enlarged in Figure 6.2.3, in which the

imaginary part of the frequency is plotted as an error bar on each data point of the TE

band. The TE modes lying to the left of the light line are radiative, leaky modes, as

indicated by the complex frequency. The TM band lies entirely below the light line, and

therefore does not radiate. There are upper bands that exist above the light line, but their

radiation properties are not known.
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Figure 6.2.3 Calculation of leaky waves, illustrated by error bars

6.3 Vertical Connections

Zhang has also calculated the same structure without the vertical conducting vias.

The band diagram for this structure is shown in Figure 6.3.1. The TE surface waves are

unaffected by the absence of the vias, and appear similar to the TE waves on the original

structure. However, the TM waves are no longer terminated below the resonance

frequency, as they were when the vias were present, and there is no band gap. The TM

curve continues upward with a slope of slightly less than the speed of light. Therefore,

the presence of the vertical connecting vias is critical for the suppression of TM surface

waves, and the creation of a forbidden band.
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Figure 6.3.1 Surface wave band diagram in the absence of conducting vias
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7 Measuring Surface Properties

Techniques have been developed for measuring various properties of

electromagnetic surfaces. The presence of surface wave modes is detected in the

transmission between two antennas positioned near the surface. These antennas can be

simple monopole probes, or they can be specifically designed to efficiently launch

surface waves. By varying the polarization of the antennas, one can distinguish between

TM and TE modes. The measurements on the textured surface indicate a frequency band

in which there are no propagating surface waves.

The reflection phase can be measured using a pair of horn antennas directed

toward the surface. The phase of the reflected wave is measured with respect to a surface

with known reflection properties, such as a flat metallic  surface. Within the surface wave

band gap, the textured surface reflects in-phase, rather than out-of-phase.

7.1 TM Surface Waves

Since surface waves cannot generally couple to external plane waves, specialized

methods must be used to measure them. At optical frequencies, surface plasmons are

often studied using a technique called prism coupling. [7] A prism is placed next to the

surface, and the refractive index of the prism is used to match the wave vector of a probe

beam to that of a surface wave. Another method for coupling to surface waves, which is

more practical at microwave frequencies, is to use a very small probe. A point source

launches all wave vectors, so a small antenna brought near the surface is capable of
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coupling to surface wave modes. Various types of antennas can be used for this purpose,

and the antenna geometry can be tailored to distinguish surface wave polarization.

In TM surface waves, the electric field forms loops that extend vertically out of

the surface. TM waves can be measured using a pair of small monopole antennas oriented

normally with respect to the surface, as shown in Figure 7.1.1. The vertical electric field

of the probe couples to the vertical electric field of the TM surface waves.

Figure 7.1.1 TM surface wave measurement using monopole probe antennas

 For improved signal, a flared parallel-plate waveguide structure, pictured in

Figure 7.1.2, functions as a more effective TM surface wave antenna. This type of

antenna is built from a triangular piece of microwave circuit board material, with copper

cladding on both sides. The upper and lower copper surfaces are soldered to the inner and

outer conductors of a coaxial cable. The triangular part functions as a parallel-plate

waveguide. A wave is launched between the plates from the coaxial cable at the narrow

end, and spreads out to a flat wave front at the wide end. This structure provides a smooth

transition between the mode in the coaxial cable and the surface wave mode, producing a

stronger transmission signal than the small monopole.
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Figure 7.1.2 TM surface wave measurement using flared parallel-plate waveguides

On a flat metal sheet, a TM surface wave measurement produces the results

shown in Figure 7.1.3. The surface under test was a 25 cm square sheet of flat metal. The

measurement represents the transmission between a pair of monopole probes oriented

vertically at the edges of the metal sheet.

Figure 7.1.3 TM surface wave transmission data on a flat metal surface

The data has variations of 10-15 dB, but remains relatively flat over a broad

spectrum. The variations are produced by multipath interference, or speckle, which
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occurs in coherent measurements whenever multiple signal paths are present. Multipath

interference can be distinguished from other effects because it is characterized by narrow-

band fading, whose details depend on the exact antenna position. The transmission drops

off at low frequencies because the small probes are inefficient at exciting long

wavelengths.

Figure 7.1.4 TM surface wave transmission data on a textured surface

A typical TM surface wave measurement on a textured surface is shown in Figure

7.1.4. The size of the sheet and the measurement technique were the same as those used

for the flat metal surface. The structure consisted of a triangular array of hexagonal

patches, with a period of 2.54 mm and a gap between the patches of 0.15 mm. The

thickness of the board was 1.55 mm, and the dielectric constant was 2.2.

The transmission is strong at low frequencies, and exhibits the same multipath

interference seen on the metal surface. At 11 GHz, the transmission drops by about
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30 dB, indicating the edge of the TM surface wave band. Beyond this frequency, the

transmission level remains low and flat, eventually sloping upward at much higher

frequencies because of weak coupling to TE surface waves. The TE band edge is not

apparent in this measurement, but the region corresponding to the surface wave band gap

is indicated on the graph with an arrow.

7.2 TE Surface Waves

In TE surface waves, the electric field is parallel to the surface, and the magnetic

field forms vertical loops that arc out of the surface. They can be measured with a pair of

small monopole probes oriented parallel to the sheet, as shown in Figure 7.2.1. The

horizontal electric field of the antenna couples to the horizontal electric field of the TE

waves. Since this configuration lacks the symmetry of the vertical monopole, there will

be much greater cross-coupling to TM waves, that may complicate the measurement.

Figure 7.2.1 TE surface wave measurement using monopole probe antennas

Another antenna for measuring TE surface waves is a small loop, shown in Figure

7.2.2.. This type of probe can be constructed as a small wire loop connecting the two
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conductors of a coaxial cable. The plane of the loop is parallel to the surface, creating a

vertical magnetic field that couples to the magnetic field of TE surface waves.

Figure 7.2.2 TE surface wave measurement using small loop antennas

On a flat metal surface, a TE surface wave measurement produces no significant

signal, because any antenna that excites TE waves is shorted out on a conducting surface.

It is only on the textured surface, with its unusual surface impedance, and tightly bound

TE modes, that significant transmission signal levels can be obtained.

The measurement shown in Figure 7.2.3 was taken using a pair of small straight-

wire coaxial probes, oriented parallel to the high-impedance surface. A similar profile is

obtained if magnetic loop probes are used. The transmission is weak at low frequencies,

and strong at high frequencies, the reverse of the TM data. A sharp jump of 30 dB occurs

at 17 GHz, indicating the TE band edge. Beyond this frequency, the transmission is flat,

with only small fluctuations due to speckle. The TE probes also couple slightly to TM

surface waves, so there is an additional transmission peak at 11 GHZ, at the TM band

edge, where the density of TM states is high. Both TM and TE probes tend to couple

slightly to both surface wave polarizations. However, the cross-coupling is weaker
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between the TM probe and the TE surface waves because of the symmetry of the vertical

monopole.

Figure 7.2.3 TE surface wave transmission data on a textured surface

A surface wave band gap exists between the TM band edge at 11 GHz and the TE

band edge at 17 GHz. Within this range, neither type of measurement produces

significant transmission. Currents cannot propagate across the surface, and any currents

induced in the surface radiate rapidly into free space.

7.3 Reflection Phase

The reflection phase of the high-impedance surface can be measured using two

microwave horn antennas, as shown in Figure 7.3.1. A single antenna can also be used,

but the data contains much more interference because of radiation trapped between the

horn and the ground plane. The measurement is done in an anechoic chamber lined with
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microwave absorbing foam. The two horns are placed next to each other, aimed at the

surface. Two windows are cut in the chamber, one for the antennas, and one for the

surface under test.

Figure 7.3.1 Reflection phase measurement using a pair of horn antennas

A reference measurement is taken of a surface with known reflection properties,

such as a sheet of metal, and all subsequent measurements are divided by this reference.

The metal surface is then removed from the chamber and replaced by the surface under

test. When performing phase measurements, the surface under test must be placed in

exactly the same location as the reference metal surface, because variations in path length

would create an additional phase shift. A factor of π is added to the phase data to account

for the reference scan of the metal sheet, which is known to have a reflection phase of π.

The reflection phase of the high impedance surface is shown in Figure 7.3.2. At

low frequencies, it reflects with a π phase shift, just like a metal surface. As the

frequency is increased, the phase slopes downward, and eventually crosses through zero

at the resonance frequency of the structure. At higher frequencies, the phase continues to
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slope downward, and eventually approaches -π. Within the region between +π/2 and

−π/2, indicated on the graph by arrows, plane waves are reflected in-phase, rather than

out-of-phase as occurs on a smooth metal surface. This range also corresponds to the

surface wave band gap, indicated on the graph by a shaded region, with the TM and TE

band edges falling approximately at the points where the phase crosses through +π/2 and

−π/2, respectively.

Figure 7.3.2 Reflection phase of a textured surface

The reflection phase is related to the surface impedance in the following way.

Consider a forward-running wave impinging on the surface, with electric and magnetic

fields given by the expressions below.
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Figure 7.3.3 Waves impinging on, and reflected by a surface
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Equation 7.3.1

The wave is reflected from the surface, and the backward-running wave has a similar

form, as indicated in Figure 7.3.3.
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Equation 7.3.2

The negative sign on the magnetic field is due to the convention of the right hand rule.

The field components of each wave are related by the impedance of free space, η.

η==
b
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E

Equation 7.3.3

The electric and magnetic fields of the standing waves, and thus the impedance, can be

expressed in terms of the phase shift that occurs upon reflection from the surface, φ.
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From the above equation, the apparent reflection point moves in the positive X-direction

as the reflection phase, φ, decreases. This point is illustrated below.

At frequencies that are far below resonance, the surface has low impedance, so

the electric field has a node at the surface, and the magnetic field has an antinode, as

shown in Figure 7.3.4. This also describes reflection from a flat metal surface. The figure

shows the electric and magnetic fields of a standing wave, which are the vector sums of

the two running wave fields. The position of the surface is indicated by the solid vertical

line. It is assumed that the sign shown for each field is consistent with the field direction

of an incoming wave. This convention ensures that an absorbing surface has positive, real

impedance, while a radiating surface has negative, real impedance.

Figure 7.3.4 Standing wave fields at a frequency far below resonance

With increasing frequency, the phase in Figure 7.3.2 slopes downward, as if the

effective reflection point of the surface were receding. The standing wave shifts forward,

toward the surface, as indicated by the arrows in Figure 7.3.5. Actually, the surface just

has higher impedance, so the electric field no longer has a node at the surface. The



82

standing wave shown in Figure 7.3.5 is for a frequency just below resonance, near the

TM band edge. The apparent reflection point is indicated by the dotted vertical line.

Figure 7.3.5 Standing wave pattern just below resonance

Just below resonance, the surface impedance is positive imaginary, or inductive,

but its value is much higher than that of a smooth metal surface. At the resonance

frequency, the reflection phase crosses through zero. The surface impedance is very

large, so the electric field has an antinode at the surface, as shown in Figure 7.3.6.

Figure 7.3.6 Standing wave pattern at the resonance frequency

With higher frequency, the standing wave continues to shift toward the surface and the

phase slopes farther downward towards –π. The impedance has switched sign, and the

surface is now capacitive. This is indicated in Figure 7.3.7, in which the magnetic field is

now negative.
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Figure 7.3.7 Standing wave pattern just above resonance

At frequencies much higher than resonance, the surface impedance has returned to near

zero. The reflection phase has returned to the same point where it started, but it has gone

through one complete cycle. The standing wave is shown in Figure 7.3.8. As the

frequency is increased through the resonance, it is as if the effective reflection plane has

slipped into the surface by one-half wavelength.

Figure 7.3.8 Standing wave pattern for a frequency far above resonance

7.4 Low-Frequency Structures

The measurements in the previous sections are representative of a typical two-

layer, high-impedance surface. With two-layer construction, the capacitors are formed by

the fringing capacitance between two metal plates lying edge-to-edge, usually separated

by a few hundred microns. If the substrate has a dielectric constant between 2 and 10, and
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the period is a few millimeters, the capacitance is generally on the order of a few tens of

femtoFarads. With a thickness of a few millimeters, the inductance is a few nanoHenrys,

so the resonance frequency is on generally the order of about 10 GHz.

If the desired resonance frequency is less than about 5 GHz, the thickness can be

kept within reasonable limits by using three-layer construction. Since the capacitors are

formed between overlapping metal plates, a capacitance of several picoFarads is easily

achievable. With this method, resonance frequencies of less than 1 GHz can be produced,

while maintaining the thickness and period on the order of a few millimeters. As we will

see in Chapter 5, by forcing a thin structure to have a low resonance frequency, the

bandwidth is also reduced.

Figure 7.4.1 Surface wave transmission across a three-layer high-impedance surface

The three-layer, high-impedance surface maintains the same general properties as

the two-layer structure, with TM and TE surface wave bands separated by a gap, within
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which there are no propagating surface wave modes. A surface wave measurement is

shown in Figure 7.4.1 for a typical three-layer structure. The data shows the transmission

between two straight coaxial probes lying parallel to the surface, in what is usually

considered the TE configuration. The frequency is so low that the free-space wavelength

is much greater than the probe length, which is only a few millimeters, so the antennas

tend to couple equally well to TM and TE modes. Transmission can be seen in both the

TM and TE bands, and a gap is visible between 2.2 and 2.5 GHz.

Figure 7.4.2 Reflection phase of a three-layer high-impedance surface

The reflection phase is shown in Figure 7.4.2. The region corresponding to the

surface wave band gap is designated by arrows. Inside this gap, the reflection phase

crosses through zero, and plane waves are reflected in-phase rather than out-of-phase. For

this low-frequency structure, the data contains multipath interference from other sources
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of reflection. The absorbing foam is less effective at lower frequencies, the horn antennas

have lower gain, and the structure is smaller compared to the wavelength. Because of

these factors, the edges and other surroundings introduce unwanted interference in the

reflection measurement. Nevertheless, the data follows the same trends as for the two-

layer structure.

7.5 Other features

Until now, we have focused primarily on frequencies near the high-impedance

condition, where the TM band ends, the reflection phase crosses through zero, and the TE

band begins. There are numerous other interesting electromagnetic features at higher

frequencies, which could be the subject of further study. Some of these features are

illustrated in Figure 7.5.1, which shows the surface wave transmission across the three-

layer structure studied in the previous section.

The TM band is visible up to 2.2 GHz, where the first gap begins. The TE band

begins at 2.5 GHz, and continues up to about 5.5 GHz where a second, much wider gap

begins. In this second gap, there are no detectable surface waves, but the structure does

not exhibit the favorable surface impedance of the first gap. It is not known whether the

second gap can be useful for electromagnetic devices.
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Figure 7.5.1 A broad frequency sweep reveals other features of the band structure

At much higher frequencies, another band appears. The modes in this band

probably occupy the space between the top capacitive layer and the lower ground plane,

as shown in Figure 7.5.2. In one such possible mode, the electric field is vertically

oriented, and the magnetic field runs parallel to the plates, similar to a mode in a parallel-

plate waveguide. This upper band begins at the frequency where one-half wavelength fits

between the metal vias.

Figure 7.5.2 Electric field lines for a possible mode in an upper band
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8 Alternative Structures

The high-impedance surface can be related to several other approaches for

controlling electromagnetic waves. However, these alternative structures fail to exhibit

the unique properties of the high-impedance electromagnetic ground plane. An

examination of these structures can illustrate the features of the high-impedance surface

that are important for its electromagnetic properties. The simplest alternative is a thin

sheet of metal islands, without the ground plane or the conducting vias. Such a structure

will not support surface waves over a certain frequency range, but it is a poor reflector. If

a ground plane is added, the structure is completely reflective, and it has the favorable

reflection phase properties of the high-impedance surface, but it permits the propagation

of surface waves. It is only when both the ground plane and the vias are included that the

two important properties of the high-impedance surface are obtained: (a) in-phase, 100%

reflection, and and (b) suppression of surface current propagation

8.1 Frequency Selective Surfaces

Consider a structure consisting of only the top layer of the high-impedance

surface – a sheet of metal islands, such as the one shown in Figure 8.1.1. This top layer

alone can effectively suppress surface waves, because currents cannot travel across the

breaks between the plates. It is only at very high frequencies, when the effective

capacitors between neighboring plates behave as shorts, that surface waves can

propagate. It would seem that a structure like this could be used in many of the same
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applications as the high-impedance surface. However, over the frequency range where it

prohibits surface waves, it is only partially reflective.

Figure 8.1.1 A “capacitive” surface

This structure is often called a frequency selective surface. [38, 39] If the metal

plates are not connected, it is called a “capacitive” surface, and it transmits low

frequencies while reflecting high frequencies. The inverse geometry, shown in Figure

8.1.2, is called an “inductive” surface, and it transmits high frequencies while reflecting

low frequencies.

Figure 8.1.2 An “inductive” surface

The behavior of these two surfaces is easily understood from the following

argument. For the inductive surface, waves that are short compared to the diameter of the

holes will easily fit through the mesh, while longer waves see the sheet as continuous

metal. Since each structure represents the Babinet compliment of the other, [2] they have



90

complimentary transmission spectra. Therefore, the sheet of metal islands transmits long

wavelengths, while reflecting short wavelengths. At low frequencies, where it can

prevent the propagation of surface waves, the capacitive sheet is not completely

reflective. Conversely, while the inductive sheet is reflective at low frequencies, surface

waves can propagate easily along the continuous metal wires.

The high-impedance surface represents a new class of electromagnetic structures,

distinct from frequency selective surfaces. Since it is backed by continuous, solid metal,

it reflects at all frequencies. Nonetheless, the phase of the reflected waves can vary

greatly with frequency. In addition, surface current propagation is controlled.

8.2 Addition of a Ground Plane

By augmenting the sheet of metal islands with a conducting ground plane, shown

in Figure 8.2.1, it can be made completely reflective. In this example, the capacitance has

been enhanced by overlapping the metal plates, but the same idea applies to any

capacitive surface.

Figure 8.2.1 A capacitive sheet backed by a solid metal ground plane

We can calculate the reflection phase using an effective medium approach. We

found earlier that a sheet of capacitors can be considered as an effective dielectric slab.

The layer has thickness, d, the capacitors are arranged with lattice constant, a, and they
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are filled with dielectric ε. The effective dielectric constant of the slab, which is shown in

Figure 8.2.2, is given by the following expression, derived in Chapter 5.

2

2

eff
d

a
ε=ε

Equation 8.2.1

Figure 8.2.2 Effective medium model for a capacitive sheet above a ground plane

The reflection properties of a layered structure can be calculated using a

transmission matrix approach. [40] Each layer or interface is described as a two-port

network, shown in Figure 8.2.3.

Figure 8.2.3 A two-port network

The network is expressed mathematically as a 22×  matrix. The incident, transmitted,

and reflected wave amplitudes on either side of the network are related by the following

matrix equation.
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Stacking additional layers corresponds to cascading additional two-port networks, and the

complete structure is described by the product of the individual matrices.

The transmission matrix across an interface from a material with impedance η1 to

a material with impedance η2 can be shown to be equal to the expression below.
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Equation 8.2.3

The transmission matrix for a wave traveling through a material with index of refraction

n, with thickness x, at frequency ω is easily derived.
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The matrices for each interface or thickness are multiplied in reverse order with

respect to the direction of the impinging wave because of the convention chosen in

Equation 8.2.2. Finally, the transmission coefficient of the entire stack is given by the

following equation.
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Equation 8.2.5

The reflection coefficient is similarly obtained
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Equation 8.2.6

This method can be used to analyze structures containing dielectrics, magnetic materials,

metals, and other lossy materials. One only needs the impedance and refractive index, or

the dielectric constant and magnetic permeability, which can be complex.

Figure 8.2.4 Reflection phase of a capacitive sheet above a ground plane

A typical structure might have a 50 µm thick dielectric layer with ε=4. If the

embedded capacitor plates are 2 mm long, the effective dielectric constant, from Equation

8.2.1, is equal to 6400)05.0/2(4 2 =× . A typical thickness for the lower portion of the

structure is 1.5 mm. For these parameters, the transmission matrix model gives the

reflection phase shown in Figure 8.2.4. At low frequencies, the reflection phase begins at
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π. It crosses through zero at some resonance frequency, and continues toward -π at higher

frequencies.

When the capacitive layer is very thin, with a very high effective dielectric

constant, the resonance frequency appears to scale according to a simple set of rules. By

simulating numerous structures, we can determine the dependence of the resonance

frequency on various parameters. It appears to depend on the inverse square root of both

the effective dielectric constant, and thickness of the capacitive sheet. It does not depend

significantly on the dielectric constant of the thick lower layer, but it varies inversely

with the square root of its thickness. If the lower layer is assigned a magnetic

permeability other than unity, the resonance frequency also has an inverse square root

dependence on that quantity. These observations are summarized by the following

empirical formula.

td

c

reff ⋅µ⋅⋅ε
≈ω

Equation 8.2.7

effε  and d are the effective dielectric constant and thickness of the capacitive layer,

while rµ  and t are the relative permeability and thickness of the spacer layer.

Substituting the expression for the effective dielectric constant into the above equation

yields the following simplification.
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Thus, the empirical formula obtained from the simulations reduces to the same

expression derived earlier from the effective circuit model. These calculations support the

assumption that the thick lower region can be considered the inductive part of the

structure, and its dielectric constant is immaterial.

8.3 Grounded Dielectric Slab

For plane waves impinging on a high-impedance ground plane at normal

incidence, the electric field is parallel to the surface. The current through the vias is zero,

so they do not influence the reflection phase. Furthermore, we have seen that a layered

dielectric structure can have the same reflection phase behavior as what has been

measured on the complicated metallic structure. It might appear that the vias and metal

plates are unnecessary, and a simple dielectric slab on a ground plane can produce the

same results. However, such a structure cannot prevent the propagation of surface waves.

The analysis of the grounded dielectric slab can be found in many

electromagnetics textbooks. [3, 4] Its surface wave properties are summarized in the

dispersion diagram shown in Figure 8.3.1. Unlike the high-impedance surface, the

grounded dielectric slab supports TM waves at all frequencies, and TE waves above a

cutoff frequency given by the expression below.
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At this frequency, the thickness is slightly over one-quarter wavelength, and the surface

impedance is capacitive. Higher order TM and TE surface waves also occur at multiples

of the TE1 cutoff frequency.

Figure 8.3.1 Dispersion curves for surface waves on a grounded dielectric slab

Although the surface impedance is capacitive when the dielectric layer is more

than one-quarter wavelength thick, the TM dispersion curve has no upper limit. The wave

simply adjusts its position toward the metal surface, as illustrated in Figure 8.3.2, so that

the apparent surface impedance remains inductive, as required by TM surface waves.
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Figure 8.3.2 Surface waves shifting toward the ground plane at higher frequencies

The high-impedance surface behaves similarly if the vias are drilled out. A

measurement of its TM surface wave properties without vias yields a similar result as an

ordinary metal surface. The suspended sheet of capacitors acts as an additional dielectric

layer, and is ineffective at preventing TM surface waves.

8.4 The Role of Conducting Vias

The importance of the conducting vias can be understood by adding metallic

corrugations to the grounded dielectric slab. As the frequency increases, the wave

attempts to move downward into the dielectric material. The more it interacts with the

corrugations, the more it is slowed down. Eventually the wave fits entirely inside one of

the corrugations, and ceases to propagate. This condition, illustrated in Figure 8.4.1,

occurs when the structure is one-quarter wavelength thick. We saw in an earlier section

that this condition is analogous to the resonance frequency of the high-impedance

surface.
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Figure 8.4.1 Metal corrugations preventing high frequency TM surface waves

TM waves are similarly suppressed on the high-impedance surface by the

presence of vertical conducting vias. These necessary vertical connections occur naturally

as the “bumpy surface” is extended into a circuit model, but their significance has not

been adequately explored. A possible circuit for a structure without conducting vias is

shown in Figure 8.4.2. Although the capacitive layer does not support propagating TM

surface waves, the inductive metal surface below it does. The two are not electrically

connected, and the capacitive sheet behaves as nothing more than a dielectric film

suspended above the metal.

Figure 8.4.2 Effective circuit in the absence of conducting vias

When conducting vias are added, the nature of the structure is changed. The

vertical electric field of a TM surface wave causes currents to flow through the vias, as

shown in Figure 8.4.3. The two surfaces are linked together, and the combined structure
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has the impedance of a parallel resonant circuit. Above the resonance frequency, the

circuit is capacitive, and the structure does not support TM surface waves.

Figure 8.4.3 Vertical conducting vias linking the two surfaces together

Thus, one can conclude that the specific two-dimensional topology of the high-

impedance surface is necessary for its full range of valuable properties.
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9 Antennas

The high-impedance surface has proven useful as an antenna ground plane.

Antennas have been demonstrated that take advantage of both the suppression of surface

waves, and the unusual reflection phase. As a result of the suppression of surface waves,

an antenna on a high-impedance ground plane produces a smoother radiation profile than

a similar antenna on a conventional metal ground plane, with less power wasted in the

backward direction. This can be applied to a variety of antenna designs, including patch

antennas, which often suffer from the effects of surface waves. For phase-arrays, the

suppression of surface waves can reduce inter-element coupling, and help to eliminate

blind angles.

Various workers have studied antennas on photonic crystals, which are closely

related to the high-impedance surface. [41, 42, 43, 44, 45] The unique reflection phase

properties of the high-impedance surface can allow for new, low-profile antenna designs,

with radiating elements lying flat against the ground plane. These antennas can take on a

variety of forms, including straight wires to produce linear polarization, or various other

shapes to generate circular polarization.

The high-impedance surface is particularly applicable to the field of portable

hand-held communications, in which the interaction between the antenna and the user can

have a significant impact on antenna performance. Using this new ground plane as a

shield between the antenna and the user in portable communications equipment can lead

to higher antenna efficiency, longer battery life, and lower weight.
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9.1 The Vertical Monopole

One of the simplest antennas is a vertical monopole, shown in Figure 9.1.1. It can

be fabricated by feeding a coaxial cable through a metal sheet, and extending the center

conductor to form a radiating wire. The outer conductor is shorted to the metal surface,

which acts as a ground plane. The wire is usually one-quarter wavelength long, and acts

as one half of a dipole. The other half of the dipole is formed by the image currents that

are driven in the ground plane.

Figure 9.1.1 Surface waves radiating at ground plane edges

On an infinitely large ground plane, an antenna of this type would ideally have a

smooth, half-doughnut shaped radiation pattern, with a null on the axis of the wire, and

no radiation in the backward direction. In reality, the ground plane is always finite, and

its edges contribute to the radiation pattern. In addition to space waves, the antenna

generates surface waves in the ground plane, which then radiate from edges and corners.

The combined radiation from the wire and the ground plane edges interfere to form a

series of multipath lobes and nulls at various angles. The edges radiate backwards as well

as forwards, causing a significant amount of wasted power in the backward hemisphere.
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Figure 9.1.2 Radiation pattern of a monopole antenna on a flat metal ground plane

The radiation pattern of a monopole antenna on a metal ground plane is shown in

Figure 9.1.2. The antenna is 3 mm long, and the ground plane is 5 cm square. The

frequency of the measurement is 35 GHz. The important features of the antenna pattern

are the ripples that appear in the forward direction, and the amount of wasted power in

the backward direction. These features are both due to surface waves that propagate away

from the antenna and radiate from the ground plane edges.

If the metal ground plane is replaced with a high-impedance ground plane, as

shown in Figure 9.1.3, the surface waves are suppressed. While driven currents can exist

on any reflective surface, they do not propagate on our high-impedance ground plane.

Any induced currents are restricted to a localized region around the antenna, and never

reach the edges of the ground plane. The absence of multipath interference results in a

smoother radiation pattern, with less wasted power in the backward hemisphere.
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Figure 9.1.3 Surface wave suppression on a high-impedance ground plane

Figure 9.1.4 Radiation pattern of a monopole on a high-impedance ground plane

For the radiation pattern shown in Figure 9.1.4, the flat metal ground plane is

replaced with a textured, high-impedance ground plane. The frequency and dimensions

are the same as in the previous example. The radiation pattern in the forward direction is
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smooth, showing only the two main lobes, and the power wasted in the backward

direction is significantly reduced.

Two additional features are apparent in Figure 9.1.4. First, the center null is

diminished because of asymmetry in the local geometry of the antenna wire and the

surrounding metal patches. With more symmetrical construction, the null could be

recovered. Second, the received power is lower with the high-impedance ground plane,

especially at the horizon. This is because the image currents on the high-impedance

ground plane are reversed with respect to their direction on a metal ground plane. For the

vertical monopole, this tends to cancel the antenna current, particularly at the horizon.

Figure 9.1.5 Monopole radiation pattern below the TM surface wave band edge.

If the antenna is operated outside the band gap, the ground plane behaves very

much like an ordinary flat sheet of metal. Figure 9.1.5 shows the radiation pattern of the
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monopole antenna on the high-impedance ground plane, operated within the TM surface

wave band, at a frequency of 26 GHz. Because of the presence of surface waves, the

pattern contains many lobes and nulls, and a significant amount of power is wasted in the

backward hemisphere.

9.2 The Patch Antenna

The beneficial effects of surface wave suppression can also be applied to patch

antennas. A patch antenna is a flat, metal shape printed on a dielectric substrate, which

acts as a leaky cavity. The metal patch often takes the form of a circle or rectangle, but

other shapes are possible. Antennas of this type are low profile, but because they are

highly resonant, they also tend to have narrow bandwidth. A patch antenna can be fed by

a microstrip line on the top surface, by a slot in the ground plane below the patch, or by a

coaxial probe. An example of a patch antenna fed using the coaxial probe method is

shown in Figure 9.2.1. The probe is placed off-center to excite an asymmetric mode,

because the symmetric modes do not radiate efficiently.

Figure 9.2.1 A patch antenna on a metal ground plane

The radiation pattern of the patch antenna is degraded by surface waves in the

same way as the wire monopole. Surface waves radiate from the edges of the ground

plane, causing ripples in the antenna pattern, and radiation in the backward direction. If
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the substrate is thick, or it has a high dielectric constant, the surface wave problem is

exacerbated.

Figure 9.2.2 A patch antenna embedded in a high-impedance ground plane

Surface waves can be suppressed by embedding the patch in a high-impedance

ground plane, as shown in Figure 9.2.2. The presence of the nearby metal protrusions

tends to raise the resonance frequency of the patch, since the effective cavity volume is

reduced. This can be corrected by leaving a small guard ring of bare substrate around the

patch, or by increasing the size of the patch.

Figure 9.2.3 S11 measurements for patch antennas on two different ground planes
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Figure 9.2.3 shows the S11 measurement of two patch antennas – one on an

ordinary, metal ground plane, and one on a high-impedance ground plane. This

measurement, also called the antenna return loss, is a measure of the amount of power

reflected by the antenna toward the generator. A low return loss suggests that the antenna

is radiating.

In both cases shown, the substrate has a dielectric constant of 10.2, a thickness of

0.625 mm, and a size of 5 cm square. Circular patches were used, with a diameter of

3.5 mm. A coaxial probe was used to feed the antennas. The patch on the high-impedance

ground plane was surrounded by a guard ring consisting of 3 mm of bare dielectric. The

presence of the surrounding metal protrusions tends to confine the electromagnetic fields,

reducing the effective size of the cavity, and increasing the resonance frequency slightly.

Figure 9.2.4 H-plane radiation patterns of two patch antennas.



108

The radiation patterns of the two antennas are shown in Figure 9.2.4 and Figure

9.2.5. The measurements are at a frequency of 13.5 GHz, where the two antennas have

the same return loss. In both the H-plane and E-plane, the patch on the ordinary, metal

ground plane shows significant radiation in the backward direction, and ripples in the

forward direction. The pattern is not rotationally symmetric, and is much thinner in the

H-plane than in the E-plane. Conversely, the patch on the high-impedance ground plane

produces a smooth, symmetric pattern with little backward radiation.

Figure 9.2.5 E-plane radiation patterns of two patch antennas.

The high-impedance ground plane is related to the patch antenna in that both are

highly resonant, radiating structures. The frequency and bandwidth of the patch antenna

can be expressed in the same form as we derived earlier for the high-impedance surface.

Begin with the patch shown in Figure 9.2.6.
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Figure 9.2.6 Patch antenna

Following the method of Chapter 5, the patch can be considered as a resonator

with a particular capacitance and inductance. The capacitance is given by the following

equation.

t

w
C

l
ε=

Equation 9.2.1

If the electric field of the patch is directed along l, then the inductance is given by the

following expression.

w
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Equation 9.2.2

If we assume that the resonance frequency is proportional to the inverse square root of

the inductance and the capacitance, as it is in the high-impedance surface, we obtain the

following.
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Equation 9.2.3
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In the above expression, c is the speed of light in vacuum, and n is the index of refraction

of the substrate material. The resonance frequency is therefore inversely proportional to

the length of the patch, and the index of refraction, which is known to be correct. [46]

The fractional bandwidth of the patch can be estimated using the same formula

derived previously for the high-impedance surface.
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Equation 9.2.4

Therefore, the bandwidth is proportional to the substrate thickness, and inversely

proportional to the width of the patch. This is reasonable, because thinner, wider patches

confine the electromagnetic fields more, resulting in a higher Q.

Finally, we can determine the natural frequency of the patch, as was done in

Section 5.7 for the high-impedance surface. The fractional bandwidth can be described in

terms of the ratio of the resonance frequency to the natural frequency, which is then

easily derived
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Equation 9.2.5

If the patch is roughly square, 1/w ≈l , then the natural frequency reduces to the same

result obtained for the high-impedance surface. It only depends on the magnetic

permeability and the thickness.
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9.3 The Horizontal Wire

Figure 9.3.1 Horizontal wire antenna on a metal ground plane

Figure 9.3.2 Reflection loss of a horizontal wire antenna on a flat metal ground

The benefits of surface wave suppression have been established through two

examples: the vertical monopole, and the patch antenna. The other important property of

the high-impedance surface is that it reflects in-phase, rather than out-of-phase. This is

equivalent to a reversal of the direction of the image currents. This unusual property

allows antennas to be constructed that are not possible on a flat, conducting ground plane.
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An example, shown in Figure 9.3.1, is a wire antenna that has been bent over so that it

lies parallel to a conducting surface.

A horizontal wire radiates very poorly on an ordinary, metal ground plane

because the image currents cancel the currents in the antenna. The S11 measurement, or

return loss of this antenna is shown in Figure 9.3.2. Most of the power is reflected back

toward the generator, so the radiation efficiency is poor. In this example, the antenna was

1 cm long, and separated by a distance of 1 mm from a 3 cm square ground plane.

Figure 9.3.3 A horizontal wire antenna on a high-impedance ground plane

Figure 9.3.4 Reflection loss of a horizontal wire on a high-impedance ground plane
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A similar wire antenna on a high-impedance ground plane is shown in Figure

9.3.3. Within the band gap, which spans from 11 GHz to 17 GHz, this antenna has a

much lower return loss, as shown in Figure 9.3.4. Below the TM band edge, the antenna

performance is similar to the one on the metal ground plane. The surface impedance is

low, and the image currents cancel the currents in the antenna.

Within the band gap however, the return loss is about -10 dB, indicating that only

10% of the power is being reflected back to the generator. In this range, the image

currents are reversed, and they reinforce the antenna currents. Above the TE band edge,

the return loss is also low because of coupling to TE surface waves. There is also strong

coupling to TM waves near the TM band edge, where the density of states is very high.

Figure 9.3.5 E-Plane radiation pattern of two horizontal wire antennas
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Figure 9.3.6 H-plane radiation pattern of two horizontal wire antennas

Although the antenna radiates over a broad band, it is only useful within the

surface wave band gap, where it produces a smooth pattern. Outside the band gap, the

pattern contains many lobes and nulls due to excitation of propagating surface waves.

The radiation pattern of both antennas is shown in Figure 9.3.5 and Figure 9.3.6.

The dotted line is for the metal ground plane, and the solid line is for the high-impedance

ground plane. The data in the radiation patterns supports the return loss data, in that the

signal level is about 10 dB higher on the high-impedance ground plane. The data also

contains an absolute calibration, referenced to an ideal isotropic radiator. The maximum

gain of 7 dBi represents a typical value for an antenna on a high-impedance ground plane,

regardless of the type of radiator used. Another typical feature of antennas on these high-
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impedance ground planes is the rotationally symmetric nature of the radiation pattern,

with both E- and H-planes displaying a characteristic apple-shape on a log-polar plot.

The horizontal wire antenna also performs well on high-impedance surfaces with

three-layer construction, and produces a similar radiation pattern to that shown for the

two-layer structure. The antenna radiates efficiently within the bandwidth of the ground

plane, and the performance is best at the resonance frequency. For a smooth radiation

pattern and an input impedance near 50Ω, the length of the wire should be between λ/3

and λ/2. If the wire is too short, the input impedance is much higher than 50Ω. If it is

longer than λ/2, an extra lobe appears in the radiation pattern.

It can sometimes be difficult to match the input impedance of the antenna to a

50Ω coaxial cable. This is often due to an unmatched capacitive component in the input

impedance, and can be corrected by tuning the geometry of the horizontal wire, as shown

in Figure 9.3.7. A small kink placed near the feed point can add a small amount of

inductance, which is used to cancel the capacitive input reactance.

Figure 9.3.7 A small kink placed near the feed point for impedance matching
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9.4 Circular Polarization

In some situations, circular polarization is desired. For example, satellite-to-earth

communications are generally broadcast in circular polarization because it allows the

receiver to have any orientation with respect to the transmitter. A simple way of

generating nearly circular polarization is to use a circular wire, lying parallel to a high-

impedance ground plane, as shown in Figure 9.4.1. The wire is fed at one end, and has a

circumference of about one wavelength. The other end of the wire is usually left open,

but similar results are produced if it is shorted to the ground.

Figure 9.4.1 A circular wire antenna on a high-impedance ground plane

An antenna of this type produces a radiation pattern that is similar to that of the

straight horizontal wire – a smooth, round pattern that is free from ripples or significant

backward radiation. The polarization is nearly circular in the normal direction. However,

as with most circular antennas, the polarization is generally elliptical at other angles. At

the horizon, where the profile of the circle reduces to a straight wire, the polarization is

linear.
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The degree to which an antenna is circularly polarized can be determined by

measuring the ratio of the power received by two antennas having opposite circular

polarizations, which we will call the polarization ratio. The polarization ratio of this

antenna in the normal direction has been measured to be 7.3 dB. In other words, the

signal received by an antenna with the desired circular polarization is 7.3 dB higher than

the signal received by an antenna with the opposite polarization. This simple circular wire

is a crude form of the curl antenna, [47] which has been shown to produce nearly perfect

circular polarization by careful tuning of the wire geometry.

Figure 9.4.2 A plus-shaped wire antenna

Another way of producing circular polarization is to use a plus-shaped antenna

such as the one shown in Figure 9.4.2. This antenna is based on the idea that a circularly

polarized wave is a combination of two linearly polarized waves that are out of phase by

one-quarter wavelength. The plus-shaped antenna functions as a pair of dipoles, fed in

parallel, with one dipole having a one-quarter wavelength delay. The polarization ratio of

this antenna has been measured to be 9.2 dB, somewhat better than the circular wire
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antenna. The plus-shaped antenna could have an additional advantage when used in an

array. For a given spacing, the inter-element coupling should be smaller for the plus-

shaped antenna than for the circle-shaped antenna. This can be understood by considering

that the plus-shaped antenna consists primarily of two orthogonal dipoles. E-plane

coupling between each dipole is small because of the null along the dipole axis. H-plane

coupling is also small because neighboring dipoles maintain a larger separation along that

direction.

The polarization ratio of the plus-shaped antenna can be improved by considering

the origin of each component of the polarization. The radiation of the two half-wave

dipoles combine to produce circular polarization in the normal direction. However, the

quarter-wavelength delay section also radiates, adding an additional linear component.

Figure 9.4.3 A figure-8-shaped wire antenna

An improvement is the more symmetrical, figure-8-shaped antenna shown in

Figure 9.4.3. In this antenna, the radiation from both quarter-wavelength curved sections
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cancel. The result is a measured polarization ratio of 11.8 dB, better than both the circular

wire antenna, and the plus-shaped antenna.

9.5 Large and Small Antennas

Examples have been presented that illustrate the advantages of using a high-

impedance ground plane for various types of antennas. The benefits arise from the

reflection phase, which allows for low-profile antennas, and from the suppression of

surface current propagation, which has been shown to produce improvements in the

radiation pattern. A quantitative analysis of the degree of coupling between nearby

antennas has a bearing on the design of large, multi-element arrays, as well as the

minimum size ground plane that can be used for a single, compact radiator.

The coupling strength was determined by measuring the transmission between

two antennas positioned near the high-impedance surface, and near a metal surface for

comparison. For TM polarization, shown in Figure 9.5.1, the probe antennas were of the

flared, parallel-plate waveguide type. They were moved across the surface, and the

transmission between them was measured as a function of separation distance. For TE

polarization, shown in Figure 9.5.2, wire antennas were aligned parallel to the surface.

The data were taken at about 15 GHz, within the band gap of the high-impedance surface.

Microwave absorbing foam was positioned several millimeters above the surface, in

order to confine the measurement to the region just above the ground plane, and to

eliminate interference from waves propagating through the surrounding space.

The results represent a combination of two factors: the coupling strength from the

antennas to the surface determines the intersection with the vertical axis, while the
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transmission across the surface is shown by the slope of each line.  For TM polarization,

shown in Figure 9.5.1, the coupling strength on the high-impedance surface is

significantly reduced, and the signal decreases much more rapidly with distance than on

the metal surface. However, for TE polarization, shown in Figure 9.5.2, the coupling

strength on the high-impedance surface is greater than on the metal surface, and the

signal decreases more slowly with distance. This can be understood by interpreting the

graphs from the viewpoint of the surface as a boundary condition.

Figure 9.5.1 Coupling between two antennas in TM configuration

When an antenna is placed next to a flat metal surface, it generates plane waves,

as well as currents in the surface. TM polarized waves and currents will readily be

excited on a metal sheet, as the electric field is primarily perpendicular to the conductor.
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The ensemble of fields and currents propagates unhindered by the metal, and radiates

rather poorly.

On the high-impedance surface, the situation is reversed. This can be understood

by recalling that the high-impedance surface functions as a kind of magnetic conductor.

Just as a metal surface repels transverse electric fields, the high-impedance surface

abhors transverse magnetic fields. Hence, TM transmission is very small, as is the

coupling strength to a TM polarized antenna. In other words, if a surface current with TM

polarization is generated on the high-impedance surface, it will rapidly radiate.

Figure 9.5.2 Coupling between two antennas in TE configuration

For TE polarized waves, the electric field is parallel to the surface. The image

currents generated in a flat metal surface tend to cancel the nearby electromagnetic wave,
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so TE waves are rapidly repelled. TE surface currents tend not to be excited on a flat

metal sheet.

TE surface modes exist on the high-impedance surface throughout the band gap,

but they consist of radiative, leaky waves. They are not bound to the surface, but they do

not radiate as rapidly as they do on a conducting sheet. Due to the high impedance, the

antenna is not shorted, and readily excites them. This is evident in the fact that the TE

transmission is higher on the high-impedance surface than it is on the metal surface.

The measurements described above have an impact on the design of phased array

antennas. [48] In phased arrays, in which the ground plane is very large, surface currents

can form standing waves, and contribute to multipath interference. This can lead to blind

angles – angles for which the antenna gain drops significantly. This effect can also be

seen as ripples in the radiation pattern of a single antenna on a metal ground plane.

Figure 9.5.3 Leaky TE waves radiate, and never reach the ground plane edge

On a high-impedance ground plane, surface currents radiate efficiently, and never

reach the edge. Even the leaky TE modes that exist within the band gap will radiate much

of their power before reaching the edge of a large ground plane, as illustrated in Figure

9.5.3. This is apparent in both the attenuation measurements shown in this section, and

the radiation patterns shown in previous sections. The fact that antennas on the high-

impedance surface produce a smooth, symmetrical pattern in both the E- and H-planes is
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evidence that both TE and TM surface current propagation is suppressed. Therefore,

using a high-impedance ground plane for phased arrays should reduce blind angles.

Another problem with phased arrays is the presence of coupling between nearby

elements, due to both surface waves and space waves. This coupling complicates steering

of the beam, and degrades performance. According to the results of this section, TM

coupling can be reduced by using a high-impedance surface in place of a metal ground

plane. TE  coupling could be worse on the high-impedance surface, so a good design

might consist of stripes of high-impedance material, augmented by interleaving stripes of

metal, such as the example shown in Figure 9.5.4.

Figure 9.5.4 Array design using stripes of metal and high-impedance material

The results of this section also have an impact on the design of small antennas.

The degree to which the signal is diminished with distance determines how much

radiation will end up in the backward hemisphere for a given size ground plane. As the

size is reduced, more power will spill over into the backward direction. In practice, if the
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separation between the radiating element and the edge of a high-impedance ground plane

is on the order of one-half wavelength, a front-to-back ratio of roughly 10 dB can easily

be achieved. Using a larger ground plane, the backward power can be reduced even

further.

For many applications, a compact design is required. However, if the ground

plane is too small, its properties will have little impact on the antenna performance. This

is because the reactive near field of the antenna wraps around to encircle the entire

structure. For a small antenna, the reactive near field extends roughly λ/2π, or one-sixth

of a wavelength in all directions, a distance designated by Wheeler as the “radiansphere”.

[49, 50] Within this radius, the electromagnetic field is primarily reactive, rather than

radiative. Thus, if the ground plane is smaller than about one-third wavelength across, the

reactive near field of the antenna completely surrounds the ground plane, and there is

little that can be done to improve the directivity.

The bandwidth of an antenna is also related to its size. In general, the fractional

bandwidth of a small antenna is roughly equal to the volume of the smallest sphere that

can fit around the antenna, divided by the volume of the radiansphere. This is a general

truth about electrically small antennas, and can be derived several different ways. [51, 52,

53] For an antenna employing a high-impedance surface, the bandwidth of the ground

plane usually limits the bandwidth of the antenna. Therefore, the antenna does not need to

be any larger than what is necessary to match the bandwidth of the high-impedance

surface. For example, to achieve a bandwidth of 10%, consistent with a typical three-

layer structure, the antenna only needs to have a length of about λ/10. Thus, much
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smaller designs should be possible than those discussed in this chapter. In one extreme, a

single resonant element of the high-impedance surface could be modified to act as the

antenna.

9.6 Portable Communications

One important application of the high-impedance ground plane is in the area of

portable communications. At present, the standard antenna geometry is a monopole,

which is part of the handset and lies in close proximity to the user’s head. It has been

shown that with this configuration, roughly 50% of the radiated power is absorbed by the

user. [54] The effect of the radiation on the user has not been evaluated conclusively, but

the effect of the user on the antenna is significant. If this lost power could be reclaimed,

the benefits for portable communication equipment could be an improvement in battery

life, or a reduction in battery weight.

The power lost to absorption can be reduced by using a directional antenna.

Directional antennas might appear impractical for portable communications. However, in

a real environment, scattering from buildings and other objects tends to randomize the

signal direction. For commercial products, cost is the most significant design factor, so

the antenna must be inexpensive to produce, and simple to integrate into the handset

hardware. Patch antennas are cheap and directional, but they have the disadvantage that

they are easily detuned by nearby dielectric objects. Wire antennas are not as easily

detuned, but they are only directional when combined with a reflector. If the reflector is a

flat, metal sheet, it enforces a minimum thickness of one-quarter wavelength, which is

unpractical. A good alternative is a high-impedance ground plane, with a horizontal wire
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antenna mounted directly adjacent to the top surface. The frequency of operation is

determined more by the surface than the wire, and since the resonance is controlled by

the internal coupling between the individual elements, the structure is not easily detuned.

Figure 9.6.1 Reference radiation pattern of a dipole antenna in free space

Figure 9.6.1 shows the H-plane radiation pattern of a half-wave dipole antenna in

free space, to be used as a reference. The frequency of the measurement is 2.3 GHz. The

radial scale is dBi, decibels with respect to an isotropic radiator, and the dipole has the

expected average gain value of around 2 dBi. The experiment shown in Figure 9.6.2 is

designed to simulate a real communications environment. The presence of the user is

modeled by a jar of water roughly the size of a human head. The dielectric constant of

water is similar to most human tissues.

The plot shown in Figure 9.6.3 is the radiation pattern of the same dipole antenna

placed near a jar of water. The radiation is blocked from propagating through the water,

as indicated by the deep null in the direction of the jar. The overall signal level is also
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reduced in all directions due to a combination of absorption, and modification of the

antenna input impedance. The maximum gain is about 0dBi, in the direction away from

the jar of water.

Figure 9.6.2 Experiment to measure effects of the user in portable communications

Figure 9.6.3 Radiation pattern of a dipole antenna near a jar of water

The radiation pattern shown in Figure 9.6.4 was produced by a wire antenna on a

high-impedance ground plane. The jar of water was placed behind the ground plane, on

the opposite side from the antenna. The antenna has a maximum gain of about 6dBi, in
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the direction normal to the ground plane. The high-impedance surface acts as a shield

between the radiating antenna and the absorbing water, blocking not only the direct

radiation, but also the surface currents that would wrap around to the back side. The

ground plane redirects the radiation that would otherwise be absorbed into the user,

recovering it as useful power in the opposite direction. The combination of the antenna

and the ground plane is compact and lightweight, allowing it to fit within the packaging

of most portable communications equipment.

Figure 9.6.4 Wire antenna on high-impedance ground plane, near jar of water
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10 Design

Using a few simple design rules, a high-impedance surface can be built according

to predetermined frequency and bandwidth specifications. Numerous examples have been

fabricated using printed circuit board technology, with resonance frequencies ranging

from hundreds of megahertz to tens of gigahertz. These do not represent upper or lower

limits however, and it should be possible to design high-impedance surfaces for any

desired radio frequency. The primary limitation is on the bandwidth, which depends on

the thickness of the structure with respect to the center wavelength.

10.1 Frequency and Bandwidth

In the effective medium model described in chapter 5, the structure is

characterized by its surface impedance, which is equal to the impedance of an effective

parallel LC circuit. According to the model, the properties of the high-impedance surface

can be described entirely in terms of its sheet capacitance and sheet inductance, which are

obtained from the geometry of the surface texture. This forms the basis for a set of simple

design equations, which can accurately predict the properties of the textured surface.

For two-layer construction, in which the capacitors are defined by the fringing

electric fields between pairs of co-planar metal plates, the value of each capacitor is given

by the following equation, derived in section 5.1.









π

ε+ε
= −

g

a
Cosh

)(w
C 121

Equation 10.1.1
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The dielectric constants of the circuit board material and the surrounding space are ε1 and

ε2. The center-to-center spacing of the vias is a, the gap between the plates is g, and the

width of the capacitor is w. The dimensions are illustrated in Figure 10.1.1 for an

example of a triangular lattice of hexagonal patches.

Figure 10.1.1 Dimensions for calculating fringing-field capacitance

 Typical materials used for microwave printed circuit boards have dielectric

constants ranging from 2 to 10. Using standard printed circuit fabrication techniques, the

minimum gap width between adjacent metal regions is around 100 to 200 microns. For

microwave structures, the lattice constant is typically several millimeters. Using

variations of the geometry and materials given here, the achievable value for each

capacitor can cover a broad range of roughly 0.01 to 1 picoFarad using two-layer

construction.

With a three-layer structure, the capacitance can be much higher. The value of

each capacitor is given by the following formula, in which ε is the dielectric constant of

the insulating material, A is the area of the capacitor plates, and d is their separation.

d

A
C

ε
=

Equation 10.1.2
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As an example, a typical insulator is polyimide, which is commonly available for use in

flexible printed circuits. With a dielectric constant of 4, a thickness of 50 microns, and a

lattice constant of a few millimeters, values ranging from around 1 picoFarad to several

tens of picoFarads or more are easily achievable.

The important parameter for the surface impedance is not the individual

capacitance, but rather the sheet capacitance, in Farads-square. The difference can be

understood by considering an arrangement of capacitors covering a square area. Long,

thin capacitors provide more sheet capacitance than an equal number of short, wide

capacitors. In other words, the sheet capacitance is higher if they are in parallel rather

than in series. This is evident in the formula for the sheet capacitance derived in section

5.1, in which the length squared appears in place of the area.

d

a
C

2

s
ε

=

Equation 10.1.3

In the above equation, a is the length of the capacitors along the direction from one via to

the next. In effect, the sheet capacitance is equal to the individual capacitance multiplied

by the aspect ratio of each capacitor. If the capacitor plates do not cover the entire surface

area, a more accurate formula is given below, also derived using the method of Section

5.1.

d

)'aa(
Cs

⋅ε
=

Equation 10.1.4
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In the above equation, a is the separation between neighboring vias, which may not equal

the lattice constant, and a’ is the overlap distance, as shown in Figure 10.1.2. Obviously,

this expression is only approximate, because the overlapping plates can take on various

shapes.

Figure 10.1.2 Dimensions for calculating sheet capacitance

The simplest method for calculating the sheet capacitance is to use the individual

capacitance between adjacent lattice points, multiplied by a geometrical correction factor,

which we will call F.

FCC individualsheet ×=
Equation 10.1.5

The correction factor can be calculated as the ratio of Equation 10.1.3 to Equation

10.1.2, for a structure in which the capacitors consume the entire surface area. This is

also equal to the ratio of the length to the width, for each individual capacitor. The

necessity of a geometrical factor is confirmed experimentally by the fact that structures

having capacitors of equal value, but arranged in a different geometry, have different

resonance frequencies. The correction factors are given in Table 10.1.1 for the square and
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triangular lattices, as well as for hexagonal geometry, a version of the triangular lattice in

which each unit cell is composed of two individual members.

Geometry
Correction
Factor (F)

Square 1

Triangular 3

Hexagonal
3

1

Table 10.1.1 Sheet capacitance correction factors for various geometries

The sheet inductance is easier to calculate, since it depends only on the overall

thickness, as derived in Section 5.1.

tLs µ=
Equation 10.1.6

In the above equation, µ is the magnetic permeability of the circuit board material, and t

is its thickness. For most materials, µ is unity at microwave frequencies. If the structure is

a few millimeters thick, the sheet inductance is several nanoHenrys/square. In the

derivation of Equation 10.1.6 we assumed a solenoid of current, and neglected any direct

contribution from the diameter of the vias. By using extremely thin vias, coils, or other

special geometries, it may be possible to generate larger sheet inductance without the use

of magnetic materials.
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Once the sheet capacitance and sheet inductance are known, the resonance

frequency and bandwidth are easily calculated from the following equations.

LC

1
0 =ω

Equation 10.1.7

000 /

C/L

εµ
=

ω
ω∆

Equation 10.1.8

Equation 10.1.7 is the LC resonance frequency, and Equation 10.1.8 is the bandwidth,

derived in Section 5.5. 0ω  is the frequency where the reflection phase is zero, and where

the surface behaves as a magnetic conductor. This is also the frequency where an antenna

will perform best on such a ground plane. The bandwidth in Equation 10.1.8 corresponds

roughly to the width of the surface wave band gap, or equally well, the frequency range

over which the reflection phase falls between +π/2 and -π/2. The bandwidth of the actual

antenna might be smaller, depending on the geometry of the antenna, and the size and

shape of the ground plane.

Clearly, any radio frequency can be obtained by adjusting the value of the sheet

capacitance and sheet inductance. The goal is usually to make the thickness much less

than the operating wavelength. Since the thickness is linked to the inductance, low

frequencies are usually achieved by loading the structure with large capacitors. However,

this reduces the bandwidth. Therefore, the primary trade-off in the design of a high-

impedance surface is usually the thickness versus the bandwidth.
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10.2 Geometry and Materials

From the explanation given in the previous section, the design of a high-

impedance surface is a simple matter of determining what frequency and bandwidth are

needed, and then calculating the required capacitance and inductance. The inductance

depends only by the thickness of the circuit board, while the capacitance can be generated

in several ways, two of which are described above. Using typical materials and

dimensions, capacitors of less than about 1 picoFarad can be built using the two-layer

technique, while larger capacitors generally require three layers. With a thickness of a

few millimeters, two-layer structures can generally be employed above 5 or 10 GHz,

while three-layer structures are usually required for lower frequencies.

The choice of materials is also related to the frequency of operation. For three-

layer structures, the electric field is concentrated in the thin insulator between the

capacitor plates, and the energy stored in the lower bulk region is primarily magnetic.

Therefore, dielectric losses in this region are not significant, and a thermoset fiberglass

laminate such as standard FR4 is an ideal material. In the thin insulator, the electric field

is much higher, and a material with low dielectric loss should be used. Polyimide is a

good choice, as it is commercially available for use in flexible printed circuits, and

withstands conventional processing. In contrast to the three-layer structures, the fringing

electric fields in the capacitors of a two-layer structure extend into the bulk, causing

dielectric losses in that region to be significant. Since two-layer construction is usually

used for high frequencies, where FR4 can be lossy, a teflon-based fiberglass laminate is

often used instead.
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In two dimensions, the two most obvious lattices are triangular, and square. In

addition, there is hexagonal geometry, which is actually just a triangular lattice with two

members per unit cell. Other, less symmetrical lattices are also possible. In fact,

periodicity is not required, although it simplifies the design. The three geometries

mentioned above are shown in Figure 10.2.1. One choice of unit cell is outlined in each,

to illustrate the fact that the triangular and hexagonal structures are variations of the same

lattice.

Figure 10.2.1 Three common geometries used for 2-D periodic structures

For two-layer construction, the dots in Figure 10.2.1 could be the positions of

vertical metal vias. Each via connects to a metal patch on the top surface, and a

continuous metal ground plane on the bottom surface. The configurations that have been

studied consisted of simple shapes, such as a square lattice of squares, or a triangular

lattice of hexagons. In some cases, a dielectric paste is used to fill the narrow slots

between the patches, producing a slightly higher capacitance. It should also be possible to

increase the capacitance using other methods, such as an interdigitated geometry.

More variety exists for three-layer construction, and several structures that have

been studied are illustrated below. Figure 10.2.2 shows a three layer hexagonal structure.
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The top layer is shown as outlines, while the second layer is shown as shaded regions.

The third layer is the continuous metal ground plane, which is not shown. The vias are

indicated by black circles in the centers of the patches.

Figure 10.2.2 Three-layer hexagonal structure

In hexagonal geometry, each unit cell is made up of two individual members,

represented here by one upper patch and one lower patch. Each individual layer appears

as a triangular lattice, interlaced with the triangular lattice of the other layer. Each

element is capacitively coupled to its three nearest neighbors on the other layer. This

structure has the interesting feature that one subset of patches is completely hidden by the

other, and half of the vias connect only to the upper surface, while the other half connect

only to the hidden surface. If the vias are removed from one subset, the structure will still

suppress surface waves. However, if the structure is to be used as an antenna ground

plane, it may be desirable to retain as many vias as possible surrounding the antenna, for

maximum surface wave suppression.

An alternate structure, in which none of the elements are completely hidden, is

shown in Figure 10.2.3. This is a triangular lattice, in which each via connects to both the
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upper and lower metal layers. Each element may be visualized as a flower with six petals,

three on the upper layer, connected through a vertical via to three on the lower layer. In

this geometry, each element is capacitively coupled to its six nearest neighbors. This

structure has the advantage that the geometrical correction factor, described in Section

10.1, is three times higher than in the hexagonal structure discussed previously. Thus, if

both structures have the same via spacing, they will have the same resonance frequency,

even though the individual capacitors are three times smaller in the triangular lattice.

Therefore, for the same resonance frequency, the triangular lattice can have a higher

density of vias. This can be an advantage when designing small antennas, in which the

ground plane may have a limited number of vias.

Figure 10.2.3 Three-layer triangular structure

Square structures have also been studied. In the example shown in Figure 10.2.4,

one layer completely covers the other, as in the hexagonal structure described previously.

For equal capacitor areas, the square and triangular structures have different resonance

frequencies, serving as evidence for the necessity of the geometrical correction factor.
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Figure 10.2.4 Three-layer square structure with a hidden layer

Two other configurations of the square geometry are also possible. In Figure

10.2.5, each element is exposed, as in the triangular design. The resonance frequency and

bandwidth are the same as the previous square structure that has one layer completely

hidden. It appears that having a hidden layer has no effect on the electromagnetic

properties, and it is only the sheet capacitance and inductance that matter.

Figure 10.2.5 Three-layer square structure with no hidden layer

A less symmetrical structure is shown in Figure 10.2.6. In this case, half of each

square is on the top layer, and half is on the bottom layer. This geometry had the same
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frequency and bandwidth as the other two square structures. Furthermore, is surface wave

properties appeared to be independent of direction.

Figure 10.2.6 Three-layer, lower-symmetry square structure

10.3 Validation of the Model

Throughout this text, a model has been used in which the properties of a textured

surface are described by an effective surface impedance. The impedance is equal to that

of a parallel resonant LC circuit, made up of the sheet capacitance and the sheet

inductance.  The sheet capacitance is determined by the value of the individual

capacitors, and a geometrical correction factor, while the sheet inductance depends on the

thickness of the structure. The surface impedance derived in this way has been shown to

predict the reflection phase, as well as the behavior of surface waves. The model was

derived from simple ideas, but it has proven to be an accurate tool for analyzing and

designing textured metal surfaces. A final check of the accuracy of the model is shown in

the following graphs.
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Figure 10.3.1 shows the measured resonance frequency plotted against the

calculated resonance frequency, as determined by the effective medium model. The error

bars represent the measured and calculated bandwidths of the surface wave band gap or

the reflection phase, depending on the data available, for 23 different structures built

during the course of this study. A dotted line is drawn with a slope of unity, and the

proximity of the points to this line indicates the accuracy of the model in determining the

resonance frequency. The degree to which the horizontal and vertical error bars have

equal length indicates the accuracy of the model in determining the bandwidth.

Figure 10.3.1 Graph of measured frequency versus calculated frequency

The graph represents data from structures having square, triangular, and

hexagonal geometry, in both the two-layer and three-layer configurations. The calculated
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values agree well with the measured data, considering the simplicity of the effective

medium model. Inaccuracies are caused by the approximation used in calculating the

capacitance, particularly for the two-layer design, and also the formula used for

inductance, which admittedly neglects many effects, such as additional contributions

from the vias. Furthermore, the use of a lumped parameter model is itself questionable for

structures in which free-space wavelength approaches the lattice constant, which is true

for the higher-frequency surfaces. The model is most valid for the low-frequency, three-

layer structures. The data for these structures are plotted on an expanded scale in Figure

10.3.2.

Figure 10.3.2 Measured versus calculated frequencies for three-layer structures



143

11 Conclusion

A new type of metallic electromagnetic structure has been presented that is

characterized by having high surface impedance. It is made of continuous metal, and

conducts DC currents, but it does not conduct AC currents within a forbidden frequency

band. Instead, any currents that are induced in the surface radiate efficiently into

surrounding space. This new surface also reflects electromagnetic waves with no phase

reversal, behaving as a kind of magnetic conductor. The structure can be described using

a lumped parameter circuit model, which accurately predicts many of its electromagnetic

properties. This unique material is applicable to a variety of electromagnetic problems,

including new kinds of low-profile antennas.

11.1 Summary

We have seen that while a conductive sheet is useful as a reflector, it also has

several drawbacks such as permitting the propagation of surface waves, and a phase

reversal for reflected plane waves. The presence of surface waves has been explored

through analytical modeling and computational analysis. These surface waves have been

identified as the normal AC currents that occur on any electrical conductor. Their

relationship to optical plasmons, and to the skin depth of metals has also been illustrated.

It has been shown that texturing a metal surface can suppress surface currents.

This was illustrated through two examples, a bumpy metal surface, and a corrugated slab.

In the high-impedance surface, the corrugations are folded up into lumped elements,

capacitors and inductors, and distributed in two dimensions.
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The high-impedance structure is easily fabricated using printed circuit technology,

and two different designs were presented. Using small probes, or specialized antennas,

surface wave properties can be measured. It was shown that surface waves propagation is

suppressed over a certain frequency range on the new textured surface. Within this same

frequency range, plane waves are reflected with no phase reversal. By adjusting the

geometry, the surface properties can be tuned to cover almost any radio frequency.

The high-impedance surface can be described using an effective medium model,

in which it is parameterized according to its sheet capacitance and sheet inductance. This

model can predict the reflection phase, the effects of material losses, and the surface

wave dispersion. The model can also determine the bandwidth of an antenna placed near

such a surface, and the behavior of leaky waves. The bandwidth is fundamentally limited

by the thickness of the structure, with respect to the operating vacuum wavelength.

The effective medium model is confirmed by a more accurate, finite element

model, in which detailed geometry is explicitly included. The finite element model

illustrates the nature of the band gap, and other electromagnetic features, including higher

bands, and leaky waves. The calculations also confirm the importance of the vertical

conducting vias.

Various alternative structures are presented, and their relationship to the high-

impedance surface is explored. These include frequency selective surfaces, and the

grounded dielectric slab. The necessary role of the conducting vias is illustrated by

contrast to other options.
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The high-impedance surface is studied in the context of an antenna ground plane,

and its benefits are illustrated in several examples. These include a vertical monopole, a

patch antenna, and various horizontal wire antennas that can produce either linear or

circular polarization. The applicability to phased arrays and the limitations of small

antennas are also discussed.

Finally, the design of high-impedance surfaces is presented in terms of equations

for frequency and bandwidth. Construction methods and materials issues are discussed,

and several example designs are shown. Data from numerous structures are summarized

to illustrate the validity of the effective medium model.

11.2 Future Research

The invention of this new electromagnetic structure leaves many avenues for

further research, some of which have already been mentioned. Since capacitive loading

tends to limit the bandwidth, it is desirable to explore inductive loading. This could be

done using coils, thin wires, or other possible techniques. Ideally, the inductance and

capacitance would be used in equal ratio to the impedance of free space.

Several high-frequency features have appeared both in measurements and

simulations, such as the existence of a second band gap, and higher-order bands.

Studying the nature of these features, and their possible usefulness for elecromagnetic

devices can provide many opportunities for future research. With a deeper understanding

of the interaction between textured surfaces and electromagnetic waves, one can

anticipate designs that are even more imaginative.
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Another area of future research involves the design of new kinds of antennas

employing the high-impedance surface. Variations of the current topology could be

explored, including graded structures to produce wider bandwidth, as well as tunable

structures. Currently, antennas consist of wires or patches that use the surface as a ground

plane. It has been shown that smaller designs should be possible, since it usually the

ground plane that limits the bandwidth. In one possible embodiment, the surface itself

could act as the antenna, with leaky surface waves producing the radiation.
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